Skip to main content
Top
Published in: Cellular Oncology 6/2018

01-12-2018 | Original Paper

Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD)

Authors: Prateek Sharma, Sanjeev Kumar

Published in: Cellular Oncology | Issue 6/2018

Login to get access

Abstract

Purpose

Despite a growing body of evidence indicating a potential efficacy of the anti-diabetic metformin as anti-cancer agent, the exact mechanism underlying this efficacy has remained largely unknown. Here, we aimed at assessing putative mechanisms associated with the ability of metformin to reduce the proliferation and migration of breast cancer cells.

Methods

A battery of in vitro assays including MTT, colony formation, NBT and scratch wound healing assays were performed to assess the viability, proliferation, anti-oxidative potential and migration of breast cancer-derived MCF-7, MDA-MB-231 and T47D cells, respectively. Reactive oxygen species (ROS) assays along with fluorescence microscopy were used to assess apoptotic parameters. Quantification of SOD, Bcl-2, Bax, MMPs, miR-21 and miR-155 expression was performed using qRT-PCR.

Results

We found that metformin inhibited the growth, proliferation and clonogenic potential of the breast cancer-derived cells tested. ROS levels were found to be significantly reduced by metformin and, concomitantly, superoxide dismutase (SOD) isoforms were found to be upregulated. Mitochondrial dysfunction was observed in metformin treated cells, indicating apoptosis. In metastatic MDA-MB-231 cells, migration was found to be suppressed by metformin through deregulation of the matrix metalloproteinases MMP-2 and MMP-9. The oncogenic microRNAs miR-21 and miR-155 were found to be downregulated by metformin, which may be correlated with the suppression of cell proliferation and/or migration.

