Skip to main content
Top
Published in: International Journal of Diabetes in Developing Countries 3/2019

Open Access 01-07-2019 | Original Article

A non-targeted metabolomics study on different glucose tolerance states

Authors: Yan Gu, Peng Zang, Li-qin Li, Hui-zhi Zhang, Ji Li, Jin-xia Li, Yan-yan Yan, Shu-mao Sun, Jia Wang, Zhuang-yan Zhu

Published in: International Journal of Diabetes in Developing Countries | Issue 3/2019

Login to get access

Abstract

A non-targeted metabolomics method was employed to study metabolic characteristics in subjects with different glucose tolerance. Plasma samples of 120 participants with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and type 2 diabetes (T2D) were collected. Gas chromatography/mass spectrometry (GC/MS) was used to profile and compare the plasma metabolome among the three groups. Through the use of multivariate statistical analysis, we found distinct metabolome change from NGT to IGR and to T2D. ANOVA found that the IGR and T2D groups had perturbations of monosaccharide and lipid metabolism, disorders of glucogenic amino acids, and branched-chain amino acid catabolism. Furthermore, we also found that the levels of 2-hydroxybutyrate and 2-ketoisocaproate were progressively increased with glucose tolerance severity. The results from this study help us better understand the relationship between plasma metabolism and glucose tolerance states and also suggest that 2-hydroxybutyrate and 2-ketoisocaproate may be closely associated with the development of T2D.
Literature
2.
go back to reference Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multi-variate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.CrossRefPubMed Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multi-variate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.CrossRefPubMed
3.
go back to reference Zhang N, Geng F, Hu ZH, Liu B, Wang YQ, Liu JC, et al. Preliminary study of urine metabolism in type two diabetic patients based on GC-MS. Am J Transl Res. 2016;8:2889–96.PubMedPubMedCentral Zhang N, Geng F, Hu ZH, Liu B, Wang YQ, Liu JC, et al. Preliminary study of urine metabolism in type two diabetic patients based on GC-MS. Am J Transl Res. 2016;8:2889–96.PubMedPubMedCentral
4.
go back to reference Xu FG, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab. 2013;98:E1060–5.CrossRefPubMed Xu FG, Tavintharan S, Sum CF, Woon K, Lim SC, Ong CN. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J Clin Endocrinol Metab. 2013;98:E1060–5.CrossRefPubMed
5.
go back to reference Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, Kettunen J, et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes. 2012;61:1372–80.CrossRefPubMedPubMedCentral Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, Kettunen J, et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes. 2012;61:1372–80.CrossRefPubMedPubMedCentral
6.
go back to reference Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, et al. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol. 2012;76:674–82.CrossRef Ha CY, Kim JY, Paik JK, Kim OY, Paik YH, Lee EJ, et al. The association of specific metabolites of lipid metabolism with markers of oxidative stress, inflammation and arterial stiffness in men with newly diagnosed type 2 diabetes. Clin Endocrinol. 2012;76:674–82.CrossRef
7.
go back to reference Zhang AH, Sun H, Yan GL, Yuan Y, Han Y, Wang XJ. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/quadrupole-TOF high-definition MS coupled with pattern recognition methods. J Physiol Biochem. 2014;70:117–28.CrossRefPubMed Zhang AH, Sun H, Yan GL, Yuan Y, Han Y, Wang XJ. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/quadrupole-TOF high-definition MS coupled with pattern recognition methods. J Physiol Biochem. 2014;70:117–28.CrossRefPubMed
8.
go back to reference Chen TL, Ni Y, Ma XJ, Bao YQ, Liu JJ, Huang FJ, et al. Branched-chain and aromatic amino acid profles and diabetes risk in Chinese populations. Sci Rep. 2016;6:20594.CrossRefPubMedPubMedCentral Chen TL, Ni Y, Ma XJ, Bao YQ, Liu JJ, Huang FJ, et al. Branched-chain and aromatic amino acid profles and diabetes risk in Chinese populations. Sci Rep. 2016;6:20594.CrossRefPubMedPubMedCentral
9.
go back to reference Tillin T, Hughes AD, Wang Q, Würtz P, Ala-Korpela M, Sattar N, et al. Diabetes risk and amino acid profles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a south Asian and European cohort from the SABRE (Southall and Brent REvisited) study. Diabetologia. 2015;58:968–79.CrossRefPubMedPubMedCentral Tillin T, Hughes AD, Wang Q, Würtz P, Ala-Korpela M, Sattar N, et al. Diabetes risk and amino acid profles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a south Asian and European cohort from the SABRE (Southall and Brent REvisited) study. Diabetologia. 2015;58:968–79.CrossRefPubMedPubMedCentral
10.
go back to reference Drogan D, Dunn WB, Lin WC, Buijsse B, Schulze MB, Langenberg C, et al. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61:487–97.CrossRefPubMed Drogan D, Dunn WB, Lin WC, Buijsse B, Schulze MB, Langenberg C, et al. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61:487–97.CrossRefPubMed
11.
go back to reference Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.CrossRefPubMedPubMedCentral Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost HG, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48.CrossRefPubMedPubMedCentral
12.
go back to reference Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121:1402–11.CrossRefPubMedPubMedCentral Rhee EP, Cheng S, Larson MG, Walford GA, Lewis GD, McCabe E, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121:1402–11.CrossRefPubMedPubMedCentral
13.
go back to reference Lu YH, Wang YL, Ong CN, Subramaniam T, Choi HW, Yuan JM, et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia. 2016;59:2349–59.CrossRefPubMed Lu YH, Wang YL, Ong CN, Subramaniam T, Choi HW, Yuan JM, et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia. 2016;59:2349–59.CrossRefPubMed
14.
go back to reference Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martınez-Gonzalez MA, Salas-Salvado J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39:1–14.CrossRef Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martınez-Gonzalez MA, Salas-Salvado J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39:1–14.CrossRef
15.
go back to reference Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123:4309–17.CrossRefPubMedPubMedCentral Wang TJ, Ngo D, Psychogios N, Dejam A, Larson MG, Vasan RS, et al. 2-aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123:4309–17.CrossRefPubMedPubMedCentral
16.
go back to reference Menni C, Fauman E, Erte I, Perry JRB, Kastenmüller G, Shin SY, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a non-targeted metabolomics approach. Diabetes. 2013;62:4270–6.CrossRefPubMedPubMedCentral Menni C, Fauman E, Erte I, Perry JRB, Kastenmüller G, Shin SY, et al. Biomarkers for type 2 diabetes and impaired fasting glucose using a non-targeted metabolomics approach. Diabetes. 2013;62:4270–6.CrossRefPubMedPubMedCentral
17.
go back to reference Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013;62:1730–7.CrossRefPubMedPubMedCentral Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam KP, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013;62:1730–7.CrossRefPubMedPubMedCentral
18.
go back to reference Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:3898502.CrossRefPubMed Klein MS, Shearer J. Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res. 2016;2016:3898502.CrossRefPubMed
19.
go back to reference Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.CrossRefPubMed Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.CrossRefPubMed
20.
go back to reference Samuel VT. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011;22:60–5.CrossRefPubMed Samuel VT. Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab. 2011;22:60–5.CrossRefPubMed
21.
go back to reference Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Res. 2010;90:23–46. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Res. 2010;90:23–46.
22.
go back to reference Kern TS, Engerman RL. Galactose-induced retinal microangiopathy in rats. Invest Ophthalmol Vis Sci. 1995;36:490–6.PubMed Kern TS, Engerman RL. Galactose-induced retinal microangiopathy in rats. Invest Ophthalmol Vis Sci. 1995;36:490–6.PubMed
23.
go back to reference Jr Robison WG, Tillis TN, Laver N, Kinoshita JH. Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp Eye Res. 1995;50:355–66.CrossRef Jr Robison WG, Tillis TN, Laver N, Kinoshita JH. Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp Eye Res. 1995;50:355–66.CrossRef
24.
go back to reference Bajotto G, Murakami T, Nagasaki M, Sato Y, Shimomura Y. Decreased enzyme acitivity and contents of hepatic branched-chain α-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus. Metab Clin Exp. 2009;58:1489–95.CrossRefPubMed Bajotto G, Murakami T, Nagasaki M, Sato Y, Shimomura Y. Decreased enzyme acitivity and contents of hepatic branched-chain α-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus. Metab Clin Exp. 2009;58:1489–95.CrossRefPubMed
25.
go back to reference Kuzuya T, Katano Y, Nakano I, Hirooka Y, Itoh A, Ishigami M, et al. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem Biophys Res Commun. 2009;373:94–8.CrossRef Kuzuya T, Katano Y, Nakano I, Hirooka Y, Itoh A, Ishigami M, et al. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem Biophys Res Commun. 2009;373:94–8.CrossRef
26.
go back to reference Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med. 2010;77:511–23.CrossRefPubMed Gallagher EJ, Leroith D, Karnieli E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med. 2010;77:511–23.CrossRefPubMed
27.
go back to reference Defronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.CrossRefPubMed Defronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.CrossRefPubMed
28.
go back to reference Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.CrossRefPubMed Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.CrossRefPubMed
29.
go back to reference Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Investig. 2002;32(s3):14–23.CrossRef Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Investig. 2002;32(s3):14–23.CrossRef
30.
go back to reference Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9:355–66.CrossRefPubMed Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9:355–66.CrossRefPubMed
31.
go back to reference Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51:993–9.CrossRefPubMed Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51:993–9.CrossRefPubMed
32.
go back to reference Takayanagi R, Inoguchi T, Ohnaka K. Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. J Clin Biochem Nutr. 2011;48:72–7.CrossRefPubMed Takayanagi R, Inoguchi T, Ohnaka K. Clinical and experimental evidence for oxidative stress as an exacerbating factor of diabetes mellitus. J Clin Biochem Nutr. 2011;48:72–7.CrossRefPubMed
33.
go back to reference Banerjee R, Zou CG. Redox regulation and reaction mechanism of human cystathionine-β-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys. 2005;433:144–56.CrossRefPubMed Banerjee R, Zou CG. Redox regulation and reaction mechanism of human cystathionine-β-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys. 2005;433:144–56.CrossRefPubMed
34.
go back to reference Ray S, Watkins DN, Misso NL, Thompson PJ. Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy. 2002;32:571–7.CrossRefPubMed Ray S, Watkins DN, Misso NL, Thompson PJ. Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clin Exp Allergy. 2002;32:571–7.CrossRefPubMed
Metadata
Title
A non-targeted metabolomics study on different glucose tolerance states
Authors
Yan Gu
Peng Zang
Li-qin Li
Hui-zhi Zhang
Ji Li
Jin-xia Li
Yan-yan Yan
Shu-mao Sun
Jia Wang
Zhuang-yan Zhu
Publication date
01-07-2019
Publisher
Springer India
Published in
International Journal of Diabetes in Developing Countries / Issue 3/2019
Print ISSN: 0973-3930
Electronic ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-018-0662-x

Other articles of this Issue 3/2019

International Journal of Diabetes in Developing Countries 3/2019 Go to the issue