Conclusions

Our data indicate that metformin may play a pivotal role in modulating the anti-oxidant system, including the SOD machinery, in breast cancer-derived cells. Our observations were validated by in silico analyses, indicating a close interaction between SOD and metformin. We also found that metformin may inhibit breast cancer-derived cell proliferation through apoptosis induction via the mitochondrial pathway. Finally, we found that metformin may modulate the pro-apoptotic Bax, anti-apoptotic Bcl-2, MMP-2, MMP-9, miR-21 and miR-155 expression levels. These findings may be instrumental for the clinical management and/or (targeted) treatment of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics 2016. CA Cancer J. Clin. 66, 7–30 (2016)CrossRef R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics 2016. CA Cancer J. Clin. 66, 7–30 (2016)CrossRef
2.
go back to reference R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)CrossRef R. Sharma, R. Sharma, T.P. Khaket, C. Dutta, B. Chakraborty, T.K. Mukherjee, Breast cancer metastasis: Putative therapeutic role of vascular cell adhesion molecule-1. Cell. Oncol. 40, 199–208 (2017)CrossRef
3.
go back to reference L. Vona-Davis, D.P. Rose, Type 2 diabetes and obesity metabolic interactions: Common factors for breast cancer risk and novel approaches to prevention and therapy. Curr. Diabetes Rev. 8, 116–130 (2012)CrossRef L. Vona-Davis, D.P. Rose, Type 2 diabetes and obesity metabolic interactions: Common factors for breast cancer risk and novel approaches to prevention and therapy. Curr. Diabetes Rev. 8, 116–130 (2012)CrossRef
4.
go back to reference P. Ferroni, S. Riondino, O. Buonomo, R. Palmirotta, F. Guadagni, Roselli, Type 2 Diabetes and breast cancer: The interplay between impaired glucose metabolism and oxidant stress. Oxidative Med. Cell. Longev. 2015, 183928 (2015)CrossRef P. Ferroni, S. Riondino, O. Buonomo, R. Palmirotta, F. Guadagni, Roselli, Type 2 Diabetes and breast cancer: The interplay between impaired glucose metabolism and oxidant stress. Oxidative Med. Cell. Longev. 2015, 183928 (2015)CrossRef
5.
go back to reference L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef L.A. Flores-López, M.G. Martínez-Hernández, R. Viedma-Rodríguez, M. Díaz-Flores, L.A. Baiza-Gutman, High glucose and insulin enhance uPA expression, ROS formation and invasiveness in breast cancer-derived cells. Cell. Oncol. 39, 365–378 (2016)CrossRef
6.
go back to reference S. Suh, K.W. Kim, Diabetes and cancer: Is diabetes causally related to cancer? Diabetes Metab. J. 35, 193–198 (2011)CrossRef S. Suh, K.W. Kim, Diabetes and cancer: Is diabetes causally related to cancer? Diabetes Metab. J. 35, 193–198 (2011)CrossRef
7.
go back to reference I. Ben Sahra, Y. Le Marchand-Brustel, J.F. Tanti, F. Bost, Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092–1099 (2010)CrossRef I. Ben Sahra, Y. Le Marchand-Brustel, J.F. Tanti, F. Bost, Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther. 9, 1092–1099 (2010)CrossRef
8.
go back to reference A. Malki, A. Youssef, Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol. Res. 19, 275–285 (2011)CrossRef A. Malki, A. Youssef, Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol. Res. 19, 275–285 (2011)CrossRef
9.
go back to reference K.H. Stopsack, D.R. Ziehr, J.R. Rider, E.L. Giovannucci, Metformin and prostate cancer mortality: A meta-analysis. Cancer Causes Control 27, 105–113 (2016)CrossRef K.H. Stopsack, D.R. Ziehr, J.R. Rider, E.L. Giovannucci, Metformin and prostate cancer mortality: A meta-analysis. Cancer Causes Control 27, 105–113 (2016)CrossRef
10.
go back to reference B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270 (2012)CrossRef B. Viollet, B. Guigas, N. Sanz Garcia, J. Leclerc, M. Foretz, F. Andreelli, Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. 122, 253–270 (2012)CrossRef
11.
go back to reference K.Y. Hur, M.S. Lee, New mechanisms of metformin action: Focusing on mitochondria and the gut. J. Diabetes Investig. 6 600–609 (2015)CrossRef K.Y. Hur, M.S. Lee, New mechanisms of metformin action: Focusing on mitochondria and the gut. J. Diabetes Investig. 6 600–609 (2015)CrossRef
12.
go back to reference W.W. Wheaton, S.E. Weinberg, R.B. Hamanaka, S. Soberanes, L.B. Sullivan, E. Anso, A. Glasauer, E. Dufour, G.M. Mutlu, G.S. Budigner, N.S. Chandel, Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242 (2014)CrossRef W.W. Wheaton, S.E. Weinberg, R.B. Hamanaka, S. Soberanes, L.B. Sullivan, E. Anso, A. Glasauer, E. Dufour, G.M. Mutlu, G.S. Budigner, N.S. Chandel, Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242 (2014)CrossRef
13.
go back to reference S.E. Weinberg, N.S. Chandel, Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015)CrossRef S.E. Weinberg, N.S. Chandel, Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9–15 (2015)CrossRef
14.
go back to reference I. Pernicova, M. Korbonits, Metformin: Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014)CrossRef I. Pernicova, M. Korbonits, Metformin: Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014)CrossRef
15.
go back to reference E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 5 9–19 (2012)CrossRef E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci, Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 5 9–19 (2012)CrossRef
16.
go back to reference G. Barrera, Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012, 137289 (2012)PubMedPubMedCentral G. Barrera, Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012, 137289 (2012)PubMedPubMedCentral
17.
go back to reference B. Singh, M. Rani, J. Singh, L. Moudgil, P. Sharma, S. Kumar, G.S.S. Saini, S.K. Tripathi, G. Singh, A. Kaura, Identifying the preferred interaction mode of naringin with gold nanoparticles through experimental, DFT and TDDFT techniques: insights into their sensing and biological applications. RSC Adv. 6, 79470–79484 (2016)CrossRef B. Singh, M. Rani, J. Singh, L. Moudgil, P. Sharma, S. Kumar, G.S.S. Saini, S.K. Tripathi, G. Singh, A. Kaura, Identifying the preferred interaction mode of naringin with gold nanoparticles through experimental, DFT and TDDFT techniques: insights into their sensing and biological applications. RSC Adv. 6, 79470–79484 (2016)CrossRef
18.
go back to reference N.A. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006)CrossRef N.A. Franken, H.M. Rodermond, J. Stap, J. Haveman, C. van Bree, Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315–2319 (2006)CrossRef
19.
go back to reference J. Zielonka, B. Kalyanaraman, Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic. Biol. Med. 48, 983–1001 (2010)CrossRef J. Zielonka, B. Kalyanaraman, Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth. Free Radic. Biol. Med. 48, 983–1001 (2010)CrossRef
20.
go back to reference B.S. Gill, P. Sharma, K.S. Navgeet, Chemical composition and antiproliferative, antioxidant, and proapoptotic effects of fruiting body extracts of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), from India. Int. J. Med. Mushrooms 18, 599–607 (2016)CrossRef B.S. Gill, P. Sharma, K.S. Navgeet, Chemical composition and antiproliferative, antioxidant, and proapoptotic effects of fruiting body extracts of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), from India. Int. J. Med. Mushrooms 18, 599–607 (2016)CrossRef
21.
go back to reference N. Jambunathan, Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 639, 292–298 (2010) N. Jambunathan, Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol. Biol. 639, 292–298 (2010)
22.
go back to reference B. Chazotte, Labeling nuclear DNA using DAPI. CSH Protoc. 2011, 5556 (2011) B. Chazotte, Labeling nuclear DNA using DAPI. CSH Protoc. 2011, 5556 (2011)
23.
go back to reference S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. Bossy-Wetzel, D.R. Green, Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006, pii (2006) S. Kasibhatla, G.P. Amarante-Mendes, D. Finucane, T. Brunner, E. Bossy-Wetzel, D.R. Green, Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protoc. 2006, pii (2006)
24.
go back to reference A. Cossarizza, M. Baccaranicontri, G. Kalashnikova, C. Franceschi, A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine Iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45 (1993)CrossRef A. Cossarizza, M. Baccaranicontri, G. Kalashnikova, C. Franceschi, A new method for the cytofluorometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine Iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45 (1993)CrossRef
25.
go back to reference C.C. Liang, A.Y. Park, J.L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007)CrossRef C.C. Liang, A.Y. Park, J.L. Guan, In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007)CrossRef
26.
go back to reference K.E. Hevener, W. Zhao, D.M. Ball, K. Babaoglu, J. Qi, S.W. White, R.E. Lee, Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 49, 444–460 (2009)CrossRef K.E. Hevener, W. Zhao, D.M. Ball, K. Babaoglu, J. Qi, S.W. White, R.E. Lee, Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 49, 444–460 (2009)CrossRef
27.
go back to reference R.W. Strange, S. Antonyuk, M.A. Hough, P.A. Doucette, J.A. Rodriguez, P.J. Hart, L.J. Hayward, J.S. Valentine, S.S. Hasnain, The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J. Mol. Biol. 328, 877–891 (2003)CrossRef R.W. Strange, S. Antonyuk, M.A. Hough, P.A. Doucette, J.A. Rodriguez, P.J. Hart, L.J. Hayward, J.S. Valentine, S.S. Hasnain, The structure of holo and metal-deficient wild-type human Cu, Zn superoxide dismutase and its relevance to familial amyotrophic lateral sclerosis. J. Mol. Biol. 328, 877–891 (2003)CrossRef
28.
go back to reference A.S. Hearn, L. Fan, J.R. Lepock, J.P. Luba, W.B. Greenleaf, D.E. Cabelli, J.A. Tainer, H.S. Nick, D.N. Silverman, Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. J. Biol. Chem. 279, 5861–5866 (2004)CrossRef A.S. Hearn, L. Fan, J.R. Lepock, J.P. Luba, W.B. Greenleaf, D.E. Cabelli, J.A. Tainer, H.S. Nick, D.N. Silverman, Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. J. Biol. Chem. 279, 5861–5866 (2004)CrossRef
29.
go back to reference Y. Huang, Q. Jin, M. Su, F. Ji, N. Wang, C. Zhong, Y. Jiang, Y. Liu, Z. Zhang, J. Yang, L. Wei, T. Chen, B. Li, Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. Cell. Oncol. 40, 537–547 (2017)CrossRef Y. Huang, Q. Jin, M. Su, F. Ji, N. Wang, C. Zhong, Y. Jiang, Y. Liu, Z. Zhang, J. Yang, L. Wei, T. Chen, B. Li, Leptin promotes the migration and invasion of breast cancer cells by upregulating ACAT2. Cell. Oncol. 40, 537–547 (2017)CrossRef
30.
go back to reference P.J. Wysocki, B. Wierusz-Wysocka, Obesity, hyperinsulinemia and breast cancer: novel targets and a novel role for metformin. Expert. Rev. Mol. Diagn. 10, 509–519 (2010)CrossRef P.J. Wysocki, B. Wierusz-Wysocka, Obesity, hyperinsulinemia and breast cancer: novel targets and a novel role for metformin. Expert. Rev. Mol. Diagn. 10, 509–519 (2010)CrossRef
31.
go back to reference G.W. Landman, N. Kleefstra, K.J. van Hateren, K.H. Groenier, R.O. Gans, H.J. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010)CrossRef G.W. Landman, N. Kleefstra, K.J. van Hateren, K.H. Groenier, R.O. Gans, H.J. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010)CrossRef
32.
go back to reference K. Kato, J. Gong, H. Iwama, A. Kitanaka, J. Tani, H. Miyoshi, K. Nomura, S. Mimura, M. Kobayashi, Y. Aritomo, H. Kobara, H. Mori, T. Himoto, K. Okano, Y. Suzuki, K. Murao, T. Masaki, The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther. 11, 549–560 (2012)CrossRef K. Kato, J. Gong, H. Iwama, A. Kitanaka, J. Tani, H. Miyoshi, K. Nomura, S. Mimura, M. Kobayashi, Y. Aritomo, H. Kobara, H. Mori, T. Himoto, K. Okano, Y. Suzuki, K. Murao, T. Masaki, The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther. 11, 549–560 (2012)CrossRef
33.
go back to reference T. Zhang, P. Guo, Y. Zhang, H. Xiong, X. Yu, S. Xu, X. Wang, D. He, X. Jin, The antidiabetic drug metformin inhibits the proliferation of bladder cancer cells in vitro and in vivo. Int. J. Mol. Sci. 14, 24603–24618 (2013)CrossRef T. Zhang, P. Guo, Y. Zhang, H. Xiong, X. Yu, S. Xu, X. Wang, D. He, X. Jin, The antidiabetic drug metformin inhibits the proliferation of bladder cancer cells in vitro and in vivo. Int. J. Mol. Sci. 14, 24603–24618 (2013)CrossRef
34.
go back to reference V. Nair, S. Sreevalsan, R. Basha, M. Abdelrahim, A. Abudayyeh, A. Rodrigues Hoffman, S. Safe, Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J. Biol. Chem. 289, 27692–27701 (2014)CrossRef V. Nair, S. Sreevalsan, R. Basha, M. Abdelrahim, A. Abudayyeh, A. Rodrigues Hoffman, S. Safe, Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: role of specificity protein (Sp) transcription factors. J. Biol. Chem. 289, 27692–27701 (2014)CrossRef
35.
go back to reference I.N. Alimova, B. Liu, Z. Fan, S.M. Edgerton, T. Dillon, S.E. Lind, A.D. Thor, Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009)CrossRef I.N. Alimova, B. Liu, Z. Fan, S.M. Edgerton, T. Dillon, S.E. Lind, A.D. Thor, Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009)CrossRef
36.
go back to reference D. Zhou, L. Shao, D.R. Spitz, Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 122, 1–67 (2014)CrossRef D. Zhou, L. Shao, D.R. Spitz, Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 122, 1–67 (2014)CrossRef
37.
go back to reference W. Droge, Oxidative aging and insulin receptor signaling. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1378–1385 (2005)CrossRef W. Droge, Oxidative aging and insulin receptor signaling. J. Gerontol. A Biol. Sci. Med. Sci. 60, 1378–1385 (2005)CrossRef
38.
go back to reference I. Afanas’ev, Reactive oxygen species signaling in cancer: comparison with aging. Aging Dis. 2, 219–230 (2011)PubMed I. Afanas’ev, Reactive oxygen species signaling in cancer: comparison with aging. Aging Dis. 2, 219–230 (2011)PubMed
39.
go back to reference Y. Son, Y.K. Cheong, N.H. Kim, H.T. Chung, D.G. Kang, H.O. Pae, Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639 (2011)PubMedPubMedCentral Y. Son, Y.K. Cheong, N.H. Kim, H.T. Chung, D.G. Kang, H.O. Pae, Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J. Signal Transduct. 2011, 792639 (2011)PubMedPubMedCentral
40.
go back to reference A. Jezierska-Drutel, S.A. Rosenzweig, C.A. Neumann, Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119, 107–125 (2013)CrossRef A. Jezierska-Drutel, S.A. Rosenzweig, C.A. Neumann, Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 119, 107–125 (2013)CrossRef
41.
go back to reference P.K.S. Mahalingaiah, K.P. Singh, Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 9, e87371 (2014)CrossRef P.K.S. Mahalingaiah, K.P. Singh, Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 9, e87371 (2014)CrossRef
42.
go back to reference B. Poljsak, D. Suput, I. Milisav, Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Med. Cell. Longev. 2013, 956792 (2013)CrossRef B. Poljsak, D. Suput, I. Milisav, Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Med. Cell. Longev. 2013, 956792 (2013)CrossRef
43.
go back to reference T. Fukai, M. Ushio-Fukai, Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606 (2011)CrossRef T. Fukai, M. Ushio-Fukai, Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606 (2011)CrossRef
44.
go back to reference G. Cheng, S. Lanza-Jacoby, Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: Role of NOX4. Biochem. Biophys. Res. Commun. 465, 41–46 (2015)CrossRef G. Cheng, S. Lanza-Jacoby, Metformin decreases growth of pancreatic cancer cells by decreasing reactive oxygen species: Role of NOX4. Biochem. Biophys. Res. Commun. 465, 41–46 (2015)CrossRef
45.
go back to reference N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J.A. Melendez, J.P. Robinson, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003)CrossRef N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J.A. Melendez, J.P. Robinson, Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525 (2003)CrossRef
46.
go back to reference M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014)PubMedPubMedCentral M. Hassan, H. Watari, A. AbuAlmaaty, Y. Ohba, N. Sakuragi, Apoptosis and molecular targeting therapy in cancer. Biomed. Res. Int. 2014, 150845 (2014)PubMedPubMedCentral
47.
go back to reference K. Zibara, Z. Awada, L. Dib, J. El-Saghir, S. Al-Ghadban, A. Ibrik, E.N. Zein, E.M. Sabban, Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo. Sci. Rep. 5, (12598) (2015) K. Zibara, Z. Awada, L. Dib, J. El-Saghir, S. Al-Ghadban, A. Ibrik, E.N. Zein, E.M. Sabban, Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo. Sci. Rep. 5, (12598) (2015)
48.
go back to reference K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141, 52–67 (2010)CrossRef K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141, 52–67 (2010)CrossRef
49.
go back to reference W. Wang, Y. Luo, MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B 16, 18–31 (2015)CrossRef W. Wang, Y. Luo, MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J. Zhejiang Univ. Sci. B 16, 18–31 (2015)CrossRef
50.
go back to reference G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRef G.S. Markopoulos, E. Roupakia, M. Tokamani, E. Chavdoula, M. Hatziapostolou, C. Polytarchou, K.B. Marcu, A.G. Papavassiliou, R. Sandaltzopoulos, E. Kolettas, A step-by-step microRNA guide to cancer development and metastasis. Cell. Oncol. 40, 303–339 (2017)CrossRef
51.
go back to reference G.C. Guo, J.X. Wang, M.L. Han, L.P. Zhang, L. Li, microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell. Oncol. 40, 157–166 (2017)CrossRef G.C. Guo, J.X. Wang, M.L. Han, L.P. Zhang, L. Li, microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell. Oncol. 40, 157–166 (2017)CrossRef
52.
go back to reference S. Jiang, H.W. Zhang, M.H. Lu, X.H. He, Y. Li, MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010)CrossRef S. Jiang, H.W. Zhang, M.H. Lu, X.H. He, Y. Li, MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 70, 3119–3127 (2010)CrossRef
53.
go back to reference S. Mattiske, R.J. Suetani, P.M. Neilsen, D.F. Callen, The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. 21, 1236–1243 (2012)CrossRef S. Mattiske, R.J. Suetani, P.M. Neilsen, D.F. Callen, The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomark. Prev. 21, 1236–1243 (2012)CrossRef
Metadata
Title
Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD)
Authors
Prateek Sharma
Sanjeev Kumar
Publication date
01-12-2018
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 6/2018
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-018-0398-0

Other articles of this Issue 6/2018

Cellular Oncology 6/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine