Skip to main content
Top
Published in: Cellular Oncology 4/2017

01-08-2017 | Review

A step-by-step microRNA guide to cancer development and metastasis

Authors: Georgios S. Markopoulos, Eugenia Roupakia, Maria Tokamani, Evangelia Chavdoula, Maria Hatziapostolou, Christos Polytarchou, Kenneth B. Marcu, Athanasios G. Papavassiliou, Raphael Sandaltzopoulos, Evangelos Kolettas

Published in: Cellular Oncology | Issue 4/2017

Login to get access

Abstract

Background

Cancer is one of the leading causes of mortality. The neoplastic transformation of normal cells to cancer cells is caused by a progressive accumulation of genetic and epigenetic alterations in oncogenes, tumor suppressor genes and epigenetic regulators, providing cells with new properties, collectively known as the hallmarks of cancer. During the process of neoplastic transformation cells progressively acquire novel characteristics such as unlimited growth potential, increased motility and the ability to migrate and invade adjacent tissues, the ability to spread from the tumor of origin to distant sites, and increased resistance to various types of stresses, mostly attributed to the activation of genetic stress-response programs. Accumulating evidence indicates a crucial role of microRNAs (miRNAs or miRs) in the initiation and progression of cancer, acting either as oncogenes (oncomirs) or as tumor suppressors via several molecular mechanisms. MiRNAs comprise a class of small ~22 bp long noncoding RNAs that play a key role in the regulation of gene expression at the post-transcriptional level, acting as negative regulators of mRNA translation and/or stability. MiRNAs are involved in the regulation of a variety of biological processes including cell cycle progression, DNA damage responses and apoptosis, epithelial-to-mesenchymal cell transitions, cell motility and stemness through complex and interactive transcription factor-miRNA regulatory networks.

Conclusions

The impact and the dynamic potential of miRNAs with oncogenic or tumor suppressor properties in each stage of the multistep process of tumorigenesis, and in the adaptation of cancer cells to stress, are discussed. We propose that the balance between oncogenic versus tumor suppressive miRNAs acting within transcription factor-miRNA regulatory networks, influences both the multistage process of neoplastic transformation, whereby normal cells become cancerous, and their stress responses. The role of specific tumor-derived exosomes containing miRNAs and their use as biomarkers in diagnosis and prognosis, and as therapeutic targets, are also discussed.
Literature
1.
2.
go back to reference S.I. Ellenbroek, J. van Rheenen, Imaging hallmarks of cancer in living mice. Nat Rev Cancer 14, 406–418 (2014)PubMedCrossRef S.I. Ellenbroek, J. van Rheenen, Imaging hallmarks of cancer in living mice. Nat Rev Cancer 14, 406–418 (2014)PubMedCrossRef
3.
go back to reference L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108 (2015)PubMedCrossRef L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108 (2015)PubMedCrossRef
4.
go back to reference A.L. Gartel, E.S. Kandel, miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol 18, 103–110 (2008)PubMedCrossRef A.L. Gartel, E.S. Kandel, miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol 18, 103–110 (2008)PubMedCrossRef
5.
go back to reference K. Ruan, X. Fang, G. Ouyang, MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285, 116–126 (2009)PubMedCrossRef K. Ruan, X. Fang, G. Ouyang, MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett 285, 116–126 (2009)PubMedCrossRef
7.
go back to reference P.M. Voorhoeve, MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta 1805, 72–86 (2010)PubMed P.M. Voorhoeve, MicroRNAs: Oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta 1805, 72–86 (2010)PubMed
9.
go back to reference P.M. Voorhoeve, R. Agami, Classifying microRNAs in cancer: the good, the bad and the ugly. Biochim Biophys Acta 1775, 274–282 (2007)PubMed P.M. Voorhoeve, R. Agami, Classifying microRNAs in cancer: the good, the bad and the ugly. Biochim Biophys Acta 1775, 274–282 (2007)PubMed
10.
go back to reference M. Hatziapostolou, C. Polytarchou, D. Iliopoulos, miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab 24, 361–373 (2013)PubMedCrossRef M. Hatziapostolou, C. Polytarchou, D. Iliopoulos, miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab 24, 361–373 (2013)PubMedCrossRef
11.
go back to reference J. Winter, S. Jung, S. Keller, R.I. Gregory, S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228–234 (2009)PubMedCrossRef J. Winter, S. Jung, S. Keller, R.I. Gregory, S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228–234 (2009)PubMedCrossRef
12.
go back to reference V.N. Kim, J. Han, M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126–139 (2009)PubMedCrossRef V.N. Kim, J. Han, M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10, 126–139 (2009)PubMedCrossRef
13.
go back to reference S.L. Ameres, P.D. Zamore, Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14, 475–488 (2013)PubMedCrossRef S.L. Ameres, P.D. Zamore, Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14, 475–488 (2013)PubMedCrossRef
14.
16.
go back to reference V. Taucher, H. Mangge, J. Haybaeck, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol 39, 295–318 (2016)CrossRef V. Taucher, H. Mangge, J. Haybaeck, Non-coding RNAs in pancreatic cancer: challenges and opportunities for clinical application. Cell Oncol 39, 295–318 (2016)CrossRef
17.
go back to reference M. Vitiello, A. Tuccoli, L. Poliseno, Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol 38, 17–28 (2015)CrossRef M. Vitiello, A. Tuccoli, L. Poliseno, Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol 38, 17–28 (2015)CrossRef
18.
go back to reference A. Kozomara, S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, D152–D157 (2011)PubMedCrossRef A. Kozomara, S. Griffiths-Jones, miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, D152–D157 (2011)PubMedCrossRef
19.
20.
22.
go back to reference L. He, G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531 (2004)PubMedCrossRef L. He, G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531 (2004)PubMedCrossRef
23.
go back to reference J.T. Mendell, MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4, 1179–1184 (2005)PubMedCrossRef J.T. Mendell, MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4, 1179–1184 (2005)PubMedCrossRef
24.
25.
go back to reference M. Inui, G. Martello, S. Piccolo, MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11, 252–263 (2010)PubMedCrossRef M. Inui, G. Martello, S. Piccolo, MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11, 252–263 (2010)PubMedCrossRef
29.
go back to reference F.d.A. di Fagagna, A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol 24, 171–178 (2014) F.d.A. di Fagagna, A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol 24, 171–178 (2014)
30.
go back to reference M.J. Bueno, M. Malumbres, MicroRNAs and the cell cycle. Biochim Biophys Acta 1812, 592–601 (2011)PubMedCrossRef M.J. Bueno, M. Malumbres, MicroRNAs and the cell cycle. Biochim Biophys Acta 1812, 592–601 (2011)PubMedCrossRef
31.
go back to reference A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259–269 (2006)PubMedCrossRef A. Esquela-Kerscher, F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259–269 (2006)PubMedCrossRef
34.
go back to reference M. Negrini, M.S. Nicoloso, G.A. Calin, MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol 21, 470–479 (2009)PubMedCrossRef M. Negrini, M.S. Nicoloso, G.A. Calin, MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol 21, 470–479 (2009)PubMedCrossRef
35.
go back to reference M.S. Nicoloso, R. Spizzo, M. Shimizu, S. Rossi, G.A. Calin, MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 9, 293–302 (2009)PubMedCrossRef M.S. Nicoloso, R. Spizzo, M. Shimizu, S. Rossi, G.A. Calin, MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 9, 293–302 (2009)PubMedCrossRef
36.
go back to reference R. Spizzo, M.S. Nicoloso, C.M. Croce, G.A. Calin, SnapShot: MicroRNAs in Cancer. Cell 137, 586–586 e581 (2009)PubMedCrossRef R. Spizzo, M.S. Nicoloso, C.M. Croce, G.A. Calin, SnapShot: MicroRNAs in Cancer. Cell 137, 586–586 e581 (2009)PubMedCrossRef
38.
go back to reference C. Baer, R. Claus, C. Plass, Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73, 473–477 (2013)PubMedCrossRef C. Baer, R. Claus, C. Plass, Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res 73, 473–477 (2013)PubMedCrossRef
39.
go back to reference S. Babashah, M. Soleimani, The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47, 1127–1137 (2011)PubMedCrossRef S. Babashah, M. Soleimani, The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47, 1127–1137 (2011)PubMedCrossRef
40.
go back to reference N. Weinhold, A. Jacobsen, N. Schultz, C. Sander, W. Lee, Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 46, 1160–1165 (2014)PubMedPubMedCentralCrossRef N. Weinhold, A. Jacobsen, N. Schultz, C. Sander, W. Lee, Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 46, 1160–1165 (2014)PubMedPubMedCentralCrossRef
41.
42.
go back to reference N.J. Martinez, A.J. Walhout, The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays 31, 435–445 (2009)PubMedPubMedCentralCrossRef N.J. Martinez, A.J. Walhout, The interplay between transcription factors and microRNAs in genome-scale regulatory networks. BioEssays 31, 435–445 (2009)PubMedPubMedCentralCrossRef
45.
go back to reference H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12, 613–626 (2012)PubMedCrossRef H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12, 613–626 (2012)PubMedCrossRef
46.
go back to reference P.Y. Lui, D.Y. Jin, N.J. Stevenson, MicroRNA: master controllers of intracellular signaling pathways. Cell Mol Life Sci 72, 3531–3542 (2015)PubMedCrossRef P.Y. Lui, D.Y. Jin, N.J. Stevenson, MicroRNA: master controllers of intracellular signaling pathways. Cell Mol Life Sci 72, 3531–3542 (2015)PubMedCrossRef
47.
go back to reference K.D. Taganov, M.P. Boldin, K.J. Chang, D. Baltimore, NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103, 12481–12486 (2006) K.D. Taganov, M.P. Boldin, K.J. Chang, D. Baltimore, NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103, 12481–12486 (2006)
48.
go back to reference D. Iliopoulos, H.A. Hirsch, K. Struhl, An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009)PubMedPubMedCentralCrossRef D. Iliopoulos, H.A. Hirsch, K. Struhl, An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009)PubMedPubMedCentralCrossRef
50.
go back to reference M.P. Boldin, D. Baltimore, MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev 246, 205–220 (2012)PubMedCrossRef M.P. Boldin, D. Baltimore, MicroRNAs, new effectors and regulators of NF-kappaB. Immunol Rev 246, 205–220 (2012)PubMedCrossRef
52.
go back to reference C.P. Bracken, H.S. Scott, G.J. Goodall, A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17, 719–732 (2016)PubMedCrossRef C.P. Bracken, H.S. Scott, G.J. Goodall, A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17, 719–732 (2016)PubMedCrossRef
53.
go back to reference S.A. Melo, S. Ropero, C. Moutinho, L.A. Aaltonen, H. Yamamoto, G.A. Calin, S. Rossi, A.F. Fernandez, F. Carneiro, C. Oliveira, B. Ferreira, C.G. Liu, A. Villanueva, G. Capella, S. Schwartz Jr., R. Shiekhattar, M. Esteller, A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41, 365–370 (2009)PubMedPubMedCentralCrossRef S.A. Melo, S. Ropero, C. Moutinho, L.A. Aaltonen, H. Yamamoto, G.A. Calin, S. Rossi, A.F. Fernandez, F. Carneiro, C. Oliveira, B. Ferreira, C.G. Liu, A. Villanueva, G. Capella, S. Schwartz Jr., R. Shiekhattar, M. Esteller, A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41, 365–370 (2009)PubMedPubMedCentralCrossRef
54.
go back to reference D.A. Hill, J. Ivanovich, J.R. Priest, C.A. Gurnett, L.P. Dehner, D. Desruisseau, J.A. Jarzembowski, K.A. Wikenheiser-Brokamp, B.K. Suarez, A.J. Whelan, G. Williams, D. Bracamontes, Y. Messinger, P.J. Goodfellow, DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009)PubMedPubMedCentralCrossRef D.A. Hill, J. Ivanovich, J.R. Priest, C.A. Gurnett, L.P. Dehner, D. Desruisseau, J.A. Jarzembowski, K.A. Wikenheiser-Brokamp, B.K. Suarez, A.J. Whelan, G. Williams, D. Bracamontes, Y. Messinger, P.J. Goodfellow, DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009)PubMedPubMedCentralCrossRef
55.
go back to reference S.A. Melo, C. Moutinho, S. Ropero, G.A. Calin, S. Rossi, R. Spizzo, A.F. Fernandez, V. Davalos, A. Villanueva, G. Montoya, H. Yamamoto, S. Schwartz Jr., M. Esteller, A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010)PubMedCrossRef S.A. Melo, C. Moutinho, S. Ropero, G.A. Calin, S. Rossi, R. Spizzo, A.F. Fernandez, V. Davalos, A. Villanueva, G. Montoya, H. Yamamoto, S. Schwartz Jr., M. Esteller, A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18, 303–315 (2010)PubMedCrossRef
56.
go back to reference S.A. Melo, H. Sugimoto, J.T. O'Connell, N. Kato, A. Villanueva, A. Vidal, L. Qiu, E. Vitkin, L.T. Perelman, C.A. Melo, A. Lucci, C. Ivan, G.A. Calin, R. Kalluri, Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26, 707–721 (2014)PubMedPubMedCentralCrossRef S.A. Melo, H. Sugimoto, J.T. O'Connell, N. Kato, A. Villanueva, A. Vidal, L. Qiu, E. Vitkin, L.T. Perelman, C.A. Melo, A. Lucci, C. Ivan, G.A. Calin, R. Kalluri, Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26, 707–721 (2014)PubMedPubMedCentralCrossRef
57.
go back to reference P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M.C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V.B. Bajic, S.E. Brenner, S. Batalov, A.R. Forrest, M. Zavolan, M.J. Davis, L.G. Wilming, V. Aidinis, J.E. Allen, A. Ambesi-Impiombato, R. Apweiler, R.N. Aturaliya, T.L. Bailey, M. Bansal, L. Baxter, K.W. Beisel, T. Bersano, H. Bono, A.M. Chalk, K.P. Chiu, V. Choudhary, A. Christoffels, D.R. Clutterbuck, M.L. Crowe, E. Dalla, B.P. Dalrymple, B. de Bono, G. Della Gatta, D. di Bernardo, T. Down, P. Engstrom, M. Fagiolini, G. Faulkner, C.F. Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P. Georgii-Hemming, T.R. Gingeras, T. Gojobori, R.E. Green, S. Gustincich, M. Harbers, Y. Hayashi, T.K. Hensch, N. Hirokawa, D. Hill, L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G. Kollias, S.P. Krishnan, A. Kruger, S.K. Kummerfeld, I.V. Kurochkin, L.F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M. Madan Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K.C. Pang, W.J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J.F. Reid, B.Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S.L. Salzberg, A. Sandelin, C. Schneider, C. Schonbach, K. Sekiguchi, C.A. Semple, S. Seno, L. Sessa, Y. Sheng, Y. Shibata, H. Shimada, K. Shimada, D. Silva, B. Sinclair, S. Sperling, E. Stupka, K. Sugiura, R. Sultana, Y. Takenaka, K. Taki, K. Tammoja, S.L. Tan, S. Tang, M.S. Taylor, J. Tegner, S.A. Teichmann, H.R. Ueda, E. van Nimwegen, R. Verardo, C.L. Wei, K. Yagi, H. Yamanishi, E. Zabarovsky, S. Zhu, A. Zimmer, W. Hide, C. Bult, S.M. Grimmond, R.D. Teasdale, E.T. Liu, V. Brusic, J. Quackenbush, C. Wahlestedt, J.S. Mattick, D.A. Hume, C. Kai, D. Sasaki, Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J. Aoki, T. Arakawa, J. Iida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada, C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai, Y. Hayashizaki, The transcriptional landscape of the mammalian genome. Sci 309, 1559–1563 (2005)CrossRef P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M.C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V.B. Bajic, S.E. Brenner, S. Batalov, A.R. Forrest, M. Zavolan, M.J. Davis, L.G. Wilming, V. Aidinis, J.E. Allen, A. Ambesi-Impiombato, R. Apweiler, R.N. Aturaliya, T.L. Bailey, M. Bansal, L. Baxter, K.W. Beisel, T. Bersano, H. Bono, A.M. Chalk, K.P. Chiu, V. Choudhary, A. Christoffels, D.R. Clutterbuck, M.L. Crowe, E. Dalla, B.P. Dalrymple, B. de Bono, G. Della Gatta, D. di Bernardo, T. Down, P. Engstrom, M. Fagiolini, G. Faulkner, C.F. Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P. Georgii-Hemming, T.R. Gingeras, T. Gojobori, R.E. Green, S. Gustincich, M. Harbers, Y. Hayashi, T.K. Hensch, N. Hirokawa, D. Hill, L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G. Kollias, S.P. Krishnan, A. Kruger, S.K. Kummerfeld, I.V. Kurochkin, L.F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M. Madan Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K.C. Pang, W.J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J.F. Reid, B.Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S.L. Salzberg, A. Sandelin, C. Schneider, C. Schonbach, K. Sekiguchi, C.A. Semple, S. Seno, L. Sessa, Y. Sheng, Y. Shibata, H. Shimada, K. Shimada, D. Silva, B. Sinclair, S. Sperling, E. Stupka, K. Sugiura, R. Sultana, Y. Takenaka, K. Taki, K. Tammoja, S.L. Tan, S. Tang, M.S. Taylor, J. Tegner, S.A. Teichmann, H.R. Ueda, E. van Nimwegen, R. Verardo, C.L. Wei, K. Yagi, H. Yamanishi, E. Zabarovsky, S. Zhu, A. Zimmer, W. Hide, C. Bult, S.M. Grimmond, R.D. Teasdale, E.T. Liu, V. Brusic, J. Quackenbush, C. Wahlestedt, J.S. Mattick, D.A. Hume, C. Kai, D. Sasaki, Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J. Aoki, T. Arakawa, J. Iida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada, C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai, Y. Hayashizaki, The transcriptional landscape of the mammalian genome. Sci 309, 1559–1563 (2005)CrossRef
58.
go back to reference M.V. Iorio, C.M. Croce, MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4, 143–159 (2012)PubMedPubMedCentralCrossRef M.V. Iorio, C.M. Croce, MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4, 143–159 (2012)PubMedPubMedCentralCrossRef
59.
go back to reference K. Jazdzewski, S. Liyanarachchi, M. Swierniak, J. Pachucki, M.D. Ringel, B. Jarzab, A. De la Chapelle, Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106, 1502–1505 (2009) K. Jazdzewski, S. Liyanarachchi, M. Swierniak, J. Pachucki, M.D. Ringel, B. Jarzab, A. De la Chapelle, Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106, 1502–1505 (2009)
60.
go back to reference L.J. Chin, E. Ratner, S. Leng, R. Zhai, S. Nallur, I. Babar, R.-U. Muller, E. Straka, L. Su, E.A. Burki, A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer Res 68, 8535–8540 (2008)PubMedPubMedCentralCrossRef L.J. Chin, E. Ratner, S. Leng, R. Zhai, S. Nallur, I. Babar, R.-U. Muller, E. Straka, L. Su, E.A. Burki, A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer Res 68, 8535–8540 (2008)PubMedPubMedCentralCrossRef
61.
go back to reference G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99, 15524–15529 (2002) G.A. Calin, C.D. Dumitru, M. Shimizu, R. Bichi, S. Zupo, E. Noch, H. Aldler, S. Rattan, M. Keating, K. Rai, L. Rassenti, T. Kipps, M. Negrini, F. Bullrich, C.M. Croce, Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99, 15524–15529 (2002)
62.
go back to reference N. Samuel, G. Wilson, M. Lemire, B.I. Said, Y. Lou, W. Li, D. Merino, A. Novokmet, J. Tran and K.E. Nichols, Genome-wide DNA methylation analysis reveals epigenetic dysregulation of MicroRNA-34A in TP53-associated cancer susceptibility. J Clin Oncol JCO676940 (2016) N. Samuel, G. Wilson, M. Lemire, B.I. Said, Y. Lou, W. Li, D. Merino, A. Novokmet, J. Tran and K.E. Nichols, Genome-wide DNA methylation analysis reveals epigenetic dysregulation of MicroRNA-34A in TP53-associated cancer susceptibility. J Clin Oncol JCO676940 (2016)
63.
go back to reference S.K. Botla, S. Savant, P. Jandaghi, A.S. Bauer, O. Mücke, E.A. Moskalev, J.P. Neoptolemos, E. Costello, W. Greenhalf and A. Scarpa, Early epigenetic down-regulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer Res 0390.2015 (2016) S.K. Botla, S. Savant, P. Jandaghi, A.S. Bauer, O. Mücke, E.A. Moskalev, J.P. Neoptolemos, E. Costello, W. Greenhalf and A. Scarpa, Early epigenetic down-regulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer Res 0390.2015 (2016)
64.
go back to reference V. Davalos, C. Moutinho, A. Villanueva, R. Boque, P. Silva, F. Carneiro, M. Esteller, Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31, 2062–2074 (2012)PubMedCrossRef V. Davalos, C. Moutinho, A. Villanueva, R. Boque, P. Silva, F. Carneiro, M. Esteller, Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31, 2062–2074 (2012)PubMedCrossRef
65.
go back to reference Y. Saito, G. Liang, G. Egger, J.M. Friedman, J.C. Chuang, G.A. Coetzee, P.A. Jones, Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006)PubMedCrossRef Y. Saito, G. Liang, G. Egger, J.M. Friedman, J.C. Chuang, G.A. Coetzee, P.A. Jones, Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435–443 (2006)PubMedCrossRef
66.
go back to reference A. Lujambio, S. Ropero, E. Ballestar, M.F. Fraga, C. Cerrato, F. Setien, S. Casado, A. Suarez-Gauthier, M. Sanchez-Cespedes, A. Git, I. Spiteri, P.P. Das, C. Caldas, E. Miska, M. Esteller, Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67, 1424–1429 (2007)PubMedCrossRef A. Lujambio, S. Ropero, E. Ballestar, M.F. Fraga, C. Cerrato, F. Setien, S. Casado, A. Suarez-Gauthier, M. Sanchez-Cespedes, A. Git, I. Spiteri, P.P. Das, C. Caldas, E. Miska, M. Esteller, Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67, 1424–1429 (2007)PubMedCrossRef
67.
go back to reference M. Hatziapostolou, C. Polytarchou, E. Aggelidou, A. Drakaki, G.A. Poultsides, S.A. Jaeger, H. Ogata, M. Karin, K. Struhl, M. Hadzopoulou-Cladaras, D. Iliopoulos, An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147, 1233–1247 (2011)PubMedPubMedCentralCrossRef M. Hatziapostolou, C. Polytarchou, E. Aggelidou, A. Drakaki, G.A. Poultsides, S.A. Jaeger, H. Ogata, M. Karin, K. Struhl, M. Hadzopoulou-Cladaras, D. Iliopoulos, An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147, 1233–1247 (2011)PubMedPubMedCentralCrossRef
68.
go back to reference S. Venkataraman, I. Alimova, R. Fan, P. Harris, N. Foreman, R. Vibhakar, MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 5, e10748 (2010)PubMedPubMedCentralCrossRef S. Venkataraman, I. Alimova, R. Fan, P. Harris, N. Foreman, R. Vibhakar, MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 5, e10748 (2010)PubMedPubMedCentralCrossRef
69.
go back to reference G. Romano, M. Acunzo, M. Garofalo, G. Di Leva, L. Cascione, C. Zanca, B. Bolon, G. Condorelli, C.M. Croce, MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proc Natl Acad Sci USA 109, 16570–16575 (2012) G. Romano, M. Acunzo, M. Garofalo, G. Di Leva, L. Cascione, C. Zanca, B. Bolon, G. Condorelli, C.M. Croce, MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proc Natl Acad Sci USA 109, 16570–16575 (2012)
70.
go back to reference H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G.A. Calin, C.-g. Liu, K. Franssila, S. Suster, The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102, 19075–19080 (2005) H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy, S. Volinia, G.A. Calin, C.-g. Liu, K. Franssila, S. Suster, The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102, 19075–19080 (2005)
71.
go back to reference C. le Sage, R. Nagel, D.A. Egan, M. Schrier, E. Mesman, A. Mangiola, C. Anile, G. Maira, N. Mercatelli, S.A. Ciafre, M.G. Farace, R. Agami, Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26, 3699–3708 (2007)PubMedPubMedCentralCrossRef C. le Sage, R. Nagel, D.A. Egan, M. Schrier, E. Mesman, A. Mangiola, C. Anile, G. Maira, N. Mercatelli, S.A. Ciafre, M.G. Farace, R. Agami, Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26, 3699–3708 (2007)PubMedPubMedCentralCrossRef
72.
go back to reference C. le Sage, R. Nagel, R. Agami, Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle 6, 2742–2749 (2007)PubMedCrossRef C. le Sage, R. Nagel, R. Agami, Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle 6, 2742–2749 (2007)PubMedCrossRef
73.
go back to reference M. Kedde, M. van Kouwenhove, W. Zwart, J.A. Oude Vrielink, R. Elkon, R. Agami, A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12, 1014–1020 (2010)PubMedCrossRef M. Kedde, M. van Kouwenhove, W. Zwart, J.A. Oude Vrielink, R. Elkon, R. Agami, A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol 12, 1014–1020 (2010)PubMedCrossRef
74.
go back to reference P. Pineau, S. Volinia, K. McJunkin, A. Marchio, C. Battiston, B. Terris, V. Mazzaferro, S.W. Lowe, C.M. Croce, A. Dejean, miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 107, 264–269 (2010) P. Pineau, S. Volinia, K. McJunkin, A. Marchio, C. Battiston, B. Terris, V. Mazzaferro, S.W. Lowe, C.M. Croce, A. Dejean, miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA 107, 264–269 (2010)
75.
go back to reference M. Garofalo, G. Di Leva, G. Romano, G. Nuovo, S.S. Suh, A. Ngankeu, C. Taccioli, F. Pichiorri, H. Alder, P. Secchiero, P. Gasparini, A. Gonelli, S. Costinean, M. Acunzo, G. Condorelli, C.M. Croce, miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498–509 (2009)PubMedPubMedCentralCrossRef M. Garofalo, G. Di Leva, G. Romano, G. Nuovo, S.S. Suh, A. Ngankeu, C. Taccioli, F. Pichiorri, H. Alder, P. Secchiero, P. Gasparini, A. Gonelli, S. Costinean, M. Acunzo, G. Condorelli, C.M. Croce, miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498–509 (2009)PubMedPubMedCentralCrossRef
76.
go back to reference G. Roscigno, C. Quintavalle, E. Donnarumma, I. Puoti, A. Diaz-Lagares, M. Iaboni, D. Fiore, V. Russo, M. Todaro, G. Romano, R. Thomas, G. Cortino, M. Gaggianesi, M. Esteller, C.M. Croce, G. Condorelli, MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget 7, 580–592 (2016)PubMedCrossRef G. Roscigno, C. Quintavalle, E. Donnarumma, I. Puoti, A. Diaz-Lagares, M. Iaboni, D. Fiore, V. Russo, M. Todaro, G. Romano, R. Thomas, G. Cortino, M. Gaggianesi, M. Esteller, C.M. Croce, G. Condorelli, MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget 7, 580–592 (2016)PubMedCrossRef
77.
go back to reference G.A. Calin, C.M. Croce, MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66, 7390–7394 (2006)PubMedCrossRef G.A. Calin, C.M. Croce, MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66, 7390–7394 (2006)PubMedCrossRef
78.
go back to reference F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S.T. Jacob, T. Patel, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007)PubMedPubMedCentralCrossRef F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S.T. Jacob, T. Patel, MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007)PubMedPubMedCentralCrossRef
79.
go back to reference M.E. Hatley, D.M. Patrick, M.R. Garcia, J.A. Richardson, R. Bassel-Duby, E. van Rooij, E.N. Olson, Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18, 282–293 (2010)PubMedPubMedCentralCrossRef M.E. Hatley, D.M. Patrick, M.R. Garcia, J.A. Richardson, R. Bassel-Duby, E. van Rooij, E.N. Olson, Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18, 282–293 (2010)PubMedPubMedCentralCrossRef
80.
go back to reference P. Olson, J. Lu, H. Zhang, A. Shai, M.G. Chun, Y. Wang, S.K. Libutti, E.K. Nakakura, T.R. Golub, D. Hanahan, MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23, 2152–2165 (2009)PubMedPubMedCentralCrossRef P. Olson, J. Lu, H. Zhang, A. Shai, M.G. Chun, Y. Wang, S.K. Libutti, E.K. Nakakura, T.R. Golub, D. Hanahan, MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23, 2152–2165 (2009)PubMedPubMedCentralCrossRef
81.
go back to reference C.T. Dickman, R. Towle, R. Saini, C. Garnis, Molecular characterization of immortalized normal and dysplastic oral cell lines. J Oral Pathol Med 44, 329–336 (2015)PubMedCrossRef C.T. Dickman, R. Towle, R. Saini, C. Garnis, Molecular characterization of immortalized normal and dysplastic oral cell lines. J Oral Pathol Med 44, 329–336 (2015)PubMedCrossRef
82.
go back to reference N.K. Cervigne, P.P. Reis, J. Machado, B. Sadikovic, G. Bradley, N.N. Galloni, M. Pintilie, I. Jurisica, B. Perez-Ordonez, R. Gilbert, P. Gullane, J. Irish, S. Kamel-Reid, Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 18, 4818–4829 (2009)PubMedCrossRef N.K. Cervigne, P.P. Reis, J. Machado, B. Sadikovic, G. Bradley, N.N. Galloni, M. Pintilie, I. Jurisica, B. Perez-Ordonez, R. Gilbert, P. Gullane, J. Irish, S. Kamel-Reid, Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 18, 4818–4829 (2009)PubMedCrossRef
83.
go back to reference A.J. Granados Lopez, J.A. Lopez, Multistep model of cervical cancer: participation of miRNAs and coding genes. Int J Mol Sci 15, 15700–15733 (2014)PubMedCrossRef A.J. Granados Lopez, J.A. Lopez, Multistep model of cervical cancer: participation of miRNAs and coding genes. Int J Mol Sci 15, 15700–15733 (2014)PubMedCrossRef
84.
go back to reference Q. Ren, J. Liang, J. Wei, O. Basturk, J. Wang, G. Daniels, L.L. Gellert, Y. Li, Y. Shen, I. Osman, J. Zhao, J. Melamed, P. Lee, Epithelial and stromal expression of miRNAs during prostate cancer progression. Am J Transl Res 6, 329–339 (2014)PubMedPubMedCentral Q. Ren, J. Liang, J. Wei, O. Basturk, J. Wang, G. Daniels, L.L. Gellert, Y. Li, Y. Shen, I. Osman, J. Zhao, J. Melamed, P. Lee, Epithelial and stromal expression of miRNAs during prostate cancer progression. Am J Transl Res 6, 329–339 (2014)PubMedPubMedCentral
85.
go back to reference G.S. Markopoulos, E. Roupakia, M. Tokamani, G. Vartholomatos, T. Tzavaras, M. Hatziapostolou, F.O. Fackelmayer, R. Sandaltzopoulos, C. Polytarchou, E. Kolettas, Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp Gerontol 96, 110–122 (2017)PubMedCrossRef G.S. Markopoulos, E. Roupakia, M. Tokamani, G. Vartholomatos, T. Tzavaras, M. Hatziapostolou, F.O. Fackelmayer, R. Sandaltzopoulos, C. Polytarchou, E. Kolettas, Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp Gerontol 96, 110–122 (2017)PubMedCrossRef
86.
go back to reference P.S. Linsley, J. Schelter, J. Burchard, M. Kibukawa, M.M. Martin, S.R. Bartz, J.M. Johnson, J.M. Cummins, C.K. Raymond, H. Dai, N. Chau, M. Cleary, A.L. Jackson, M. Carleton, L. Lim, Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27, 2240–2252 (2007)PubMedPubMedCentralCrossRef P.S. Linsley, J. Schelter, J. Burchard, M. Kibukawa, M.M. Martin, S.R. Bartz, J.M. Johnson, J.M. Cummins, C.K. Raymond, H. Dai, N. Chau, M. Cleary, A.L. Jackson, M. Carleton, L. Lim, Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27, 2240–2252 (2007)PubMedPubMedCentralCrossRef
87.
go back to reference S. Arora, R. Rana, A. Chhabra, A. Jaiswal, V. Rani, miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 288, 77–87 (2013)PubMedCrossRef S. Arora, R. Rana, A. Chhabra, A. Jaiswal, V. Rani, miRNA-transcription factor interactions: a combinatorial regulation of gene expression. Mol Genet Genomics 288, 77–87 (2013)PubMedCrossRef
89.
92.
go back to reference F. Castro-Giner, P. Ratcliffe, I. Tomlinson, The mini-driver model of polygenic cancer evolution. Nat Rev Cancer 15, 680–685 (2015)PubMedCrossRef F. Castro-Giner, P. Ratcliffe, I. Tomlinson, The mini-driver model of polygenic cancer evolution. Nat Rev Cancer 15, 680–685 (2015)PubMedCrossRef
93.
go back to reference T.A. Ince, A.L. Richardson, G.W. Bell, M. Saitoh, S. Godar, A.E. Karnoub, J.D. Iglehart, R.A. Weinberg, Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12, 160–170 (2007)PubMedCrossRef T.A. Ince, A.L. Richardson, G.W. Bell, M. Saitoh, S. Godar, A.E. Karnoub, J.D. Iglehart, R.A. Weinberg, Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12, 160–170 (2007)PubMedCrossRef
95.
96.
go back to reference P.A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman, M.R. Stratton, A census of human cancer genes. Nat Rev Cancer 4, 177–183 (2004)PubMedPubMedCentralCrossRef P.A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman, M.R. Stratton, A census of human cancer genes. Nat Rev Cancer 4, 177–183 (2004)PubMedPubMedCentralCrossRef
97.
go back to reference T.J. Hudson, W. Anderson, A. Artez, A.D. Barker, C. Bell, R.R. Bernabe, M.K. Bhan, F. Calvo, I. Eerola, D.S. Gerhard, A. Guttmacher, M. Guyer, F.M. Hemsley, J.L. Jennings, D. Kerr, P. Klatt, P. Kolar, J. Kusada, D.P. Lane, F. Laplace, L. Youyong, G. Nettekoven, B. Ozenberger, J. Peterson, T.S. Rao, J. Remacle, A.J. Schafer, T. Shibata, M.R. Stratton, J.G. Vockley, K. Watanabe, H. Yang, M.M. Yuen, B.M. Knoppers, M. Bobrow, A. Cambon-Thomsen, L.G. Dressler, S.O. Dyke, Y. Joly, K. Kato, K.L. Kennedy, P. Nicolas, M.J. Parker, E. Rial-Sebbag, C.M. Romeo-Casabona, K.M. Shaw, S. Wallace, G.L. Wiesner, N. Zeps, P. Lichter, A.V. Biankin, C. Chabannon, L. Chin, B. Clement, E. de Alava, F. Degos, M.L. Ferguson, P. Geary, D.N. Hayes, A.L. Johns, A. Kasprzyk, H. Nakagawa, R. Penny, M.A. Piris, R. Sarin, A. Scarpa, M. van de Vijver, P.A. Futreal, H. Aburatani, M. Bayes, D.D. Botwell, P.J. Campbell, X. Estivill, S.M. Grimmond, I. Gut, M. Hirst, C. Lopez-Otin, P. Majumder, M. Marra, J.D. McPherson, Z. Ning, X.S. Puente, Y. Ruan, H.G. Stunnenberg, H. Swerdlow, V.E. Velculescu, R.K. Wilson, H.H. Xue, L. Yang, P.T. Spellman, G.D. Bader, P.C. Boutros, P. Flicek, G. Getz, R. Guigo, G. Guo, D. Haussler, S. Heath, T.J. Hubbard, T. Jiang, S.M. Jones, Q. Li, N. Lopez-Bigas, R. Luo, L. Muthuswamy, B.F. Ouellette, J.V. Pearson, V. Quesada, B.J. Raphael, C. Sander, T.P. Speed, L.D. Stein, J.M. Stuart, J.W. Teague, Y. Totoki, T. Tsunoda, A. Valencia, D.A. Wheeler, H. Wu, S. Zhao, G. Zhou, M. Lathrop, G. Thomas, T. Yoshida, M. Axton, C. Gunter, L.J. Miller, J. Zhang, S.A. Haider, J. Wang, C.K. Yung, A. Cros, Y. Liang, S. Gnaneshan, J. Guberman, J. Hsu, D.R. Chalmers, K.W. Hasel, T.S. Kaan, W.W. Lowrance, T. Masui, L.L. Rodriguez, C. Vergely, D.D. Bowtell, N. Cloonan, A. deFazio, J.R. Eshleman, D. Etemadmoghadam, B.B. Gardiner, J.G. Kench, R.L. Sutherland, M.A. Tempero, N.J. Waddell, P.J. Wilson, S. Gallinger, M.S. Tsao, P.A. Shaw, G.M. Petersen, D. Mukhopadhyay, R.A. DePinho, S. Thayer, K. Shazand, T. Beck, M. Sam, L. Timms, V. Ballin, Y. Lu, J. Ji, X. Zhang, F. Chen, X. Hu, Q. Yang, G. Tian, L. Zhang, X. Xing, X. Li, Z. Zhu, Y. Yu, J. Yu, J. Tost, P. Brennan, I. Holcatova, D. Zaridze, A. Brazma, L. Egevard, E. Prokhortchouk, R.E. Banks, M. Uhlen, J. Viksna, F. Ponten, K. Skryabin, E. Birney, A. Borg, A.L. Borresen-Dale, C. Caldas, J.A. Foekens, S. Martin, J.S. Reis-Filho, A.L. Richardson, C. Sotiriou, G. Thoms, L. van't Veer, D. Birnbaum, H. Blanche, P. Boucher, S. Boyault, J.D. Masson-Jacquemier, I. Pauporte, X. Pivot, A. Vincent-Salomon, E. Tabone, C. Theillet, I. Treilleux, P. Bioulac-Sage, T. Decaens, D. Franco, M. Gut, D. Samuel, J. Zucman-Rossi, R. Eils, B. Brors, J.O. Korbel, A. Korshunov, P. Landgraf, H. Lehrach, S. Pfister, B. Radlwimmer, G. Reifenberger, M.D. Taylor, C. von Kalle, P.P. Majumder, P. Pederzoli, R.A. Lawlor, M. Delledonne, A. Bardelli, T. Gress, D. Klimstra, G. Zamboni, Y. Nakamura, S. Miyano, A. Fujimoto, E. Campo, S. de Sanjose, E. Montserrat, M. Gonzalez-Diaz, P. Jares, H. Himmelbauer, S. Bea, S. Aparicio, D.F. Easton, F.S. Collins, C.C. Compton, E.S. Lander, W. Burke, A.R. Green, S.R. Hamilton, O.P. Kallioniemi, T.J. Ley, E.T. Liu, B.J. Wainwright, International network of cancer genome projects. Nature 464, 993–998 (2010)PubMedCrossRef T.J. Hudson, W. Anderson, A. Artez, A.D. Barker, C. Bell, R.R. Bernabe, M.K. Bhan, F. Calvo, I. Eerola, D.S. Gerhard, A. Guttmacher, M. Guyer, F.M. Hemsley, J.L. Jennings, D. Kerr, P. Klatt, P. Kolar, J. Kusada, D.P. Lane, F. Laplace, L. Youyong, G. Nettekoven, B. Ozenberger, J. Peterson, T.S. Rao, J. Remacle, A.J. Schafer, T. Shibata, M.R. Stratton, J.G. Vockley, K. Watanabe, H. Yang, M.M. Yuen, B.M. Knoppers, M. Bobrow, A. Cambon-Thomsen, L.G. Dressler, S.O. Dyke, Y. Joly, K. Kato, K.L. Kennedy, P. Nicolas, M.J. Parker, E. Rial-Sebbag, C.M. Romeo-Casabona, K.M. Shaw, S. Wallace, G.L. Wiesner, N. Zeps, P. Lichter, A.V. Biankin, C. Chabannon, L. Chin, B. Clement, E. de Alava, F. Degos, M.L. Ferguson, P. Geary, D.N. Hayes, A.L. Johns, A. Kasprzyk, H. Nakagawa, R. Penny, M.A. Piris, R. Sarin, A. Scarpa, M. van de Vijver, P.A. Futreal, H. Aburatani, M. Bayes, D.D. Botwell, P.J. Campbell, X. Estivill, S.M. Grimmond, I. Gut, M. Hirst, C. Lopez-Otin, P. Majumder, M. Marra, J.D. McPherson, Z. Ning, X.S. Puente, Y. Ruan, H.G. Stunnenberg, H. Swerdlow, V.E. Velculescu, R.K. Wilson, H.H. Xue, L. Yang, P.T. Spellman, G.D. Bader, P.C. Boutros, P. Flicek, G. Getz, R. Guigo, G. Guo, D. Haussler, S. Heath, T.J. Hubbard, T. Jiang, S.M. Jones, Q. Li, N. Lopez-Bigas, R. Luo, L. Muthuswamy, B.F. Ouellette, J.V. Pearson, V. Quesada, B.J. Raphael, C. Sander, T.P. Speed, L.D. Stein, J.M. Stuart, J.W. Teague, Y. Totoki, T. Tsunoda, A. Valencia, D.A. Wheeler, H. Wu, S. Zhao, G. Zhou, M. Lathrop, G. Thomas, T. Yoshida, M. Axton, C. Gunter, L.J. Miller, J. Zhang, S.A. Haider, J. Wang, C.K. Yung, A. Cros, Y. Liang, S. Gnaneshan, J. Guberman, J. Hsu, D.R. Chalmers, K.W. Hasel, T.S. Kaan, W.W. Lowrance, T. Masui, L.L. Rodriguez, C. Vergely, D.D. Bowtell, N. Cloonan, A. deFazio, J.R. Eshleman, D. Etemadmoghadam, B.B. Gardiner, J.G. Kench, R.L. Sutherland, M.A. Tempero, N.J. Waddell, P.J. Wilson, S. Gallinger, M.S. Tsao, P.A. Shaw, G.M. Petersen, D. Mukhopadhyay, R.A. DePinho, S. Thayer, K. Shazand, T. Beck, M. Sam, L. Timms, V. Ballin, Y. Lu, J. Ji, X. Zhang, F. Chen, X. Hu, Q. Yang, G. Tian, L. Zhang, X. Xing, X. Li, Z. Zhu, Y. Yu, J. Yu, J. Tost, P. Brennan, I. Holcatova, D. Zaridze, A. Brazma, L. Egevard, E. Prokhortchouk, R.E. Banks, M. Uhlen, J. Viksna, F. Ponten, K. Skryabin, E. Birney, A. Borg, A.L. Borresen-Dale, C. Caldas, J.A. Foekens, S. Martin, J.S. Reis-Filho, A.L. Richardson, C. Sotiriou, G. Thoms, L. van't Veer, D. Birnbaum, H. Blanche, P. Boucher, S. Boyault, J.D. Masson-Jacquemier, I. Pauporte, X. Pivot, A. Vincent-Salomon, E. Tabone, C. Theillet, I. Treilleux, P. Bioulac-Sage, T. Decaens, D. Franco, M. Gut, D. Samuel, J. Zucman-Rossi, R. Eils, B. Brors, J.O. Korbel, A. Korshunov, P. Landgraf, H. Lehrach, S. Pfister, B. Radlwimmer, G. Reifenberger, M.D. Taylor, C. von Kalle, P.P. Majumder, P. Pederzoli, R.A. Lawlor, M. Delledonne, A. Bardelli, T. Gress, D. Klimstra, G. Zamboni, Y. Nakamura, S. Miyano, A. Fujimoto, E. Campo, S. de Sanjose, E. Montserrat, M. Gonzalez-Diaz, P. Jares, H. Himmelbauer, S. Bea, S. Aparicio, D.F. Easton, F.S. Collins, C.C. Compton, E.S. Lander, W. Burke, A.R. Green, S.R. Hamilton, O.P. Kallioniemi, T.J. Ley, E.T. Liu, B.J. Wainwright, International network of cancer genome projects. Nature 464, 993–998 (2010)PubMedCrossRef
98.
go back to reference L. Ding, G. Getz, D.A. Wheeler, E.R. Mardis, M.D. McLellan, K. Cibulskis, C. Sougnez, H. Greulich, D.M. Muzny, M.B. Morgan, L. Fulton, R.S. Fulton, Q. Zhang, M.C. Wendl, M.S. Lawrence, D.E. Larson, K. Chen, D.J. Dooling, A. Sabo, A.C. Hawes, H. Shen, S.N. Jhangiani, L.R. Lewis, O. Hall, Y. Zhu, T. Mathew, Y. Ren, J. Yao, S.E. Scherer, K. Clerc, G.A. Metcalf, B. Ng, A. Milosavljevic, M.L. Gonzalez-Garay, J.R. Osborne, R. Meyer, X. Shi, Y. Tang, D.C. Koboldt, L. Lin, R. Abbott, T.L. Miner, C. Pohl, G. Fewell, C. Haipek, H. Schmidt, B.H. Dunford-Shore, A. Kraja, S.D. Crosby, C.S. Sawyer, T. Vickery, S. Sander, J. Robinson, W. Winckler, J. Baldwin, L.R. Chirieac, A. Dutt, T. Fennell, M. Hanna, B.E. Johnson, R.C. Onofrio, R.K. Thomas, G. Tonon, B.A. Weir, X. Zhao, L. Ziaugra, M.C. Zody, T. Giordano, M.B. Orringer, J.A. Roth, M.R. Spitz, I.I. Wistuba, B. Ozenberger, P.J. Good, A.C. Chang, D.G. Beer, M.A. Watson, M. Ladanyi, S. Broderick, A. Yoshizawa, W.D. Travis, W. Pao, M.A. Province, G.M. Weinstock, H.E. Varmus, S.B. Gabriel, E.S. Lander, R.A. Gibbs, M. Meyerson, R.K. Wilson, Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)PubMedPubMedCentralCrossRef L. Ding, G. Getz, D.A. Wheeler, E.R. Mardis, M.D. McLellan, K. Cibulskis, C. Sougnez, H. Greulich, D.M. Muzny, M.B. Morgan, L. Fulton, R.S. Fulton, Q. Zhang, M.C. Wendl, M.S. Lawrence, D.E. Larson, K. Chen, D.J. Dooling, A. Sabo, A.C. Hawes, H. Shen, S.N. Jhangiani, L.R. Lewis, O. Hall, Y. Zhu, T. Mathew, Y. Ren, J. Yao, S.E. Scherer, K. Clerc, G.A. Metcalf, B. Ng, A. Milosavljevic, M.L. Gonzalez-Garay, J.R. Osborne, R. Meyer, X. Shi, Y. Tang, D.C. Koboldt, L. Lin, R. Abbott, T.L. Miner, C. Pohl, G. Fewell, C. Haipek, H. Schmidt, B.H. Dunford-Shore, A. Kraja, S.D. Crosby, C.S. Sawyer, T. Vickery, S. Sander, J. Robinson, W. Winckler, J. Baldwin, L.R. Chirieac, A. Dutt, T. Fennell, M. Hanna, B.E. Johnson, R.C. Onofrio, R.K. Thomas, G. Tonon, B.A. Weir, X. Zhao, L. Ziaugra, M.C. Zody, T. Giordano, M.B. Orringer, J.A. Roth, M.R. Spitz, I.I. Wistuba, B. Ozenberger, P.J. Good, A.C. Chang, D.G. Beer, M.A. Watson, M. Ladanyi, S. Broderick, A. Yoshizawa, W.D. Travis, W. Pao, M.A. Province, G.M. Weinstock, H.E. Varmus, S.B. Gabriel, E.S. Lander, R.A. Gibbs, M. Meyerson, R.K. Wilson, Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)PubMedPubMedCentralCrossRef
99.
go back to reference B.A. Weir, M.S. Woo, G. Getz, S. Perner, L. Ding, R. Beroukhim, W.M. Lin, M.A. Province, A. Kraja, L.A. Johnson, K. Shah, M. Sato, R.K. Thomas, J.A. Barletta, I.B. Borecki, S. Broderick, A.C. Chang, D.Y. Chiang, L.R. Chirieac, J. Cho, Y. Fujii, A.F. Gazdar, T. Giordano, H. Greulich, M. Hanna, B.E. Johnson, M.G. Kris, A. Lash, L. Lin, N. Lindeman, E.R. Mardis, J.D. McPherson, J.D. Minna, M.B. Morgan, M. Nadel, M.B. Orringer, J.R. Osborne, B. Ozenberger, A.H. Ramos, J. Robinson, J.A. Roth, V. Rusch, H. Sasaki, F. Shepherd, C. Sougnez, M.R. Spitz, M.S. Tsao, D. Twomey, R.G. Verhaak, G.M. Weinstock, D.A. Wheeler, W. Winckler, A. Yoshizawa, S. Yu, M.F. Zakowski, Q. Zhang, D.G. Beer, I.I. Wistuba, M.A. Watson, L.A. Garraway, M. Ladanyi, W.D. Travis, W. Pao, M.A. Rubin, S.B. Gabriel, R.A. Gibbs, H.E. Varmus, R.K. Wilson, E.S. Lander, M. Meyerson, Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007)PubMedPubMedCentralCrossRef B.A. Weir, M.S. Woo, G. Getz, S. Perner, L. Ding, R. Beroukhim, W.M. Lin, M.A. Province, A. Kraja, L.A. Johnson, K. Shah, M. Sato, R.K. Thomas, J.A. Barletta, I.B. Borecki, S. Broderick, A.C. Chang, D.Y. Chiang, L.R. Chirieac, J. Cho, Y. Fujii, A.F. Gazdar, T. Giordano, H. Greulich, M. Hanna, B.E. Johnson, M.G. Kris, A. Lash, L. Lin, N. Lindeman, E.R. Mardis, J.D. McPherson, J.D. Minna, M.B. Morgan, M. Nadel, M.B. Orringer, J.R. Osborne, B. Ozenberger, A.H. Ramos, J. Robinson, J.A. Roth, V. Rusch, H. Sasaki, F. Shepherd, C. Sougnez, M.R. Spitz, M.S. Tsao, D. Twomey, R.G. Verhaak, G.M. Weinstock, D.A. Wheeler, W. Winckler, A. Yoshizawa, S. Yu, M.F. Zakowski, Q. Zhang, D.G. Beer, I.I. Wistuba, M.A. Watson, L.A. Garraway, M. Ladanyi, W.D. Travis, W. Pao, M.A. Rubin, S.B. Gabriel, R.A. Gibbs, H.E. Varmus, R.K. Wilson, E.S. Lander, M. Meyerson, Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007)PubMedPubMedCentralCrossRef
100.
go back to reference M. Imielinski, A.H. Berger, P.S. Hammerman, B. Hernandez, T.J. Pugh, E. Hodis, J. Cho, J. Suh, M. Capelletti, A. Sivachenko, C. Sougnez, D. Auclair, M.S. Lawrence, P. Stojanov, K. Cibulskis, K. Choi, L. de Waal, T. Sharifnia, A. Brooks, H. Greulich, S. Banerji, T. Zander, D. Seidel, F. Leenders, S. Ansen, C. Ludwig, W. Engel-Riedel, E. Stoelben, J. Wolf, C. Goparju, K. Thompson, W. Winckler, D. Kwiatkowski, B.E. Johnson, P.A. Janne, V.A. Miller, W. Pao, W.D. Travis, H.I. Pass, S.B. Gabriel, E.S. Lander, R.K. Thomas, L.A. Garraway, G. Getz, M. Meyerson, Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012)PubMedPubMedCentralCrossRef M. Imielinski, A.H. Berger, P.S. Hammerman, B. Hernandez, T.J. Pugh, E. Hodis, J. Cho, J. Suh, M. Capelletti, A. Sivachenko, C. Sougnez, D. Auclair, M.S. Lawrence, P. Stojanov, K. Cibulskis, K. Choi, L. de Waal, T. Sharifnia, A. Brooks, H. Greulich, S. Banerji, T. Zander, D. Seidel, F. Leenders, S. Ansen, C. Ludwig, W. Engel-Riedel, E. Stoelben, J. Wolf, C. Goparju, K. Thompson, W. Winckler, D. Kwiatkowski, B.E. Johnson, P.A. Janne, V.A. Miller, W. Pao, W.D. Travis, H.I. Pass, S.B. Gabriel, E.S. Lander, R.K. Thomas, L.A. Garraway, G. Getz, M. Meyerson, Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012)PubMedPubMedCentralCrossRef
101.
go back to reference Z. Chen, C.M. Fillmore, P.S. Hammerman, C.F. Kim, K.K. Wong, Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535–546 (2014)PubMedCrossRef Z. Chen, C.M. Fillmore, P.S. Hammerman, C.F. Kim, K.K. Wong, Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535–546 (2014)PubMedCrossRef
102.
go back to reference E.C. de Bruin, N. McGranahan, R. Mitter, M. Salm, D.C. Wedge, L. Yates, M. Jamal-Hanjani, S. Shafi, N. Murugaesu, A.J. Rowan, E. Gronroos, M.A. Muhammad, S. Horswell, M. Gerlinger, I. Varela, D. Jones, J. Marshall, T. Voet, P. Van Loo, D.M. Rassl, R.C. Rintoul, S.M. Janes, S.M. Lee, M. Forster, T. Ahmad, D. Lawrence, M. Falzon, A. Capitanio, T.T. Harkins, C.C. Lee, W. Tom, E. Teefe, S.C. Chen, S. Begum, A. Rabinowitz, B. Phillimore, B. Spencer-Dene, G. Stamp, Z. Szallasi, N. Matthews, A. Stewart, P. Campbell, C. Swanton, Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Sci 346, 251–256 (2014)CrossRef E.C. de Bruin, N. McGranahan, R. Mitter, M. Salm, D.C. Wedge, L. Yates, M. Jamal-Hanjani, S. Shafi, N. Murugaesu, A.J. Rowan, E. Gronroos, M.A. Muhammad, S. Horswell, M. Gerlinger, I. Varela, D. Jones, J. Marshall, T. Voet, P. Van Loo, D.M. Rassl, R.C. Rintoul, S.M. Janes, S.M. Lee, M. Forster, T. Ahmad, D. Lawrence, M. Falzon, A. Capitanio, T.T. Harkins, C.C. Lee, W. Tom, E. Teefe, S.C. Chen, S. Begum, A. Rabinowitz, B. Phillimore, B. Spencer-Dene, G. Stamp, Z. Szallasi, N. Matthews, A. Stewart, P. Campbell, C. Swanton, Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Sci 346, 251–256 (2014)CrossRef
103.
go back to reference Cancer Genome Atlas Research Network, Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012) Cancer Genome Atlas Research Network, Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)
104.
go back to reference M. Peifer, L. Fernandez-Cuesta, M.L. Sos, J. George, D. Seidel, L.H. Kasper, D. Plenker, F. Leenders, R. Sun, T. Zander, R. Menon, M. Koker, I. Dahmen, C. Muller, V. Di Cerbo, H.U. Schildhaus, J. Altmuller, I. Baessmann, C. Becker, B. de Wilde, J. Vandesompele, D. Bohm, S. Ansen, F. Gabler, I. Wilkening, S. Heynck, J.M. Heuckmann, X. Lu, S.L. Carter, K. Cibulskis, S. Banerji, G. Getz, K.S. Park, D. Rauh, C. Grutter, M. Fischer, L. Pasqualucci, G. Wright, Z. Wainer, P. Russell, I. Petersen, Y. Chen, E. Stoelben, C. Ludwig, P. Schnabel, H. Hoffmann, T. Muley, M. Brockmann, W. Engel-Riedel, L.A. Muscarella, V.M. Fazio, H. Groen, W. Timens, H. Sietsma, E. Thunnissen, E. Smit, D.A. Heideman, P.J. Snijders, F. Cappuzzo, C. Ligorio, S. Damiani, J. Field, S. Solberg, O.T. Brustugun, M. Lund-Iversen, J. Sanger, J.H. Clement, A. Soltermann, H. Moch, W. Weder, B. Solomon, J.C. Soria, P. Validire, B. Besse, E. Brambilla, C. Brambilla, S. Lantuejoul, P. Lorimier, P.M. Schneider, M. Hallek, W. Pao, M. Meyerson, J. Sage, J. Shendure, R. Schneider, R. Buttner, J. Wolf, P. Nurnberg, S. Perner, L.C. Heukamp, P.K. Brindle, S. Haas, R.K. Thomas, Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44, 1104–1110 (2012)PubMedPubMedCentralCrossRef M. Peifer, L. Fernandez-Cuesta, M.L. Sos, J. George, D. Seidel, L.H. Kasper, D. Plenker, F. Leenders, R. Sun, T. Zander, R. Menon, M. Koker, I. Dahmen, C. Muller, V. Di Cerbo, H.U. Schildhaus, J. Altmuller, I. Baessmann, C. Becker, B. de Wilde, J. Vandesompele, D. Bohm, S. Ansen, F. Gabler, I. Wilkening, S. Heynck, J.M. Heuckmann, X. Lu, S.L. Carter, K. Cibulskis, S. Banerji, G. Getz, K.S. Park, D. Rauh, C. Grutter, M. Fischer, L. Pasqualucci, G. Wright, Z. Wainer, P. Russell, I. Petersen, Y. Chen, E. Stoelben, C. Ludwig, P. Schnabel, H. Hoffmann, T. Muley, M. Brockmann, W. Engel-Riedel, L.A. Muscarella, V.M. Fazio, H. Groen, W. Timens, H. Sietsma, E. Thunnissen, E. Smit, D.A. Heideman, P.J. Snijders, F. Cappuzzo, C. Ligorio, S. Damiani, J. Field, S. Solberg, O.T. Brustugun, M. Lund-Iversen, J. Sanger, J.H. Clement, A. Soltermann, H. Moch, W. Weder, B. Solomon, J.C. Soria, P. Validire, B. Besse, E. Brambilla, C. Brambilla, S. Lantuejoul, P. Lorimier, P.M. Schneider, M. Hallek, W. Pao, M. Meyerson, J. Sage, J. Shendure, R. Schneider, R. Buttner, J. Wolf, P. Nurnberg, S. Perner, L.C. Heukamp, P.K. Brindle, S. Haas, R.K. Thomas, Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 44, 1104–1110 (2012)PubMedPubMedCentralCrossRef
105.
go back to reference C.M. Rudin, S. Durinck, E.W. Stawiski, J.T. Poirier, Z. Modrusan, D.S. Shames, E.A. Bergbower, Y. Guan, J. Shin, J. Guillory, C.S. Rivers, C.K. Foo, D. Bhatt, J. Stinson, F. Gnad, P.M. Haverty, R. Gentleman, S. Chaudhuri, V. Janakiraman, B.S. Jaiswal, C. Parikh, W. Yuan, Z. Zhang, H. Koeppen, T.D. Wu, H.M. Stern, R.L. Yauch, K.E. Huffman, D.D. Paskulin, P.B. Illei, M. Varella-Garcia, A.F. Gazdar, F.J. de Sauvage, R. Bourgon, J.D. Minna, M.V. Brock, S. Seshagiri, Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44, 1111–1116 (2012)PubMedPubMedCentralCrossRef C.M. Rudin, S. Durinck, E.W. Stawiski, J.T. Poirier, Z. Modrusan, D.S. Shames, E.A. Bergbower, Y. Guan, J. Shin, J. Guillory, C.S. Rivers, C.K. Foo, D. Bhatt, J. Stinson, F. Gnad, P.M. Haverty, R. Gentleman, S. Chaudhuri, V. Janakiraman, B.S. Jaiswal, C. Parikh, W. Yuan, Z. Zhang, H. Koeppen, T.D. Wu, H.M. Stern, R.L. Yauch, K.E. Huffman, D.D. Paskulin, P.B. Illei, M. Varella-Garcia, A.F. Gazdar, F.J. de Sauvage, R. Bourgon, J.D. Minna, M.V. Brock, S. Seshagiri, Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44, 1111–1116 (2012)PubMedPubMedCentralCrossRef
106.
go back to reference J. George, J.S. Lim, S.J. Jang, Y. Cun, L. Ozretic, G. Kong, F. Leenders, X. Lu, L. Fernandez-Cuesta, G. Bosco, C. Muller, I. Dahmen, N.S. Jahchan, K.S. Park, D. Yang, A.N. Karnezis, D. Vaka, A. Torres, M.S. Wang, J.O. Korbel, R. Menon, S.M. Chun, D. Kim, M. Wilkerson, N. Hayes, D. Engelmann, B. Putzer, M. Bos, S. Michels, I. Vlasic, D. Seidel, B. Pinther, P. Schaub, C. Becker, J. Altmuller, J. Yokota, T. Kohno, R. Iwakawa, K. Tsuta, M. Noguchi, T. Muley, H. Hoffmann, P.A. Schnabel, I. Petersen, Y. Chen, A. Soltermann, V. Tischler, C.M. Choi, Y.H. Kim, P.P. Massion, Y. Zou, D. Jovanovic, M. Kontic, G.M. Wright, P.A. Russell, B. Solomon, I. Koch, M. Lindner, L.A. Muscarella, A. la Torre, J.K. Field, M. Jakopovic, J. Knezevic, E. Castanos-Velez, L. Roz, U. Pastorino, O.T. Brustugun, M. Lund-Iversen, E. Thunnissen, J. Kohler, M. Schuler, J. Botling, M. Sandelin, M. Sanchez-Cespedes, H.B. Salvesen, V. Achter, U. Lang, M. Bogus, P.M. Schneider, T. Zander, S. Ansen, M. Hallek, J. Wolf, M. Vingron, Y. Yatabe, W.D. Travis, P. Nurnberg, C. Reinhardt, S. Perner, L. Heukamp, R. Buttner, S.A. Haas, E. Brambilla, M. Peifer, J. Sage, R.K. Thomas, Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015)PubMedPubMedCentralCrossRef J. George, J.S. Lim, S.J. Jang, Y. Cun, L. Ozretic, G. Kong, F. Leenders, X. Lu, L. Fernandez-Cuesta, G. Bosco, C. Muller, I. Dahmen, N.S. Jahchan, K.S. Park, D. Yang, A.N. Karnezis, D. Vaka, A. Torres, M.S. Wang, J.O. Korbel, R. Menon, S.M. Chun, D. Kim, M. Wilkerson, N. Hayes, D. Engelmann, B. Putzer, M. Bos, S. Michels, I. Vlasic, D. Seidel, B. Pinther, P. Schaub, C. Becker, J. Altmuller, J. Yokota, T. Kohno, R. Iwakawa, K. Tsuta, M. Noguchi, T. Muley, H. Hoffmann, P.A. Schnabel, I. Petersen, Y. Chen, A. Soltermann, V. Tischler, C.M. Choi, Y.H. Kim, P.P. Massion, Y. Zou, D. Jovanovic, M. Kontic, G.M. Wright, P.A. Russell, B. Solomon, I. Koch, M. Lindner, L.A. Muscarella, A. la Torre, J.K. Field, M. Jakopovic, J. Knezevic, E. Castanos-Velez, L. Roz, U. Pastorino, O.T. Brustugun, M. Lund-Iversen, E. Thunnissen, J. Kohler, M. Schuler, J. Botling, M. Sandelin, M. Sanchez-Cespedes, H.B. Salvesen, V. Achter, U. Lang, M. Bogus, P.M. Schneider, T. Zander, S. Ansen, M. Hallek, J. Wolf, M. Vingron, Y. Yatabe, W.D. Travis, P. Nurnberg, C. Reinhardt, S. Perner, L. Heukamp, R. Buttner, S.A. Haas, E. Brambilla, M. Peifer, J. Sage, R.K. Thomas, Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015)PubMedPubMedCentralCrossRef
107.
go back to reference E. Hodis, I.R. Watson, G.V. Kryukov, S.T. Arold, M. Imielinski, J.P. Theurillat, E. Nickerson, D. Auclair, L. Li, C. Place, D. Dicara, A.H. Ramos, M.S. Lawrence, K. Cibulskis, A. Sivachenko, D. Voet, G. Saksena, N. Stransky, R.C. Onofrio, W. Winckler, K. Ardlie, N. Wagle, J. Wargo, K. Chong, D.L. Morton, K. Stemke-Hale, G. Chen, M. Noble, M. Meyerson, J.E. Ladbury, M.A. Davies, J.E. Gershenwald, S.N. Wagner, D.S. Hoon, D. Schadendorf, E.S. Lander, S.B. Gabriel, G. Getz, L.A. Garraway, L. Chin, A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012)PubMedPubMedCentralCrossRef E. Hodis, I.R. Watson, G.V. Kryukov, S.T. Arold, M. Imielinski, J.P. Theurillat, E. Nickerson, D. Auclair, L. Li, C. Place, D. Dicara, A.H. Ramos, M.S. Lawrence, K. Cibulskis, A. Sivachenko, D. Voet, G. Saksena, N. Stransky, R.C. Onofrio, W. Winckler, K. Ardlie, N. Wagle, J. Wargo, K. Chong, D.L. Morton, K. Stemke-Hale, G. Chen, M. Noble, M. Meyerson, J.E. Ladbury, M.A. Davies, J.E. Gershenwald, S.N. Wagner, D.S. Hoon, D. Schadendorf, E.S. Lander, S.B. Gabriel, G. Getz, L.A. Garraway, L. Chin, A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012)PubMedPubMedCentralCrossRef
108.
go back to reference M.S. Lawrence, P. Stojanov, C.H. Mermel, J.T. Robinson, L.A. Garraway, T.R. Golub, M. Meyerson, S.B. Gabriel, E.S. Lander, G. Getz, Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014)PubMedPubMedCentralCrossRef M.S. Lawrence, P. Stojanov, C.H. Mermel, J.T. Robinson, L.A. Garraway, T.R. Golub, M. Meyerson, S.B. Gabriel, E.S. Lander, G. Getz, Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014)PubMedPubMedCentralCrossRef
109.
go back to reference S. Horn, A. Figl, P.S. Rachakonda, C. Fischer, A. Sucker, A. Gast, S. Kadel, I. Moll, E. Nagore, K. Hemminki, D. Schadendorf, R. Kumar, TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013)PubMedCrossRef S. Horn, A. Figl, P.S. Rachakonda, C. Fischer, A. Sucker, A. Gast, S. Kadel, I. Moll, E. Nagore, K. Hemminki, D. Schadendorf, R. Kumar, TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013)PubMedCrossRef
110.
go back to reference N.J. Fredriksson, L. Ny, J.A. Nilsson, E. Larsson, Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat Genet 46, 1258–1263 (2014)PubMedCrossRef N.J. Fredriksson, L. Ny, J.A. Nilsson, E. Larsson, Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat Genet 46, 1258–1263 (2014)PubMedCrossRef
111.
go back to reference M. Collado, J. Gil, A. Efeyan, C. Guerra, A.J. Schuhmacher, M. Barradas, A. Benguria, A. Zaballos, J.M. Flores, M. Barbacid, D. Beach, M. Serrano, Tumour biology: Senescence in premalignant tumours. Nature 436, 642 (2005)PubMedCrossRef M. Collado, J. Gil, A. Efeyan, C. Guerra, A.J. Schuhmacher, M. Barradas, A. Benguria, A. Zaballos, J.M. Flores, M. Barbacid, D. Beach, M. Serrano, Tumour biology: Senescence in premalignant tumours. Nature 436, 642 (2005)PubMedCrossRef
112.
go back to reference J. Bartkova, N. Rezaei, M. Liontos, P. Karakaidos, D. Kletsas, N. Issaeva, L.V. Vassiliou, E. Kolettas, K. Niforou, V.C. Zoumpourlis, M. Takaoka, H. Nakagawa, F. Tort, K. Fugger, F. Johansson, M. Sehested, C.L. Andersen, L. Dyrskjot, T. Orntoft, J. Lukas, C. Kittas, T. Helleday, T.D. Halazonetis, J. Bartek, V.G. Gorgoulis, Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006)PubMedCrossRef J. Bartkova, N. Rezaei, M. Liontos, P. Karakaidos, D. Kletsas, N. Issaeva, L.V. Vassiliou, E. Kolettas, K. Niforou, V.C. Zoumpourlis, M. Takaoka, H. Nakagawa, F. Tort, K. Fugger, F. Johansson, M. Sehested, C.L. Andersen, L. Dyrskjot, T. Orntoft, J. Lukas, C. Kittas, T. Helleday, T.D. Halazonetis, J. Bartek, V.G. Gorgoulis, Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006)PubMedCrossRef
113.
go back to reference M. Collado, M.A. Blasco, M. Serrano, Cellular senescence in cancer and aging. Cell 130, 223–233 (2007)PubMedCrossRef M. Collado, M.A. Blasco, M. Serrano, Cellular senescence in cancer and aging. Cell 130, 223–233 (2007)PubMedCrossRef
114.
go back to reference A. Efeyan, M. Murga, B. Martinez-Pastor, A. Ortega-Molina, R. Soria, M. Collado, O. Fernandez-Capetillo, M. Serrano, Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS One 4, e5475 (2009)PubMedPubMedCentralCrossRef A. Efeyan, M. Murga, B. Martinez-Pastor, A. Ortega-Molina, R. Soria, M. Collado, O. Fernandez-Capetillo, M. Serrano, Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS One 4, e5475 (2009)PubMedPubMedCentralCrossRef
116.
go back to reference P.A. Perez-Mancera, A.R. Young, M. Narita, Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14, 547–558 (2014)PubMedCrossRef P.A. Perez-Mancera, A.R. Young, M. Narita, Inside and out: the activities of senescence in cancer. Nat Rev Cancer 14, 547–558 (2014)PubMedCrossRef
118.
go back to reference D. Dankort, E. Filenova, M. Collado, M. Serrano, K. Jones, M. McMahon, A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21, 379–384 (2007)PubMedPubMedCentralCrossRef D. Dankort, E. Filenova, M. Collado, M. Serrano, K. Jones, M. McMahon, A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev 21, 379–384 (2007)PubMedPubMedCentralCrossRef
119.
go back to reference C. Michaloglou, L.C. Vredeveld, M.S. Soengas, C. Denoyelle, T. Kuilman, C.M. van der Horst, D.M. Majoor, J.W. Shay, W.J. Mooi, D.S. Peeper, BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005)PubMedCrossRef C. Michaloglou, L.C. Vredeveld, M.S. Soengas, C. Denoyelle, T. Kuilman, C.M. van der Horst, D.M. Majoor, J.W. Shay, W.J. Mooi, D.S. Peeper, BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005)PubMedCrossRef
120.
go back to reference N. Dhomen, J.S. Reis-Filho, S. da Rocha Dias, R. Hayward, K. Savage, V. Delmas, L. Larue, C. Pritchard, R. Marais, Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009)PubMedCrossRef N. Dhomen, J.S. Reis-Filho, S. da Rocha Dias, R. Hayward, K. Savage, V. Delmas, L. Larue, C. Pritchard, R. Marais, Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15, 294–303 (2009)PubMedCrossRef
121.
go back to reference M. Vergel, A. Carnero, Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol 12, 410–417 (2010)PubMedCrossRef M. Vergel, A. Carnero, Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol 12, 410–417 (2010)PubMedCrossRef
122.
go back to reference M. Braig, S. Lee, C. Loddenkemper, C. Rudolph, A.H. Peters, B. Schlegelberger, H. Stein, B. Dorken, T. Jenuwein, C.A. Schmitt, Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005)PubMedCrossRef M. Braig, S. Lee, C. Loddenkemper, C. Rudolph, A.H. Peters, B. Schlegelberger, H. Stein, B. Dorken, T. Jenuwein, C.A. Schmitt, Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005)PubMedCrossRef
123.
go back to reference P.M. Voorhoeve, C. Le Sage, M. Schrier, A.J. Gillis, H. Stoop, R. Nagel, Y.-P. Liu, J. Van Duijse, J. Drost, A. Griekspoor, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006)PubMedCrossRef P.M. Voorhoeve, C. Le Sage, M. Schrier, A.J. Gillis, H. Stoop, R. Nagel, Y.-P. Liu, J. Van Duijse, J. Drost, A. Griekspoor, A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006)PubMedCrossRef
128.
go back to reference H. Toledano, The role of the heterochronic microRNA let-7 in the progression of aging. Exp Gerontol 48, 667–670 (2013)PubMedCrossRef H. Toledano, The role of the heterochronic microRNA let-7 in the progression of aging. Exp Gerontol 48, 667–670 (2013)PubMedCrossRef
129.
130.
go back to reference F. d’Adda di Fagagna, Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8, 512–522 (2008)PubMedCrossRef F. d’Adda di Fagagna, Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8, 512–522 (2008)PubMedCrossRef
131.
go back to reference M. Fumagalli, F. d’Adda di Fagagna, SASPense and DDRama in cancer and ageing. Nat Cell Biol 11, 921–923 (2009)PubMedCrossRef M. Fumagalli, F. d’Adda di Fagagna, SASPense and DDRama in cancer and ageing. Nat Cell Biol 11, 921–923 (2009)PubMedCrossRef
133.
134.
go back to reference L. Hong, M. Lai, M. Chen, C. Xie, R. Liao, Y.J. Kang, C. Xiao, W.Y. Hu, J. Han, P. Sun, The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res 70, 8547–8557 (2010)PubMedPubMedCentralCrossRef L. Hong, M. Lai, M. Chen, C. Xie, R. Liao, Y.J. Kang, C. Xiao, W.Y. Hu, J. Han, P. Sun, The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res 70, 8547–8557 (2010)PubMedPubMedCentralCrossRef
135.
go back to reference V. Borgdorff, M.E. Lleonart, C.L. Bishop, D. Fessart, A.H. Bergin, M.G. Overhoff, D.H. Beach, Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29, 2262–2271 (2010)PubMedCrossRef V. Borgdorff, M.E. Lleonart, C.L. Bishop, D. Fessart, A.H. Bergin, M.G. Overhoff, D.H. Beach, Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29, 2262–2271 (2010)PubMedCrossRef
136.
go back to reference G. Li, C. Luna, J. Qiu, D.L. Epstein, P. Gonzalez, Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 130, 731–741 (2009)PubMedPubMedCentralCrossRef G. Li, C. Luna, J. Qiu, D.L. Epstein, P. Gonzalez, Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 130, 731–741 (2009)PubMedPubMedCentralCrossRef
137.
go back to reference Y. Liu, W. Qiang, X. Xu, R. Dong, A.M. Karst, Z. Liu, B. Kong, R.I. Drapkin, J.J. Wei, Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget 6, 38983–38998 (2015)PubMedPubMedCentralCrossRef Y. Liu, W. Qiang, X. Xu, R. Dong, A.M. Karst, Z. Liu, B. Kong, R.I. Drapkin, J.J. Wei, Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget 6, 38983–38998 (2015)PubMedPubMedCentralCrossRef
138.
go back to reference P. Moskwa, F.M. Buffa, Y. Pan, R. Panchakshari, P. Gottipati, R.J. Muschel, J. Beech, R. Kulshrestha, K. Abdelmohsen, D.M. Weinstock, M. Gorospe, A.L. Harris, T. Helleday, D. Chowdhury, miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41, 210–220 (2011)PubMedCrossRef P. Moskwa, F.M. Buffa, Y. Pan, R. Panchakshari, P. Gottipati, R.J. Muschel, J. Beech, R. Kulshrestha, K. Abdelmohsen, D.M. Weinstock, M. Gorospe, A.L. Harris, T. Helleday, D. Chowdhury, miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41, 210–220 (2011)PubMedCrossRef
139.
go back to reference S.M. Kooistra, L.C. Norgaard, M.J. Lees, C. Steinhauer, J.V. Johansen, K. Helin, A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS One 9, e91034 (2014)PubMedPubMedCentralCrossRef S.M. Kooistra, L.C. Norgaard, M.J. Lees, C. Steinhauer, J.V. Johansen, K. Helin, A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS One 9, e91034 (2014)PubMedPubMedCentralCrossRef
140.
go back to reference O.C. Maes, H. Sarojini, E. Wang, Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 221, 109–119 (2009)PubMedCrossRef O.C. Maes, H. Sarojini, E. Wang, Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 221, 109–119 (2009)PubMedCrossRef
141.
go back to reference H. Tazawa, N. Tsuchiya, M. Izumiya, H. Nakagama, Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104, 15472–15477 (2007) H. Tazawa, N. Tsuchiya, M. Izumiya, H. Nakagama, Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104, 15472–15477 (2007)
142.
go back to reference L.N. Bonifacio, M.B. Jarstfer, MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 5, e12519 (2010)PubMedPubMedCentralCrossRef L.N. Bonifacio, M.B. Jarstfer, MiRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 5, e12519 (2010)PubMedPubMedCentralCrossRef
143.
go back to reference N.R. Christoffersen, R. Shalgi, L.B. Frankel, E. Leucci, M. Lees, M. Klausen, Y. Pilpel, F.C. Nielsen, M. Oren, A.H. Lund, p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17, 236–245 (2010)PubMedCrossRef N.R. Christoffersen, R. Shalgi, L.B. Frankel, E. Leucci, M. Lees, M. Klausen, Y. Pilpel, F.C. Nielsen, M. Oren, A.H. Lund, p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17, 236–245 (2010)PubMedCrossRef
144.
go back to reference D. Lodygin, V. Tarasov, A. Epanchintsev, C. Berking, T. Knyazeva, H. Korner, P. Knyazev, J. Diebold, H. Hermeking, Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008)PubMedCrossRef D. Lodygin, V. Tarasov, A. Epanchintsev, C. Berking, T. Knyazeva, H. Korner, P. Knyazev, J. Diebold, H. Hermeking, Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008)PubMedCrossRef
145.
go back to reference D. Bhaumik, G.K. Scott, S. Schokrpur, C.K. Patil, A.V. Orjalo, F. Rodier, G.J. Lithgow, J. Campisi, MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1, 402–411 (2009) D. Bhaumik, G.K. Scott, S. Schokrpur, C.K. Patil, A.V. Orjalo, F. Rodier, G.J. Lithgow, J. Campisi, MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1, 402–411 (2009)
146.
go back to reference D. Bhaumik, G.K. Scott, S. Schokrpur, C.K. Patil, J. Campisi, C.C. Benz, Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647 (2008)PubMedPubMedCentralCrossRef D. Bhaumik, G.K. Scott, S. Schokrpur, C.K. Patil, J. Campisi, C.C. Benz, Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647 (2008)PubMedPubMedCentralCrossRef
147.
go back to reference M. Vasa-Nicotera, H. Chen, P. Tucci, A.L. Yang, G. Saintigny, R. Menghini, C. Mahe, M. Agostini, R.A. Knight, G. Melino, M. Federici, miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 217, 326–330 (2011)PubMedCrossRef M. Vasa-Nicotera, H. Chen, P. Tucci, A.L. Yang, G. Saintigny, R. Menghini, C. Mahe, M. Agostini, R.A. Knight, G. Melino, M. Federici, miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 217, 326–330 (2011)PubMedCrossRef
148.
go back to reference R. Brosh, R. Shalgi, A. Liran, G. Landan, K. Korotayev, G.H. Nguyen, E. Enerly, H. Johnsen, Y. Buganim, H. Solomon, p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4, 229 (2008)PubMedPubMedCentralCrossRef R. Brosh, R. Shalgi, A. Liran, G. Landan, K. Korotayev, G.H. Nguyen, E. Enerly, H. Johnsen, Y. Buganim, H. Solomon, p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 4, 229 (2008)PubMedPubMedCentralCrossRef
150.
go back to reference L. He, X. He, L.P. Lim, E. de Stanchina, Z. Xuan, Y. Liang, W. Xue, L. Zender, J. Magnus, D. Ridzon, A.L. Jackson, P.S. Linsley, C. Chen, S.W. Lowe, M.A. Cleary, G.J. Hannon, A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007)PubMedPubMedCentralCrossRef L. He, X. He, L.P. Lim, E. de Stanchina, Z. Xuan, Y. Liang, W. Xue, L. Zender, J. Magnus, D. Ridzon, A.L. Jackson, P.S. Linsley, C. Chen, S.W. Lowe, M.A. Cleary, G.J. Hannon, A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007)PubMedPubMedCentralCrossRef
151.
152.
go back to reference C.D. Johnson, A. Esquela-Kerscher, G. Stefani, M. Byrom, K. Kelnar, D. Ovcharenko, M. Wilson, X. Wang, J. Shelton, J. Shingara, L. Chin, D. Brown, F.J. Slack, The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67, 7713–7722 (2007)PubMedCrossRef C.D. Johnson, A. Esquela-Kerscher, G. Stefani, M. Byrom, K. Kelnar, D. Ovcharenko, M. Wilson, X. Wang, J. Shelton, J. Shingara, L. Chin, D. Brown, F.J. Slack, The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67, 7713–7722 (2007)PubMedCrossRef
153.
go back to reference M. Benhamed, U. Herbig, T. Ye, A. Dejean, O. Bischof, Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14, 266–275 (2012)PubMedPubMedCentralCrossRef M. Benhamed, U. Herbig, T. Ye, A. Dejean, O. Bischof, Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14, 266–275 (2012)PubMedPubMedCentralCrossRef
154.
go back to reference A. Tzatsos, P. Paskaleva, S. Lymperi, G. Contino, S. Stoykova, Z. Chen, K.K. Wong, N. Bardeesy, Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J Biol Chem 286, 33061–33069 (2011)PubMedPubMedCentralCrossRef A. Tzatsos, P. Paskaleva, S. Lymperi, G. Contino, S. Stoykova, Z. Chen, K.K. Wong, N. Bardeesy, Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J Biol Chem 286, 33061–33069 (2011)PubMedPubMedCentralCrossRef
155.
go back to reference R. Greussing, M. Hackl, P. Charoentong, A. Pauck, R. Monteforte, M. Cavinato, E. Hofer, M. Scheideler, M. Neuhaus, L. Micutkova, C. Mueck, Z. Trajanoski, J. Grillari, P. Jansen-Durr, Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts. BMC Genomics 14, 224 (2013)PubMedPubMedCentralCrossRef R. Greussing, M. Hackl, P. Charoentong, A. Pauck, R. Monteforte, M. Cavinato, E. Hofer, M. Scheideler, M. Neuhaus, L. Micutkova, C. Mueck, Z. Trajanoski, J. Grillari, P. Jansen-Durr, Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts. BMC Genomics 14, 224 (2013)PubMedPubMedCentralCrossRef
156.
go back to reference A. Tzatsos, P. Paskaleva, F. Ferrari, V. Deshpande, S. Stoykova, G. Contino, K.K. Wong, F. Lan, P. Trojer, P.J. Park, N. Bardeesy, KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest 123, 727–739 (2013)PubMedPubMedCentral A. Tzatsos, P. Paskaleva, F. Ferrari, V. Deshpande, S. Stoykova, G. Contino, K.K. Wong, F. Lan, P. Trojer, P.J. Park, N. Bardeesy, KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J Clin Invest 123, 727–739 (2013)PubMedPubMedCentral
157.
go back to reference F. Kottakis, C. Polytarchou, P. Foltopoulou, I. Sanidas, S.C. Kampranis, P.N. Tsichlis, FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 43, 285–298 (2011)PubMedPubMedCentralCrossRef F. Kottakis, C. Polytarchou, P. Foltopoulou, I. Sanidas, S.C. Kampranis, P.N. Tsichlis, FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell 43, 285–298 (2011)PubMedPubMedCentralCrossRef
158.
go back to reference K. Lafferty-Whyte, C.J. Cairney, N.B. Jamieson, K.A. Oien, W.N. Keith, Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta (BBA)-Mol Basis Dis 1792, 341–352 (2009)CrossRef K. Lafferty-Whyte, C.J. Cairney, N.B. Jamieson, K.A. Oien, W.N. Keith, Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta (BBA)-Mol Basis Dis 1792, 341–352 (2009)CrossRef
159.
go back to reference C. Liu, K. Kelnar, A.V. Vlassov, D. Brown, J. Wang, D.G. Tang, Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 72, 3393–3404 (2012)PubMedCrossRef C. Liu, K. Kelnar, A.V. Vlassov, D. Brown, J. Wang, D.G. Tang, Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 72, 3393–3404 (2012)PubMedCrossRef
160.
go back to reference R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)PubMedCrossRef R. Guo, J. Gu, Z. Zhang, Y. Wang, C. Gu, MicroRNA-410 functions as a tumor suppressor by targeting angiotensin II type 1 receptor in pancreatic cancer. IUBMB Life 67, 42–53 (2015)PubMedCrossRef
161.
go back to reference Y. Goto, A. Kurozumi, H. Enokida, T. Ichikawa, N. Seki, Functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol 22, 242–252 (2015)PubMedCrossRef Y. Goto, A. Kurozumi, H. Enokida, T. Ichikawa, N. Seki, Functional significance of aberrantly expressed microRNAs in prostate cancer. Int J Urol 22, 242–252 (2015)PubMedCrossRef
162.
go back to reference J. Wang, Z. Li, Q. Ge, W. Wu, Q. Zhu, J. Luo, L. Chen, Characterization of microRNA transcriptome in tumor, adjacent, and normal tissues of lung squamous cell carcinoma. J Thorac Cardiovasc Surg 149, 1404–1414 e1404 (2015)PubMedCrossRef J. Wang, Z. Li, Q. Ge, W. Wu, Q. Zhu, J. Luo, L. Chen, Characterization of microRNA transcriptome in tumor, adjacent, and normal tissues of lung squamous cell carcinoma. J Thorac Cardiovasc Surg 149, 1404–1414 e1404 (2015)PubMedCrossRef
163.
go back to reference J. Ma, K. Mannoor, L. Gao, A. Tan, M.A. Guarnera, M. Zhan, A. Shetty, S.A. Stass, L. Xing, F. Jiang, Characterization of microRNA transcriptome in lung cancer by next-generation deep sequencing. Mol Oncol 8, 1208–1219 (2014)PubMedPubMedCentralCrossRef J. Ma, K. Mannoor, L. Gao, A. Tan, M.A. Guarnera, M. Zhan, A. Shetty, S.A. Stass, L. Xing, F. Jiang, Characterization of microRNA transcriptome in lung cancer by next-generation deep sequencing. Mol Oncol 8, 1208–1219 (2014)PubMedPubMedCentralCrossRef
164.
go back to reference R. Saab, Senescence and pre-malignancy: how do tumors progress? Semin Cancer Biol 21, 385–391 (2011)PubMedCrossRef R. Saab, Senescence and pre-malignancy: how do tumors progress? Semin Cancer Biol 21, 385–391 (2011)PubMedCrossRef
165.
go back to reference M. Raica, A.M. Cimpean, D. Ribatti, Angiogenesis in pre-malignant conditions. Eur J Cancer 45, 1924–1934 (2009)PubMedCrossRef M. Raica, A.M. Cimpean, D. Ribatti, Angiogenesis in pre-malignant conditions. Eur J Cancer 45, 1924–1934 (2009)PubMedCrossRef
166.
go back to reference R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39, 397–410 (2016)CrossRef R. Paduch, The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol 39, 397–410 (2016)CrossRef
168.
go back to reference A. Caporali, C. Emanueli, MicroRNA regulation in angiogenesis. Vasc Pharmacol 55, 79–86 (2011)CrossRef A. Caporali, C. Emanueli, MicroRNA regulation in angiogenesis. Vasc Pharmacol 55, 79–86 (2011)CrossRef
169.
go back to reference M.M. Santoro, S. Nicoli, miRNAs in endothelial cell signaling: the endomiRNAs. Exp Cell Res 319, 1324–1330 (2013)PubMedCrossRef M.M. Santoro, S. Nicoli, miRNAs in endothelial cell signaling: the endomiRNAs. Exp Cell Res 319, 1324–1330 (2013)PubMedCrossRef
170.
go back to reference N.M. Kane, A.J. Thrasher, G.D. Angelini, C. Emanueli, Concise review: MicroRNAs as modulators of stem cells and angiogenesis. Stem Cells 32, 1059–1066 (2014)PubMedCrossRef N.M. Kane, A.J. Thrasher, G.D. Angelini, C. Emanueli, Concise review: MicroRNAs as modulators of stem cells and angiogenesis. Stem Cells 32, 1059–1066 (2014)PubMedCrossRef
171.
go back to reference S.M. Weis, D.A. Cheresh, Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17, 1359–1370 (2011)PubMedCrossRef S.M. Weis, D.A. Cheresh, Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17, 1359–1370 (2011)PubMedCrossRef
172.
174.
go back to reference H.I. Suzuki, A. Katsura, H. Matsuyama, K. Miyazono, MicroRNA regulons in tumor microenvironment. Oncogene 34, 3085–3094 (2015)PubMedCrossRef H.I. Suzuki, A. Katsura, H. Matsuyama, K. Miyazono, MicroRNA regulons in tumor microenvironment. Oncogene 34, 3085–3094 (2015)PubMedCrossRef
176.
go back to reference Z. Li, P. Chen, R. Su, Y. Li, C. Hu, Y. Wang, S. Arnovitz, M. He, S. Gurbuxani, Z. Zuo, A.G. Elkahloun, S. Li, H. Weng, H. Huang, M.B. Neilly, S. Wang, E.N. Olson, R.A. Larson, M.M. Le Beau, J. Zhang, X. Jiang, M. Wei, J. Jin, P.P. Liu, J. Chen, Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 126, 2005–2015 (2015)PubMedPubMedCentralCrossRef Z. Li, P. Chen, R. Su, Y. Li, C. Hu, Y. Wang, S. Arnovitz, M. He, S. Gurbuxani, Z. Zuo, A.G. Elkahloun, S. Li, H. Weng, H. Huang, M.B. Neilly, S. Wang, E.N. Olson, R.A. Larson, M.M. Le Beau, J. Zhang, X. Jiang, M. Wei, J. Jin, P.P. Liu, J. Chen, Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 126, 2005–2015 (2015)PubMedPubMedCentralCrossRef
177.
go back to reference E.R. Lechman, B. Gentner, S.W. Ng, E.M. Schoof, P. van Galen, J.A. Kennedy, S. Nucera, F. Ciceri, K.B. Kaufmann, N. Takayama, S.M. Dobson, A. Trotman-Grant, G. Krivdova, J. Elzinga, A. Mitchell, B. Nilsson, K.G. Hermans, K. Eppert, R. Marke, R. Isserlin, V. Voisin, G.D. Bader, P.W. Zandstra, T.R. Golub, B.L. Ebert, J. Lu, M. Minden, J.C. Wang, L. Naldini, J.E. Dick, miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell 29, 602–606 (2016)PubMedCrossRef E.R. Lechman, B. Gentner, S.W. Ng, E.M. Schoof, P. van Galen, J.A. Kennedy, S. Nucera, F. Ciceri, K.B. Kaufmann, N. Takayama, S.M. Dobson, A. Trotman-Grant, G. Krivdova, J. Elzinga, A. Mitchell, B. Nilsson, K.G. Hermans, K. Eppert, R. Marke, R. Isserlin, V. Voisin, G.D. Bader, P.W. Zandstra, T.R. Golub, B.L. Ebert, J. Lu, M. Minden, J.C. Wang, L. Naldini, J.E. Dick, miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell 29, 602–606 (2016)PubMedCrossRef
178.
go back to reference L. Poliseno, A. Tuccoli, L. Mariani, M. Evangelista, L. Citti, K. Woods, A. Mercatanti, S. Hammond, G. Rainaldi, MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068–3071 (2006)PubMedCrossRef L. Poliseno, A. Tuccoli, L. Mariani, M. Evangelista, L. Citti, K. Woods, A. Mercatanti, S. Hammond, G. Rainaldi, MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 3068–3071 (2006)PubMedCrossRef
179.
go back to reference Z. Hua, Q. Lv, W. Ye, C.-K.A. Wong, G. Cai, D. Gu, Y. Ji, C. Zhao, J. Wang, B.B. Yang, MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1, e116 (2006)PubMedPubMedCentralCrossRef Z. Hua, Q. Lv, W. Ye, C.-K.A. Wong, G. Cai, D. Gu, Y. Ji, C. Zhao, J. Wang, B.B. Yang, MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1, e116 (2006)PubMedPubMedCentralCrossRef
180.
go back to reference C. Urbich, A. Kuehbacher, S. Dimmeler, Role of microRNAs in vascular diseases, inflammation and angiogenesis. Cardiovasc Res 9, 581–588 (2008)CrossRef C. Urbich, A. Kuehbacher, S. Dimmeler, Role of microRNAs in vascular diseases, inflammation and angiogenesis. Cardiovasc Res 9, 581–588 (2008)CrossRef
181.
go back to reference M. Dews, A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E.E. Furth, W.M. Lee, G.H. Enders, J.T. Mendell, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38, 1060–1065 (2006)PubMedPubMedCentralCrossRef M. Dews, A. Homayouni, D. Yu, D. Murphy, C. Sevignani, E. Wentzel, E.E. Furth, W.M. Lee, G.H. Enders, J.T. Mendell, Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38, 1060–1065 (2006)PubMedPubMedCentralCrossRef
182.
go back to reference K.J. Png, N. Halberg, M. Yoshida, S.F. Tavazoie, A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2011)PubMedCrossRef K.J. Png, N. Halberg, M. Yoshida, S.F. Tavazoie, A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481, 190–194 (2011)PubMedCrossRef
183.
go back to reference P. Fasanaro, Y. D'Alessandra, V. Di Stefano, R. Melchionna, S. Romani, G. Pompilio, M.C. Capogrossi, F. Martelli, MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283, 15878–15883 (2008)PubMedPubMedCentralCrossRef P. Fasanaro, Y. D'Alessandra, V. Di Stefano, R. Melchionna, S. Romani, G. Pompilio, M.C. Capogrossi, F. Martelli, MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283, 15878–15883 (2008)PubMedPubMedCentralCrossRef
184.
go back to reference J.-g. Zhang, J.-j. Wang, F. Zhao, Q. Liu, K. Jiang, G.-h. Yang, MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411, 846–852 (2010)PubMedCrossRef J.-g. Zhang, J.-j. Wang, F. Zhao, Q. Liu, K. Jiang, G.-h. Yang, MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411, 846–852 (2010)PubMedCrossRef
185.
go back to reference L.-X. Yan, X.-F. Huang, Q. Shao, M.-Y. Huang, L. Deng, Q.-L. Wu, Y.-X. Zeng, J.-Y. Shao, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008)PubMedPubMedCentralCrossRef L.-X. Yan, X.-F. Huang, Q. Shao, M.-Y. Huang, L. Deng, Q.-L. Wu, Y.-X. Zeng, J.-Y. Shao, MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008)PubMedPubMedCentralCrossRef
186.
go back to reference I. Asangani, S. Rasheed, D. Nikolova, J. Leupold, N. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)PubMedCrossRef I. Asangani, S. Rasheed, D. Nikolova, J. Leupold, N. Colburn, S. Post, H. Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008)PubMedCrossRef
187.
go back to reference L.Z. Liu, C. Li, Q. Chen, Y. Jing, R. Carpenter, Y. Jiang, H.F. Kung, L. Lai, B.H. Jiang, MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6, e19139 (2011)PubMedPubMedCentralCrossRef L.Z. Liu, C. Li, Q. Chen, Y. Jing, R. Carpenter, Y. Jiang, H.F. Kung, L. Lai, B.H. Jiang, MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6, e19139 (2011)PubMedPubMedCentralCrossRef
188.
go back to reference M.P. Boldin, K.D. Taganov, D.S. Rao, L. Yang, J.L. Zhao, M. Kalwani, Y. Garcia-Flores, M. Luong, A. Devrekanli, J. Xu, miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208, 1189–1201 (2011)PubMedPubMedCentralCrossRef M.P. Boldin, K.D. Taganov, D.S. Rao, L. Yang, J.L. Zhao, M. Kalwani, Y. Garcia-Flores, M. Luong, A. Devrekanli, J. Xu, miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208, 1189–1201 (2011)PubMedPubMedCentralCrossRef
189.
go back to reference G. Ghosh, I.V. Subramanian, N. Adhikari, X. Zhang, H.P. Joshi, D. Basi, Y.S. Chandrashekhar, J.L. Hall, S. Roy, Y. Zeng, S. Ramakrishnan, Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120, 4141–4154 (2010)PubMedPubMedCentralCrossRef G. Ghosh, I.V. Subramanian, N. Adhikari, X. Zhang, H.P. Joshi, D. Basi, Y.S. Chandrashekhar, J.L. Hall, S. Roy, Y. Zeng, S. Ramakrishnan, Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 120, 4141–4154 (2010)PubMedPubMedCentralCrossRef
190.
go back to reference Y. Zhang, P. Yang, T. Sun, D. Li, X. Xu, Y. Rui, C. Li, M. Chong, T. Ibrahim, L. Mercatali, D. Amadori, X. Lu, D. Xie, Q.J. Li and X.F. Wang, miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 15, 284–294 (2013) Y. Zhang, P. Yang, T. Sun, D. Li, X. Xu, Y. Rui, C. Li, M. Chong, T. Ibrahim, L. Mercatali, D. Amadori, X. Lu, D. Xie, Q.J. Li and X.F. Wang, miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 15, 284–294 (2013)
191.
go back to reference D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012)PubMedCrossRef D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012)PubMedCrossRef
192.
go back to reference H.I. Suzuki, K. Yamagata, K. Sugimoto, T. Iwamoto, S. Kato, K. Miyazono, Modulation of microRNA processing by p53. Nature 460, 529–533 (2009)PubMedCrossRef H.I. Suzuki, K. Yamagata, K. Sugimoto, T. Iwamoto, S. Kato, K. Miyazono, Modulation of microRNA processing by p53. Nature 460, 529–533 (2009)PubMedCrossRef
193.
go back to reference X.L. Li, M.F. Jones, M. Subramanian, A. Lal, Mutant p53 exerts oncogenic effects through microRNAs and their target gene networks. FEBS Lett 588, 2610–2615 (2014)PubMedCrossRef X.L. Li, M.F. Jones, M. Subramanian, A. Lal, Mutant p53 exerts oncogenic effects through microRNAs and their target gene networks. FEBS Lett 588, 2610–2615 (2014)PubMedCrossRef
194.
go back to reference M. Rokavec, H. Li, L. Jiang, H. Hermeking, The p53/miR-34 axis in development and disease. J Mol Cell Biol 6, 214–230 (2014)PubMedCrossRef M. Rokavec, H. Li, L. Jiang, H. Hermeking, The p53/miR-34 axis in development and disease. J Mol Cell Biol 6, 214–230 (2014)PubMedCrossRef
195.
go back to reference M. Yamakuchi, C.J. Lowenstein, MiR-34, SIRT1, and p53: The feedback loop. Cell Cycle 8, 712–715 (2009)PubMedCrossRef M. Yamakuchi, C.J. Lowenstein, MiR-34, SIRT1, and p53: The feedback loop. Cell Cycle 8, 712–715 (2009)PubMedCrossRef
196.
go back to reference A.L. Kasinski, F.J. Slack, miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res 72, 5576–5587 (2012)PubMedPubMedCentralCrossRef A.L. Kasinski, F.J. Slack, miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res 72, 5576–5587 (2012)PubMedPubMedCentralCrossRef
197.
go back to reference F. Pichiorri, S.S. Suh, A. Rocci, L. De Luca, C. Taccioli, R. Santhanam, W. Zhou, D.M. Benson Jr., C. Hofmainster, H. Alder, M. Garofalo, G. Di Leva, S. Volinia, H.J. Lin, D. Perrotti, M. Kuehl, R.I. Aqeilan, A. Palumbo, C.M. Croce, Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367–381 (2010)PubMedPubMedCentralCrossRef F. Pichiorri, S.S. Suh, A. Rocci, L. De Luca, C. Taccioli, R. Santhanam, W. Zhou, D.M. Benson Jr., C. Hofmainster, H. Alder, M. Garofalo, G. Di Leva, S. Volinia, H.J. Lin, D. Perrotti, M. Kuehl, R.I. Aqeilan, A. Palumbo, C.M. Croce, Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367–381 (2010)PubMedPubMedCentralCrossRef
198.
go back to reference M.T. Le, C. Teh, N. Shyh-Chang, H. Xie, B. Zhou, V. Korzh, H.F. Lodish, B. Lim, MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23, 862–876 (2009)PubMedPubMedCentralCrossRef M.T. Le, C. Teh, N. Shyh-Chang, H. Xie, B. Zhou, V. Korzh, H.F. Lodish, B. Lim, MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23, 862–876 (2009)PubMedPubMedCentralCrossRef
199.
go back to reference M.R. Junttila, G.I. Evan, p53--a Jack of all trades but master of none. Nat Rev Cancer 9, 821–829 (2009)PubMedCrossRef M.R. Junttila, G.I. Evan, p53--a Jack of all trades but master of none. Nat Rev Cancer 9, 821–829 (2009)PubMedCrossRef
200.
go back to reference M.T. Le, N. Shyh-Chang, S.L. Khaw, L. Chin, C. Teh, J. Tay, E. O'Day, V. Korzh, H. Yang, A. Lal, J. Lieberman, H.F. Lodish, B. Lim, Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet 7, e1002242 (2011)PubMedPubMedCentralCrossRef M.T. Le, N. Shyh-Chang, S.L. Khaw, L. Chin, C. Teh, J. Tay, E. O'Day, V. Korzh, H. Yang, A. Lal, J. Lieberman, H.F. Lodish, B. Lim, Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet 7, e1002242 (2011)PubMedPubMedCentralCrossRef
201.
go back to reference D.M. Burns, A. D'Ambrogio, S. Nottrott, J.D. Richter, CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105–108 (2011)PubMedPubMedCentralCrossRef D.M. Burns, A. D'Ambrogio, S. Nottrott, J.D. Richter, CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473, 105–108 (2011)PubMedPubMedCentralCrossRef
203.
go back to reference A. Oeckinghaus, M.S. Hayden, S. Ghosh, Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12, 695–708 (2011)PubMedCrossRef A. Oeckinghaus, M.S. Hayden, S. Ghosh, Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12, 695–708 (2011)PubMedCrossRef
204.
go back to reference N.D. Perkins, The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12, 121–132 (2012)PubMed N.D. Perkins, The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12, 121–132 (2012)PubMed
205.
206.
207.
go back to reference K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martínez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol 38, 327–339 (2015)CrossRef K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martínez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol 38, 327–339 (2015)CrossRef
208.
go back to reference D. Iliopoulos, S.A. Jaeger, H.A. Hirsch, M.L. Bulyk, K. Struhl, STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39, 493–506 (2010)PubMedPubMedCentralCrossRef D. Iliopoulos, S.A. Jaeger, H.A. Hirsch, M.L. Bulyk, K. Struhl, STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39, 493–506 (2010)PubMedPubMedCentralCrossRef
209.
go back to reference M. Rokavec, M.G. Oner, H. Hermeking, lnflammation-induced epigenetic switches in cancer. Cell Mol Life Sci 73, 23–39 (2016)PubMedCrossRef M. Rokavec, M.G. Oner, H. Hermeking, lnflammation-induced epigenetic switches in cancer. Cell Mol Life Sci 73, 23–39 (2016)PubMedCrossRef
210.
go back to reference X. Xue, W. Xia, H. Wenzhong, A modeled dynamic regulatory network of NF-kappaB and IL-6 mediated by miRNA. Biosystems 114, 214–218 (2013)PubMedCrossRef X. Xue, W. Xia, H. Wenzhong, A modeled dynamic regulatory network of NF-kappaB and IL-6 mediated by miRNA. Biosystems 114, 214–218 (2013)PubMedCrossRef
211.
212.
go back to reference H.S. Cheng, M.S. Njock, N. Khyzha, L.T. Dang, J.E. Fish, Noncoding RNAs regulate NF-kappaB signaling to modulate blood vessel inflammation. Front Genet 5, 422 (2014)PubMedPubMedCentralCrossRef H.S. Cheng, M.S. Njock, N. Khyzha, L.T. Dang, J.E. Fish, Noncoding RNAs regulate NF-kappaB signaling to modulate blood vessel inflammation. Front Genet 5, 422 (2014)PubMedPubMedCentralCrossRef
213.
go back to reference L. Tong, Y. Yuan, S. Wu, Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers. Adv Drug Deliv Rev 81, 1–15 (2015)PubMedCrossRef L. Tong, Y. Yuan, S. Wu, Therapeutic microRNAs targeting the NF-kappa B signaling circuits of cancers. Adv Drug Deliv Rev 81, 1–15 (2015)PubMedCrossRef
214.
go back to reference K. Bakirtzi, M. Hatziapostolou, I. Karagiannides, C. Polytarchou, S. Jaeger, D. Iliopoulos, C. Pothoulakis, Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141, 1749–1761 e1741 (2011)PubMedPubMedCentralCrossRef K. Bakirtzi, M. Hatziapostolou, I. Karagiannides, C. Polytarchou, S. Jaeger, D. Iliopoulos, C. Pothoulakis, Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141, 1749–1761 e1741 (2011)PubMedPubMedCentralCrossRef
215.
go back to reference C. Polytarchou, D. Iliopoulos, M. Hatziapostolou, F. Kottakis, I. Maroulakou, K. Struhl, P.N. Tsichlis, Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res 71, 4720–4731 (2011)PubMedPubMedCentralCrossRef C. Polytarchou, D. Iliopoulos, M. Hatziapostolou, F. Kottakis, I. Maroulakou, K. Struhl, P.N. Tsichlis, Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res 71, 4720–4731 (2011)PubMedPubMedCentralCrossRef
216.
go back to reference C. Polytarchou, D.W. Hommes, T. Palumbo, M. Hatziapostolou, M. Koutsioumpa, G. Koukos, A.E. van der Meulen-de Jong, A. Oikonomopoulos, W.K. van Deen, C. Vorvis, O.B. Serebrennikova, E. Birli, J. Choi, L. Chang, P.A. Anton, P.N. Tsichlis, C. Pothoulakis, H.W. Verspaget, D. Iliopoulos, MicroRNA214 Is Associated With Progression of Ulcerative Colitis, and Inhibition Reduces Development of Colitis and Colitis-Associated Cancer in Mice. Gastroenterology 149, 981–992 e911 (2015)PubMedPubMedCentralCrossRef C. Polytarchou, D.W. Hommes, T. Palumbo, M. Hatziapostolou, M. Koutsioumpa, G. Koukos, A.E. van der Meulen-de Jong, A. Oikonomopoulos, W.K. van Deen, C. Vorvis, O.B. Serebrennikova, E. Birli, J. Choi, L. Chang, P.A. Anton, P.N. Tsichlis, C. Pothoulakis, H.W. Verspaget, D. Iliopoulos, MicroRNA214 Is Associated With Progression of Ulcerative Colitis, and Inhibition Reduces Development of Colitis and Colitis-Associated Cancer in Mice. Gastroenterology 149, 981–992 e911 (2015)PubMedPubMedCentralCrossRef
217.
go back to reference R. Zhou, G. Hu, A.Y. Gong, X.M. Chen, Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38, 3222–3232 (2010)PubMedPubMedCentralCrossRef R. Zhou, G. Hu, A.Y. Gong, X.M. Chen, Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38, 3222–3232 (2010)PubMedPubMedCentralCrossRef
218.
go back to reference A. Drakaki, M. Hatziapostolou, C. Polytarchou, C. Vorvis, G.A. Poultsides, J. Souglakos, V. Georgoulias, D. Iliopoulos, Functional microRNA high throughput screening reveals miR-9 as a central regulator of liver oncogenesis by affecting the PPARA-CDH1 pathway. BMC Cancer 15, 542 (2015)PubMedPubMedCentralCrossRef A. Drakaki, M. Hatziapostolou, C. Polytarchou, C. Vorvis, G.A. Poultsides, J. Souglakos, V. Georgoulias, D. Iliopoulos, Functional microRNA high throughput screening reveals miR-9 as a central regulator of liver oncogenesis by affecting the PPARA-CDH1 pathway. BMC Cancer 15, 542 (2015)PubMedPubMedCentralCrossRef
219.
go back to reference R. Chen, A.B. Alvero, D.A. Silasi, M.G. Kelly, S. Fest, I. Visintin, A. Leiser, P.E. Schwartz, T. Rutherford, G. Mor, Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27, 4712–4723 (2008)PubMedPubMedCentralCrossRef R. Chen, A.B. Alvero, D.A. Silasi, M.G. Kelly, S. Fest, I. Visintin, A. Leiser, P.E. Schwartz, T. Rutherford, G. Mor, Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells. Oncogene 27, 4712–4723 (2008)PubMedPubMedCentralCrossRef
220.
go back to reference X.J. Kong, L.J. Duan, X.Q. Qian, D. Xu, H.L. Liu, Y.J. Zhu, J. Qi, Tumor-suppressive microRNA-497 targets IKKbeta to regulate NF-kappaB signaling pathway in human prostate cancer cells. Am J Cancer Res 5, 1795–1804 (2015)PubMedPubMedCentral X.J. Kong, L.J. Duan, X.Q. Qian, D. Xu, H.L. Liu, Y.J. Zhu, J. Qi, Tumor-suppressive microRNA-497 targets IKKbeta to regulate NF-kappaB signaling pathway in human prostate cancer cells. Am J Cancer Res 5, 1795–1804 (2015)PubMedPubMedCentral
221.
go back to reference P. Mechtler, R. Singhal, J.V. Kichina, J.E. Bard, M.J. Buck, E.S. Kandel, MicroRNA analysis suggests an additional level of feedback regulation in the NF-kappaB signaling cascade. Oncotarget 6, 17097–17106 (2015)PubMedPubMedCentralCrossRef P. Mechtler, R. Singhal, J.V. Kichina, J.E. Bard, M.J. Buck, E.S. Kandel, MicroRNA analysis suggests an additional level of feedback regulation in the NF-kappaB signaling cascade. Oncotarget 6, 17097–17106 (2015)PubMedPubMedCentralCrossRef
222.
go back to reference T. Li, M.J. Morgan, S. Choksi, Y. Zhang, Y.S. Kim, Z.G. Liu, MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 11, 799–805 (2010)PubMedPubMedCentralCrossRef T. Li, M.J. Morgan, S. Choksi, Y. Zhang, Y.S. Kim, Z.G. Liu, MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 11, 799–805 (2010)PubMedPubMedCentralCrossRef
223.
go back to reference S. Masciarelli, G. Fontemaggi, S. Di Agostino, S. Donzelli, E. Carcarino, S. Strano, G. Blandino, Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 33, 1601–1608 (2014)PubMedCrossRef S. Masciarelli, G. Fontemaggi, S. Di Agostino, S. Donzelli, E. Carcarino, S. Strano, G. Blandino, Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 33, 1601–1608 (2014)PubMedCrossRef
224.
go back to reference L. Santarpia, M. Nicoloso, G.A. Calin, MicroRNAs: a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer 17, F51–F75 (2010)PubMedCrossRef L. Santarpia, M. Nicoloso, G.A. Calin, MicroRNAs: a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer 17, F51–F75 (2010)PubMedCrossRef
225.
go back to reference S.J. Hwang, H.J. Seol, Y.M. Park, K.H. Kim, M. Gorospe, D.H. Nam, H.H. Kim, MicroRNA-146a suppresses metastatic activity in brain metastasis. Mol Cells 34, 329–334 (2012)PubMedPubMedCentralCrossRef S.J. Hwang, H.J. Seol, Y.M. Park, K.H. Kim, M. Gorospe, D.H. Nam, H.H. Kim, MicroRNA-146a suppresses metastatic activity in brain metastasis. Mol Cells 34, 329–334 (2012)PubMedPubMedCentralCrossRef
226.
go back to reference E. Astarci, A.E. Erson-Bensan, S. Banerjee, Matrix metalloprotease 16 expression is downregulated by microRNA-146a in spontaneously differentiating Caco-2 cells. Develop Growth Differ 54, 216–226 (2012)CrossRef E. Astarci, A.E. Erson-Bensan, S. Banerjee, Matrix metalloprotease 16 expression is downregulated by microRNA-146a in spontaneously differentiating Caco-2 cells. Develop Growth Differ 54, 216–226 (2012)CrossRef
227.
228.
go back to reference D.R. Hurst, M.D. Edmonds, G.K. Scott, C.C. Benz, K.S. Vaidya, D.R. Welch, Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69, 1279–1283 (2009)PubMedPubMedCentralCrossRef D.R. Hurst, M.D. Edmonds, G.K. Scott, C.C. Benz, K.S. Vaidya, D.R. Welch, Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res 69, 1279–1283 (2009)PubMedPubMedCentralCrossRef
230.
go back to reference A.I. Garcia, M. Buisson, P. Bertrand, R. Rimokh, E. Rouleau, B.S. Lopez, R. Lidereau, I. Mikaelian, S. Mazoyer, Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 3, 279–290 (2011)PubMedPubMedCentralCrossRef A.I. Garcia, M. Buisson, P. Bertrand, R. Rimokh, E. Rouleau, B.S. Lopez, R. Lidereau, I. Mikaelian, S. Mazoyer, Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 3, 279–290 (2011)PubMedPubMedCentralCrossRef
231.
go back to reference M.A. Taylor, K. Sossey-Alaoui, C.L. Thompson, D. Danielpour, W.P. Schiemann, TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123, 150–163 (2013)PubMedCrossRef M.A. Taylor, K. Sossey-Alaoui, C.L. Thompson, D. Danielpour, W.P. Schiemann, TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123, 150–163 (2013)PubMedCrossRef
232.
go back to reference B. Wang, S.H. Hsu, S. Majumder, H. Kutay, W. Huang, S.T. Jacob, K. Ghoshal, TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787–1797 (2010)PubMedCrossRef B. Wang, S.H. Hsu, S. Majumder, H. Kutay, W. Huang, S.T. Jacob, K. Ghoshal, TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29, 1787–1797 (2010)PubMedCrossRef
233.
234.
go back to reference R. Cuesta, A. Martinez-Sanchez, F. Gebauer, miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol Cell Biol 29, 2841–2851 (2009)PubMedPubMedCentralCrossRef R. Cuesta, A. Martinez-Sanchez, F. Gebauer, miR-181a regulates cap-dependent translation of p27(kip1) mRNA in myeloid cells. Mol Cell Biol 29, 2841–2851 (2009)PubMedPubMedCentralCrossRef
235.
go back to reference A. Bisso, M. Faleschini, F. Zampa, V. Capaci, J. De Santa, L. Santarpia, S. Piazza, V. Cappelletti, M. Daidone, R. Agami, G. Del Sal, Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 12, 1679–1687 (2013)PubMedPubMedCentralCrossRef A. Bisso, M. Faleschini, F. Zampa, V. Capaci, J. De Santa, L. Santarpia, S. Piazza, V. Cappelletti, M. Daidone, R. Agami, G. Del Sal, Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle 12, 1679–1687 (2013)PubMedPubMedCentralCrossRef
236.
go back to reference F.J. Sheedy, E. Palsson-McDermott, E.J. Hennessy, C. Martin, J.J. O'Leary, Q. Ruan, D.S. Johnson, Y. Chen, L.A. O'Neill, Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11, 141–147 (2010)PubMedCrossRef F.J. Sheedy, E. Palsson-McDermott, E.J. Hennessy, C. Martin, J.J. O'Leary, Q. Ruan, D.S. Johnson, Y. Chen, L.A. O'Neill, Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11, 141–147 (2010)PubMedCrossRef
237.
go back to reference R.T. Marquez, E. Wendlandt, C.S. Galle, K. Keck, A.P. McCaffrey, MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298, G535–G541 (2010)PubMedPubMedCentralCrossRef R.T. Marquez, E. Wendlandt, C.S. Galle, K. Keck, A.P. McCaffrey, MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 298, G535–G541 (2010)PubMedPubMedCentralCrossRef
238.
239.
go back to reference X. Pan, Z.X. Wang, R. Wang, MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 10, 1224–1232 (2010)PubMedCrossRef X. Pan, Z.X. Wang, R. Wang, MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 10, 1224–1232 (2010)PubMedCrossRef
241.
go back to reference F. Talotta, A. Cimmino, M.R. Matarazzo, L. Casalino, G. De Vita, M. D'Esposito, R. Di Lauro, P. Verde, An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28, 73–84 (2009)PubMedCrossRef F. Talotta, A. Cimmino, M.R. Matarazzo, L. Casalino, G. De Vita, M. D'Esposito, R. Di Lauro, P. Verde, An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28, 73–84 (2009)PubMedCrossRef
242.
go back to reference P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015)PubMedPubMedCentralCrossRef P. Wang, C.F. Zhu, M.Z. Ma, G. Chen, M. Song, Z.L. Zeng, W.H. Lu, J. Yang, S. Wen, P.J. Chiao, Y. Hu, P. Huang, Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget 6, 21148–21158 (2015)PubMedPubMedCentralCrossRef
243.
go back to reference S. Costinean, N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia, N. Heerema, C.M. Croce, Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103, 7024–7029 (2006) S. Costinean, N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia, N. Heerema, C.M. Croce, Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103, 7024–7029 (2006)
244.
go back to reference X.H. He, W. Zhu, P. Yuan, S. Jiang, D. Li, H.W. Zhang, M.F. Liu, miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 35, 6015–6025 (2016)PubMedCrossRef X.H. He, W. Zhu, P. Yuan, S. Jiang, D. Li, H.W. Zhang, M.F. Liu, miR-155 downregulates ErbB2 and suppresses ErbB2-induced malignant transformation of breast epithelial cells. Oncogene 35, 6015–6025 (2016)PubMedCrossRef
245.
go back to reference R. Dinami, C. Ercolani, E. Petti, S. Piazza, Y. Ciani, R. Sestito, A. Sacconi, F. Biagioni, C. le Sage, R. Agami, R. Benetti, M. Mottolese, C. Schneider, G. Blandino, S. Schoeftner, miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 74, 4145–4156 (2014)PubMedCrossRef R. Dinami, C. Ercolani, E. Petti, S. Piazza, Y. Ciani, R. Sestito, A. Sacconi, F. Biagioni, C. le Sage, R. Agami, R. Benetti, M. Mottolese, C. Schneider, G. Blandino, S. Schoeftner, miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 74, 4145–4156 (2014)PubMedCrossRef
246.
go back to reference P.M. Neilsen, J.E. Noll, S. Mattiske, C.P. Bracken, P.A. Gregory, R.B. Schulz, S.P. Lim, R. Kumar, R.J. Suetani, G.J. Goodall, D.F. Callen, Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32, 2992–3000 (2013)PubMedCrossRef P.M. Neilsen, J.E. Noll, S. Mattiske, C.P. Bracken, P.A. Gregory, R.B. Schulz, S.P. Lim, R. Kumar, R.J. Suetani, G.J. Goodall, D.F. Callen, Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32, 2992–3000 (2013)PubMedCrossRef
247.
go back to reference M. Subramanian, P. Francis, S. Bilke, X.L. Li, T. Hara, X. Lu, M.F. Jones, R.L. Walker, Y. Zhu, M. Pineda, C. Lee, L. Varanasi, Y. Yang, L.A. Martinez, J. Luo, S. Ambs, S. Sharma, L.M. Wakefield, P.S. Meltzer, A. Lal, A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene 34, 1094–1104 (2015)PubMedCrossRef M. Subramanian, P. Francis, S. Bilke, X.L. Li, T. Hara, X. Lu, M.F. Jones, R.L. Walker, Y. Zhu, M. Pineda, C. Lee, L. Varanasi, Y. Yang, L.A. Martinez, J. Luo, S. Ambs, S. Sharma, L.M. Wakefield, P.S. Meltzer, A. Lal, A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene 34, 1094–1104 (2015)PubMedCrossRef
248.
go back to reference X. Cai, Y. Yin, N. Li, D. Zhu, J. Zhang, C.Y. Zhang, K. Zen, Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 4, 341–343 (2012)PubMedCrossRef X. Cai, Y. Yin, N. Li, D. Zhu, J. Zhang, C.Y. Zhang, K. Zen, Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 4, 341–343 (2012)PubMedCrossRef
249.
go back to reference A.K. Mitra, M. Zillhardt, Y. Hua, P. Tiwari, A.E. Murmann, M.E. Peter, E. Lengyel, MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2, 1100–1108 (2012)PubMedPubMedCentralCrossRef A.K. Mitra, M. Zillhardt, Y. Hua, P. Tiwari, A.E. Murmann, M.E. Peter, E. Lengyel, MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2, 1100–1108 (2012)PubMedPubMedCentralCrossRef
250.
go back to reference J. Yang, R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818–829 (2008)PubMedCrossRef J. Yang, R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818–829 (2008)PubMedCrossRef
251.
go back to reference K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9, 265–273 (2009)PubMedCrossRef K. Polyak, R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9, 265–273 (2009)PubMedCrossRef
252.
go back to reference A. Hanisch, H.H. Sillje, E.A. Nigg, Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J 25, 5504–5515 (2006)PubMedPubMedCentralCrossRef A. Hanisch, H.H. Sillje, E.A. Nigg, Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J 25, 5504–5515 (2006)PubMedPubMedCentralCrossRef
253.
go back to reference Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J 30, 57–67 (2011)PubMedCrossRef Z. Lu, Y. Li, A. Takwi, B. Li, J. Zhang, D.J. Conklin, K.H. Young, R. Martin, miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J 30, 57–67 (2011)PubMedCrossRef
254.
go back to reference X. Ma, F. Yan, Q. Deng, F. Li, Z. Lu, M. Liu, L. Wang, D.J. Conklin, J. McCracken, S. Srivastava, A. Bhatnagar, Y. Li, Modulation of tumorigenesis by the pro-inflammatory microRNA miR-301a in mouse models of lung cancer and colorectal cancer. Cell Discov 1, 15005 (2015)PubMedPubMedCentralCrossRef X. Ma, F. Yan, Q. Deng, F. Li, Z. Lu, M. Liu, L. Wang, D.J. Conklin, J. McCracken, S. Srivastava, A. Bhatnagar, Y. Li, Modulation of tumorigenesis by the pro-inflammatory microRNA miR-301a in mouse models of lung cancer and colorectal cancer. Cell Discov 1, 15005 (2015)PubMedPubMedCentralCrossRef
255.
go back to reference X. Xia, K. Zhang, G. Cen, T. Jiang, J. Cao, K. Huang, C. Huang, Q. Zhao, Z. Qiu, MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget 6, 21046–21063 (2015)PubMedPubMedCentralCrossRef X. Xia, K. Zhang, G. Cen, T. Jiang, J. Cao, K. Huang, C. Huang, Q. Zhao, Z. Qiu, MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget 6, 21046–21063 (2015)PubMedPubMedCentralCrossRef
256.
go back to reference Y. Lu, W. Gao, C. Zhang, S. Wen, H. Huangfu, J. Kang, B. Wang, Hsa-miR-301a-3p acts as an oncogene in laryngeal squamous cell carcinoma via target regulation of Smad4. J Cancer 6, 1260–1275 (2015)PubMedPubMedCentralCrossRef Y. Lu, W. Gao, C. Zhang, S. Wen, H. Huangfu, J. Kang, B. Wang, Hsa-miR-301a-3p acts as an oncogene in laryngeal squamous cell carcinoma via target regulation of Smad4. J Cancer 6, 1260–1275 (2015)PubMedPubMedCentralCrossRef
257.
go back to reference X. Cui, C. Kong, Y. Zhu, Y. Zeng, Z. Zhang, X. Liu, B. Zhan, C. Piao, Z. Jiang, miR-130b, an onco-miRNA in bladder cancer, is directly regulated by NF-kappaB and sustains NF-kappaB activation by decreasing Cylindromatosis expression. Oncotarget 7, 48547–48561 (2016)PubMedPubMedCentralCrossRef X. Cui, C. Kong, Y. Zhu, Y. Zeng, Z. Zhang, X. Liu, B. Zhan, C. Piao, Z. Jiang, miR-130b, an onco-miRNA in bladder cancer, is directly regulated by NF-kappaB and sustains NF-kappaB activation by decreasing Cylindromatosis expression. Oncotarget 7, 48547–48561 (2016)PubMedPubMedCentralCrossRef
258.
go back to reference G. Zhu, Y. Wang, M. Mijiti, Z. Wang, P.F. Wu, D. Jiafu, Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the hippo signaling pathway. Biochem Biophys Res Commun 465, 194–199 (2015)PubMedCrossRef G. Zhu, Y. Wang, M. Mijiti, Z. Wang, P.F. Wu, D. Jiafu, Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the hippo signaling pathway. Biochem Biophys Res Commun 465, 194–199 (2015)PubMedCrossRef
259.
go back to reference T. Yu, R. Cao, S. Li, M. Fu, L. Ren, W. Chen, H. Zhu, Q. Zhan, R. Shi, MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer 15, 29 (2015)PubMedPubMedCentralCrossRef T. Yu, R. Cao, S. Li, M. Fu, L. Ren, W. Chen, H. Zhu, Q. Zhan, R. Shi, MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer 15, 29 (2015)PubMedPubMedCentralCrossRef
260.
go back to reference S. Ma, K.H. Tang, Y.P. Chan, T.K. Lee, P.S. Kwan, A. Castilho, I. Ng, K. Man, N. Wong, K.F. To, B.J. Zheng, P.B. Lai, C.M. Lo, K.W. Chan, X.Y. Guan, miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7, 694–707 (2010)PubMedCrossRef S. Ma, K.H. Tang, Y.P. Chan, T.K. Lee, P.S. Kwan, A. Castilho, I. Ng, K. Man, N. Wong, K.F. To, B.J. Zheng, P.B. Lai, C.M. Lo, K.W. Chan, X.Y. Guan, miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7, 694–707 (2010)PubMedCrossRef
261.
go back to reference P. Dong, M. Karaayvaz, N. Jia, M. Kaneuchi, J. Hamada, H. Watari, S. Sudo, J. Ju, N. Sakuragi, Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32, 3286–3295 (2013)PubMedCrossRef P. Dong, M. Karaayvaz, N. Jia, M. Kaneuchi, J. Hamada, H. Watari, S. Sudo, J. Ju, N. Sakuragi, Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32, 3286–3295 (2013)PubMedCrossRef
262.
go back to reference B.L. Li, W. Lu, C. Lu, J.J. Qu, T.T. Yang, Q. Yan, X.P. Wan, CpG island hypermethylation-associated silencing of microRNAs promotes human endometrial cancer. Cancer Cell Int 13, 44 (2013)PubMedPubMedCentralCrossRef B.L. Li, W. Lu, C. Lu, J.J. Qu, T.T. Yang, Q. Yan, X.P. Wan, CpG island hypermethylation-associated silencing of microRNAs promotes human endometrial cancer. Cancer Cell Int 13, 44 (2013)PubMedPubMedCentralCrossRef
263.
go back to reference C. Yang, J. Cai, Q. Wang, H. Tang, J. Cao, L. Wu, Z. Wang, Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol 124, 325–334 (2012)PubMedCrossRef C. Yang, J. Cai, Q. Wang, H. Tang, J. Cao, L. Wu, Z. Wang, Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol 124, 325–334 (2012)PubMedCrossRef
264.
go back to reference Q. Chen, X. Zhao, H. Zhang, H. Yuan, M. Zhu, Q. Sun, X. Lai, Y. Wang, J. Huang, J. Yan, J. Yu, MiR-130b suppresses prostate cancer metastasis through down-regulation of MMP2. Mol Carcinog 54, 1292–1300 (2015)PubMedCrossRef Q. Chen, X. Zhao, H. Zhang, H. Yuan, M. Zhu, Q. Sun, X. Lai, Y. Wang, J. Huang, J. Yan, J. Yu, MiR-130b suppresses prostate cancer metastasis through down-regulation of MMP2. Mol Carcinog 54, 1292–1300 (2015)PubMedCrossRef
265.
go back to reference S. Galardi, N. Mercatelli, M.G. Farace, S.A. Ciafre, NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 39, 3892–3902 (2011)PubMedPubMedCentralCrossRef S. Galardi, N. Mercatelli, M.G. Farace, S.A. Ciafre, NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 39, 3892–3902 (2011)PubMedPubMedCentralCrossRef
266.
go back to reference S.A. Ciafre, S. Galardi, A. Mangiola, M. Ferracin, C.G. Liu, G. Sabatino, M. Negrini, G. Maira, C.M. Croce, M.G. Farace, Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334, 1351–1358 (2005)PubMedCrossRef S.A. Ciafre, S. Galardi, A. Mangiola, M. Ferracin, C.G. Liu, G. Sabatino, M. Negrini, G. Maira, C.M. Croce, M.G. Farace, Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334, 1351–1358 (2005)PubMedCrossRef
267.
go back to reference S. Galardi, N. Mercatelli, E. Giorda, S. Massalini, G.V. Frajese, S.A. Ciafre, M.G. Farace, miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282, 23716–23724 (2007)PubMedCrossRef S. Galardi, N. Mercatelli, E. Giorda, S. Massalini, G.V. Frajese, S.A. Ciafre, M.G. Farace, miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282, 23716–23724 (2007)PubMedCrossRef
268.
go back to reference S.W. Kim, K. Ramasamy, H. Bouamar, A.P. Lin, D. Jiang, R.C. Aguiar, MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 109, 7865–7870 (2012) S.W. Kim, K. Ramasamy, H. Bouamar, A.P. Lin, D. Jiang, R.C. Aguiar, MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 109, 7865–7870 (2012)
269.
go back to reference A. Rodriguez, S. Griffiths-Jones, J.L. Ashurst, A. Bradley, Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902–1910 (2004)PubMedPubMedCentralCrossRef A. Rodriguez, S. Griffiths-Jones, J.L. Ashurst, A. Bradley, Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902–1910 (2004)PubMedPubMedCentralCrossRef
270.
go back to reference H. Yin, Y. Sun, X. Wang, J. Park, Y. Zhang, M. Li, J. Yin, Q. Liu, M. Wei, Progress on the relationship between miR-125 family and tumorigenesis. Exp Cell Res 339, 252–260 (2015)PubMedCrossRef H. Yin, Y. Sun, X. Wang, J. Park, Y. Zhang, M. Li, J. Yin, Q. Liu, M. Wei, Progress on the relationship between miR-125 family and tumorigenesis. Exp Cell Res 339, 252–260 (2015)PubMedCrossRef
272.
273.
go back to reference M. Leotta, L. Biamonte, L. Raimondi, D. Ronchetti, M.T. Di Martino, C. Botta, E. Leone, M.R. Pitari, A. Neri, A. Giordano, P. Tagliaferri, P. Tassone, N. Amodio, A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J Cell Physiol 229, 2106–2116 (2014)PubMedCrossRef M. Leotta, L. Biamonte, L. Raimondi, D. Ronchetti, M.T. Di Martino, C. Botta, E. Leone, M.R. Pitari, A. Neri, A. Giordano, P. Tagliaferri, P. Tassone, N. Amodio, A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J Cell Physiol 229, 2106–2116 (2014)PubMedCrossRef
274.
go back to reference W. Li, R. Duan, F. Kooy, S.L. Sherman, W. Zhou, P. Jin, Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet 46, 358–360 (2009)PubMedCrossRef W. Li, R. Duan, F. Kooy, S.L. Sherman, W. Zhou, P. Jin, Germline mutation of microRNA-125a is associated with breast cancer. J Med Genet 46, 358–360 (2009)PubMedCrossRef
275.
go back to reference M. Bousquet, M.H. Harris, B. Zhou, H.F. Lodish, MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA 107, 21558–21563 (2010) M. Bousquet, M.H. Harris, B. Zhou, H.F. Lodish, MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA 107, 21558–21563 (2010)
276.
go back to reference J. Liu, B. Guo, Z. Chen, N. Wang, M. Iacovino, J. Cheng, C. Roden, W. Pan, S. Khan, S. Chen, M. Kyba, R. Fan, S. Guo, J. Lu, miR-125b promotes MLL-AF9-driven murine acute myeloid leukemia involving a VEGFA-mediated non-cell-intrinsic mechanism. Blood 129, 1491–1502 (2017)PubMedCrossRef J. Liu, B. Guo, Z. Chen, N. Wang, M. Iacovino, J. Cheng, C. Roden, W. Pan, S. Khan, S. Chen, M. Kyba, R. Fan, S. Guo, J. Lu, miR-125b promotes MLL-AF9-driven murine acute myeloid leukemia involving a VEGFA-mediated non-cell-intrinsic mechanism. Blood 129, 1491–1502 (2017)PubMedCrossRef
277.
go back to reference N. Xu, L. Zhang, F. Meisgen, M. Harada, J. Heilborn, B. Homey, D. Grander, M. Stahle, E. Sonkoly, A. Pivarcsi, MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem 287, 29899–29908 (2012)PubMedPubMedCentralCrossRef N. Xu, L. Zhang, F. Meisgen, M. Harada, J. Heilborn, B. Homey, D. Grander, M. Stahle, E. Sonkoly, A. Pivarcsi, MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem 287, 29899–29908 (2012)PubMedPubMedCentralCrossRef
278.
go back to reference Y. Guan, H. Yao, Z. Zheng, G. Qiu, K. Sun, MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 128, 2274–2283 (2011)PubMedCrossRef Y. Guan, H. Yao, Z. Zheng, G. Qiu, K. Sun, MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 128, 2274–2283 (2011)PubMedCrossRef
279.
go back to reference L. Huang, J. Luo, Q. Cai, Q. Pan, H. Zeng, Z. Guo, W. Dong, J. Huang, T. Lin, MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128, 1758–1769 (2011)PubMedCrossRef L. Huang, J. Luo, Q. Cai, Q. Pan, H. Zeng, Z. Guo, W. Dong, J. Huang, T. Lin, MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer 128, 1758–1769 (2011)PubMedCrossRef
280.
go back to reference L. Liang, C.M. Wong, Q. Ying, D.N. Fan, S. Huang, J. Ding, J. Yao, M. Yan, J. Li, M. Yao, I.O. Ng, X. He, MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52, 1731–1740 (2010)PubMedCrossRef L. Liang, C.M. Wong, Q. Ying, D.N. Fan, S. Huang, J. Ding, J. Yao, M. Yan, J. Li, M. Yao, I.O. Ng, X. He, MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52, 1731–1740 (2010)PubMedCrossRef
281.
go back to reference M. Kappelmann, S. Kuphal, G. Meister, L. Vardimon, A.K. Bosserhoff, MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 32, 2984–2991 (2013)PubMedCrossRef M. Kappelmann, S. Kuphal, G. Meister, L. Vardimon, A.K. Bosserhoff, MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene 32, 2984–2991 (2013)PubMedCrossRef
282.
go back to reference L.H. Liu, H. Li, J.P. Li, H. Zhong, H.C. Zhang, J. Chen, T. Xiao, miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun 416, 31–38 (2011)PubMedCrossRef L.H. Liu, H. Li, J.P. Li, H. Zhong, H.C. Zhang, J. Chen, T. Xiao, miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun 416, 31–38 (2011)PubMedCrossRef
283.
go back to reference G.K. Scott, A. Goga, D. Bhaumik, C.E. Berger, C.S. Sullivan, C.C. Benz, Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282, 1479–1486 (2007)PubMedCrossRef G.K. Scott, A. Goga, D. Bhaumik, C.E. Berger, C.S. Sullivan, C.C. Benz, Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 282, 1479–1486 (2007)PubMedCrossRef
284.
go back to reference S. Wang, J. Huang, H. Lyu, C.K. Lee, J. Tan, J. Wang, B. Liu, Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 4, e556 (2013)PubMedPubMedCentralCrossRef S. Wang, J. Huang, H. Lyu, C.K. Lee, J. Tan, J. Wang, B. Liu, Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis 4, e556 (2013)PubMedPubMedCentralCrossRef
285.
go back to reference Y. Wang, P. Tang, Y. Chen, J. Chen, R. Ma, L. Sun, Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-kappaB signaling pathway. Biochem Biophys Res Commun 488, 60–66 (2017)PubMedCrossRef Y. Wang, P. Tang, Y. Chen, J. Chen, R. Ma, L. Sun, Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-kappaB signaling pathway. Biochem Biophys Res Commun 488, 60–66 (2017)PubMedCrossRef
286.
go back to reference L. Yang, X. Zhang, Y. Ma, X. Zhao, B. Li, H. Wang, Ascites promotes cell migration through the repression of miR-125b in ovarian cancer. Oncotarget (2017). doi:10.18632/oncotarget.16846 L. Yang, X. Zhang, Y. Ma, X. Zhao, B. Li, H. Wang, Ascites promotes cell migration through the repression of miR-125b in ovarian cancer. Oncotarget (2017). doi:10.​18632/​oncotarget.​16846
287.
go back to reference R. Su, L. Dong, D. Zou, H. Zhao, Y. Ren, F. Li, P. Yi, L. Li, Y. Zhu, Y. Ma, J. Wang, F. Wang, J. Yu, microRNA-23a, −27a and −24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia. Oncogene 35, 6001–6014 (2016)PubMedCrossRef R. Su, L. Dong, D. Zou, H. Zhao, Y. Ren, F. Li, P. Yi, L. Li, Y. Zhu, Y. Ma, J. Wang, F. Wang, J. Yu, microRNA-23a, −27a and −24 synergistically regulate JAK1/Stat3 cascade and serve as novel therapeutic targets in human acute erythroid leukemia. Oncogene 35, 6001–6014 (2016)PubMedCrossRef
288.
go back to reference S. Hatzl, O. Geiger, M.K. Kuepper, V. Caraffini, T. Seime, T. Furlan, E. Nussbaumer, R. Wieser, M. Pichler, M. Scheideler, K. Nowek, M. Jongen-Lavrencic, F. Quehenberger, A. Wolfler, J. Troppmair, H. Sill, A. Zebisch, Increased expression of miR-23a mediates a loss of expression in the RAF kinase inhibitor protein RKIP. Cancer Res 76, 3644–3654 (2016)PubMedPubMedCentralCrossRef S. Hatzl, O. Geiger, M.K. Kuepper, V. Caraffini, T. Seime, T. Furlan, E. Nussbaumer, R. Wieser, M. Pichler, M. Scheideler, K. Nowek, M. Jongen-Lavrencic, F. Quehenberger, A. Wolfler, J. Troppmair, H. Sill, A. Zebisch, Increased expression of miR-23a mediates a loss of expression in the RAF kinase inhibitor protein RKIP. Cancer Res 76, 3644–3654 (2016)PubMedPubMedCentralCrossRef
290.
go back to reference K.A. Scheibner, B. Teaboldt, M.C. Hauer, X. Chen, S. Cherukuri, Y. Guo, S.M. Kelley, Z. Liu, M.R. Baer, S. Heimfeld, C.I. Civin, MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta. PLoS One 7, e50895 (2012)PubMedPubMedCentralCrossRef K.A. Scheibner, B. Teaboldt, M.C. Hauer, X. Chen, S. Cherukuri, Y. Guo, S.M. Kelley, Z. Liu, M.R. Baer, S. Heimfeld, C.I. Civin, MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta. PLoS One 7, e50895 (2012)PubMedPubMedCentralCrossRef
291.
go back to reference S.U. Mertens-Talcott, S. Chintharlapalli, X. Li, S. Safe, The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67, 11001–11011 (2007)PubMedCrossRef S.U. Mertens-Talcott, S. Chintharlapalli, X. Li, S. Safe, The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 67, 11001–11011 (2007)PubMedCrossRef
292.
go back to reference W. Tang, F. Yu, H. Yao, X. Cui, Y. Jiao, L. Lin, J. Chen, D. Yin, E. Song, Q. Liu, miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene 33, 2629–2638 (2014)PubMedCrossRef W. Tang, F. Yu, H. Yao, X. Cui, Y. Jiao, L. Lin, J. Chen, D. Yin, E. Song, Q. Liu, miR-27a regulates endothelial differentiation of breast cancer stem like cells. Oncogene 33, 2629–2638 (2014)PubMedCrossRef
294.
go back to reference C.L. Chaffer, R.A. Weinberg, A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011)PubMedCrossRef C.L. Chaffer, R.A. Weinberg, A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011)PubMedCrossRef
295.
go back to reference P. Mehlen, A. Puisieux, Metastasis: a question of life or death. Nat Rev Cancer 6, 449–458 (2006)PubMedCrossRef P. Mehlen, A. Puisieux, Metastasis: a question of life or death. Nat Rev Cancer 6, 449–458 (2006)PubMedCrossRef
296.
go back to reference D.X. Nguyen, P.D. Bos, J. Massague, Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9, 274–284 (2009)PubMedCrossRef D.X. Nguyen, P.D. Bos, J. Massague, Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9, 274–284 (2009)PubMedCrossRef
297.
go back to reference T. Brabletz, To differentiate or not--routes towards metastasis. Nat Rev Cancer 12, 425–436 (2012)PubMedCrossRef T. Brabletz, To differentiate or not--routes towards metastasis. Nat Rev Cancer 12, 425–436 (2012)PubMedCrossRef
298.
301.
go back to reference T. Ni, X.Y. Li, N. Lu, T. An, Z.P. Liu, R. Fu, W.C. Lv, Y.W. Zhang, X.J. Xu, R. Grant Rowe, Y.S. Lin, A. Scherer, T. Feinberg, X.Q. Zheng, B.A. Chen, X.S. Liu, Q.L. Guo, Z.Q. Wu, S.J. Weiss, Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 18, 1221–1232 (2016)PubMedCrossRef T. Ni, X.Y. Li, N. Lu, T. An, Z.P. Liu, R. Fu, W.C. Lv, Y.W. Zhang, X.J. Xu, R. Grant Rowe, Y.S. Lin, A. Scherer, T. Feinberg, X.Q. Zheng, B.A. Chen, X.S. Liu, Q.L. Guo, Z.Q. Wu, S.J. Weiss, Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 18, 1221–1232 (2016)PubMedCrossRef
302.
go back to reference C. Min, S.F. Eddy, D.H. Sherr, G.E. Sonenshein, NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104, 733–744 (2008)PubMedCrossRef C. Min, S.F. Eddy, D.H. Sherr, G.E. Sonenshein, NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem 104, 733–744 (2008)PubMedCrossRef
303.
go back to reference Y. Wu, J. Deng, P.G. Rychahou, S. Qiu, B.M. Evers, B.P. Zhou, Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416–428 (2009)PubMedPubMedCentralCrossRef Y. Wu, J. Deng, P.G. Rychahou, S. Qiu, B.M. Evers, B.P. Zhou, Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416–428 (2009)PubMedPubMedCentralCrossRef
304.
go back to reference G. Storci, P. Sansone, S. Mari, G. D'Uva, S. Tavolari, T. Guarnieri, M. Taffurelli, C. Ceccarelli, D. Santini, P. Chieco, K.B. Marcu, M. Bonafe, TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225, 682–691 (2010)PubMedPubMedCentralCrossRef G. Storci, P. Sansone, S. Mari, G. D'Uva, S. Tavolari, T. Guarnieri, M. Taffurelli, C. Ceccarelli, D. Santini, P. Chieco, K.B. Marcu, M. Bonafe, TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225, 682–691 (2010)PubMedPubMedCentralCrossRef
305.
306.
go back to reference S. Valastyan, R.A. Weinberg, MicroRNAs: Crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle 8, 3506–3512 (2009)PubMedCrossRef S. Valastyan, R.A. Weinberg, MicroRNAs: Crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle 8, 3506–3512 (2009)PubMedCrossRef
307.
go back to reference J.L. Carstens, S. Lovisa, R. Kalluri, Microenvironment-dependent cues trigger miRNA-regulated feedback loop to facilitate the EMT/MET switch. J Clin Invest 124, 1458–1460 (2014)PubMedPubMedCentralCrossRef J.L. Carstens, S. Lovisa, R. Kalluri, Microenvironment-dependent cues trigger miRNA-regulated feedback loop to facilitate the EMT/MET switch. J Clin Invest 124, 1458–1460 (2014)PubMedPubMedCentralCrossRef
308.
go back to reference P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, G.J. Goodall, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10, 593–601 (2008)PubMedCrossRef P.A. Gregory, A.G. Bert, E.L. Paterson, S.C. Barry, A. Tsykin, G. Farshid, M.A. Vadas, Y. Khew-Goodall, G.J. Goodall, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10, 593–601 (2008)PubMedCrossRef
309.
go back to reference S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22, 894–907 (2008)PubMedPubMedCentralCrossRef S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22, 894–907 (2008)PubMedPubMedCentralCrossRef
310.
go back to reference A. Cano, M.A. Nieto, Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 18, 357–359 (2008)PubMedCrossRef A. Cano, M.A. Nieto, Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends Cell Biol 18, 357–359 (2008)PubMedCrossRef
311.
go back to reference D.L. Gibbons, W. Lin, C.J. Creighton, Z.H. Rizvi, P.A. Gregory, G.J. Goodall, N. Thilaganathan, L. Du, Y. Zhang, A. Pertsemlidis, Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23, 2140–2151 (2009)PubMedPubMedCentralCrossRef D.L. Gibbons, W. Lin, C.J. Creighton, Z.H. Rizvi, P.A. Gregory, G.J. Goodall, N. Thilaganathan, L. Du, Y. Zhang, A. Pertsemlidis, Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev 23, 2140–2151 (2009)PubMedPubMedCentralCrossRef
312.
go back to reference M. Hahn, R. de Voer, N. Hoogerbrugge, M. Ligtenberg, R. Kuiper, A. Geurts van Kessel, The genetic heterogeneity of colorectal cancer predisposition-guidelines for gene discovery. Cell Oncol 39, 491–510 (2016) M. Hahn, R. de Voer, N. Hoogerbrugge, M. Ligtenberg, R. Kuiper, A. Geurts van Kessel, The genetic heterogeneity of colorectal cancer predisposition-guidelines for gene discovery. Cell Oncol 39, 491–510 (2016)
313.
go back to reference E. Fessler, M. Jansen, E.M.F. De Sousa, L. Zhao, P.R. Prasetyanti, H. Rodermond, R. Kandimalla, J.F. Linnekamp, M. Franitza, S.R. van Hooff, J.H. de Jong, S.C. Oppeneer, C.J. van Noesel, E. Dekker, G. Stassi, X. Wang, J.P. Medema, L. Vermeulen, A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene 35, 6026–6037 (2016)PubMedPubMedCentralCrossRef E. Fessler, M. Jansen, E.M.F. De Sousa, L. Zhao, P.R. Prasetyanti, H. Rodermond, R. Kandimalla, J.F. Linnekamp, M. Franitza, S.R. van Hooff, J.H. de Jong, S.C. Oppeneer, C.J. van Noesel, E. Dekker, G. Stassi, X. Wang, J.P. Medema, L. Vermeulen, A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene 35, 6026–6037 (2016)PubMedPubMedCentralCrossRef
315.
go back to reference A. Giannakakis, R. Sandaltzopoulos, J. Greshock, S. Liang, J. Huang, K. Hasegawa, C. Li, A. O'Brien-Jenkins, D. Katsaros, B.L. Weber, C. Simon, G. Coukos, L. Zhang, miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7, 255–264 (2008)PubMedCrossRef A. Giannakakis, R. Sandaltzopoulos, J. Greshock, S. Liang, J. Huang, K. Hasegawa, C. Li, A. O'Brien-Jenkins, D. Katsaros, B.L. Weber, C. Simon, G. Coukos, L. Zhang, miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7, 255–264 (2008)PubMedCrossRef
316.
go back to reference X. Huang, L. Ding, K.L. Bennewith, R.T. Tong, S.M. Welford, K.K. Ang, M. Story, Q.-T. Le, A.J. Giaccia, Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35, 856–867 (2009)PubMedPubMedCentralCrossRef X. Huang, L. Ding, K.L. Bennewith, R.T. Tong, S.M. Welford, K.K. Ang, M. Story, Q.-T. Le, A.J. Giaccia, Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35, 856–867 (2009)PubMedPubMedCentralCrossRef
317.
go back to reference T. van den Beucken, E. Koch, K. Chu, R. Rupaimoole, P. Prickaerts, M. Adriaens, J.W. Voncken, A.L. Harris, F.M. Buffa, S. Haider, M.H. Starmans, C.Q. Yao, M. Ivan, C. Ivan, C.V. Pecot, P.C. Boutros, A.K. Sood, M. Koritzinsky, B.G. Wouters, Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun 5, 5203 (2014)PubMedPubMedCentralCrossRef T. van den Beucken, E. Koch, K. Chu, R. Rupaimoole, P. Prickaerts, M. Adriaens, J.W. Voncken, A.L. Harris, F.M. Buffa, S. Haider, M.H. Starmans, C.Q. Yao, M. Ivan, C. Ivan, C.V. Pecot, P.C. Boutros, A.K. Sood, M. Koritzinsky, B.G. Wouters, Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun 5, 5203 (2014)PubMedPubMedCentralCrossRef
319.
go back to reference M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22, 756–769 (2008)PubMedPubMedCentralCrossRef M. Beltran, I. Puig, C. Pena, J.M. Garcia, A.B. Alvarez, R. Pena, F. Bonilla, A.G. de Herreros, A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22, 756–769 (2008)PubMedPubMedCentralCrossRef
320.
go back to reference Y. Shimono, M. Zabala, R.W. Cho, N. Lobo, P. Dalerba, D. Qian, M. Diehn, H. Liu, S.P. Panula, E. Chiao, F.M. Dirbas, G. Somlo, R.A. Pera, K. Lao, M.F. Clarke, Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009)PubMedPubMedCentralCrossRef Y. Shimono, M. Zabala, R.W. Cho, N. Lobo, P. Dalerba, D. Qian, M. Diehn, H. Liu, S.P. Panula, E. Chiao, F.M. Dirbas, G. Somlo, R.A. Pera, K. Lao, M.F. Clarke, Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138, 592–603 (2009)PubMedPubMedCentralCrossRef
321.
go back to reference U. Wellner, J. Schubert, U.C. Burk, O. Schmalhofer, F. Zhu, A. Sonntag, B. Waldvogel, C. Vannier, D. Darling, A. zur Hausen, V.G. Brunton, J. Morton, O. Sansom, J. Schuler, M.P. Stemmler, C. Herzberger, U. Hopt, T. Keck, S. Brabletz, T. Brabletz, The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11, 1487–1495 (2009)PubMedCrossRef U. Wellner, J. Schubert, U.C. Burk, O. Schmalhofer, F. Zhu, A. Sonntag, B. Waldvogel, C. Vannier, D. Darling, A. zur Hausen, V.G. Brunton, J. Morton, O. Sansom, J. Schuler, M.P. Stemmler, C. Herzberger, U. Hopt, T. Keck, S. Brabletz, T. Brabletz, The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11, 1487–1495 (2009)PubMedCrossRef
322.
go back to reference D. Iliopoulos, M. Lindahl-Allen, C. Polytarchou, H.A. Hirsch, P.N. Tsichlis, K. Struhl, Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39, 761–772 (2010)PubMedPubMedCentralCrossRef D. Iliopoulos, M. Lindahl-Allen, C. Polytarchou, H.A. Hirsch, P.N. Tsichlis, K. Struhl, Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39, 761–772 (2010)PubMedPubMedCentralCrossRef
323.
go back to reference H. Peinado, D. Olmeda, A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415–428 (2007)PubMedCrossRef H. Peinado, D. Olmeda, A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415–428 (2007)PubMedCrossRef
324.
325.
go back to reference N.H. Kim, H.S. Kim, X.Y. Li, I. Lee, H.S. Choi, S.E. Kang, S.Y. Cha, J.K. Ryu, D. Yoon, E.R. Fearon, R.G. Rowe, S. Lee, C.A. Maher, S.J. Weiss, J.I. Yook, A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195, 417–433 (2011)PubMedPubMedCentralCrossRef N.H. Kim, H.S. Kim, X.Y. Li, I. Lee, H.S. Choi, S.E. Kang, S.Y. Cha, J.K. Ryu, D. Yoon, E.R. Fearon, R.G. Rowe, S. Lee, C.A. Maher, S.J. Weiss, J.I. Yook, A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol 195, 417–433 (2011)PubMedPubMedCentralCrossRef
326.
go back to reference H. Siemens, R. Jackstadt, S. Hunten, M. Kaller, A. Menssen, U. Gotz, H. Hermeking, miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271 (2011)PubMedCrossRef H. Siemens, R. Jackstadt, S. Hunten, M. Kaller, A. Menssen, U. Gotz, H. Hermeking, miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271 (2011)PubMedCrossRef
327.
go back to reference J.G. Gill, E.M. Langer, R.C. Lindsley, M. Cai, T.L. Murphy, M. Kyba, K.M. Murphy, Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29, 764–776 (2011)PubMedPubMedCentralCrossRef J.G. Gill, E.M. Langer, R.C. Lindsley, M. Cai, T.L. Murphy, M. Kyba, K.M. Murphy, Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29, 764–776 (2011)PubMedPubMedCentralCrossRef
328.
go back to reference Y.N. Liu, J.J. Yin, W. Abou-Kheir, P.G. Hynes, O.M. Casey, L. Fang, M. Yi, R.M. Stephens, V. Seng, H. Sheppard-Tillman, P. Martin, K. Kelly, MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32, 296–306 (2013)PubMedCrossRef Y.N. Liu, J.J. Yin, W. Abou-Kheir, P.G. Hynes, O.M. Casey, L. Fang, M. Yi, R.M. Stephens, V. Seng, H. Sheppard-Tillman, P. Martin, K. Kelly, MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 32, 296–306 (2013)PubMedCrossRef
329.
go back to reference R. Perdigao-Henriques, F. Petrocca, G. Altschuler, M.P. Thomas, M.T. Le, S.M. Tan, W. Hide, J. Lieberman, miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158–172 (2016)PubMedCrossRef R. Perdigao-Henriques, F. Petrocca, G. Altschuler, M.P. Thomas, M.T. Le, S.M. Tan, W. Hide, J. Lieberman, miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 35, 158–172 (2016)PubMedCrossRef
330.
go back to reference S. Julien, I. Puig, E. Caretti, J. Bonaventure, L. Nelles, F. van Roy, C. Dargemont, A.G. de Herreros, A. Bellacosa, L. Larue, Activation of NF-kappaB by Akt upregulates snail expression and induces epithelium mesenchyme transition. Oncogene 26, 7445–7456 (2007)PubMedCrossRef S. Julien, I. Puig, E. Caretti, J. Bonaventure, L. Nelles, F. van Roy, C. Dargemont, A.G. de Herreros, A. Bellacosa, L. Larue, Activation of NF-kappaB by Akt upregulates snail expression and induces epithelium mesenchyme transition. Oncogene 26, 7445–7456 (2007)PubMedCrossRef
331.
go back to reference Y. Yang, Y. Li, K. Wang, Y. Wang, W. Yin, L. Li, P38/NF-kappaB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PLoS One 8, e58915 (2013)PubMedPubMedCentralCrossRef Y. Yang, Y. Li, K. Wang, Y. Wang, W. Yin, L. Li, P38/NF-kappaB/snail pathway is involved in caffeic acid-induced inhibition of cancer stem cells-like properties and migratory capacity in malignant human keratinocyte. PLoS One 8, e58915 (2013)PubMedPubMedCentralCrossRef
332.
go back to reference M. Rokavec, M.G. Oner, H. Li, R. Jackstadt, L. Jiang, D. Lodygin, M. Kaller, D. Horst, P.K. Ziegler, S. Schwitalla, J. Slotta-Huspenina, F.G. Bader, F.R. Greten, H. Hermeking, IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 124, 1853–1867 (2014)PubMedPubMedCentralCrossRef M. Rokavec, M.G. Oner, H. Li, R. Jackstadt, L. Jiang, D. Lodygin, M. Kaller, D. Horst, P.K. Ziegler, S. Schwitalla, J. Slotta-Huspenina, F.G. Bader, F.R. Greten, H. Hermeking, IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 124, 1853–1867 (2014)PubMedPubMedCentralCrossRef
333.
go back to reference U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, T. Brabletz, A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9, 582–589 (2008)PubMedPubMedCentralCrossRef U. Burk, J. Schubert, U. Wellner, O. Schmalhofer, E. Vincan, S. Spaderna, T. Brabletz, A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9, 582–589 (2008)PubMedPubMedCentralCrossRef
334.
go back to reference C.J. Chang, C.H. Chao, W. Xia, J.Y. Yang, Y. Xiong, C.W. Li, W.H. Yu, S.K. Rehman, J.L. Hsu, H.H. Lee, M. Liu, C.T. Chen, D. Yu, M.C. Hung, p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13, 317–323 (2011)PubMedPubMedCentralCrossRef C.J. Chang, C.H. Chao, W. Xia, J.Y. Yang, Y. Xiong, C.W. Li, W.H. Yu, S.K. Rehman, J.L. Hsu, H.H. Lee, M. Liu, C.T. Chen, D. Yu, M.C. Hung, p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13, 317–323 (2011)PubMedPubMedCentralCrossRef
335.
go back to reference A. Puisieux, T. Brabletz, J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16, 488–494 (2014)PubMedCrossRef A. Puisieux, T. Brabletz, J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 16, 488–494 (2014)PubMedCrossRef
337.
go back to reference Z. Zhang, X. Liu, B. Feng, N. Liu, Q. Wu, Y. Han, Y. Nie, K. Wu, Y. Shi, D. Fan, STIM1, a direct target of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer. Oncogene 34, 4808–4820 (2015)PubMedCrossRef Z. Zhang, X. Liu, B. Feng, N. Liu, Q. Wu, Y. Han, Y. Nie, K. Wu, Y. Shi, D. Fan, STIM1, a direct target of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer. Oncogene 34, 4808–4820 (2015)PubMedCrossRef
338.
go back to reference Y. Takahashi, A.R. Forrest, E. Maeno, T. Hashimoto, C.O. Daub, J. Yasuda, MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 4, e6677 (2009)PubMedPubMedCentralCrossRef Y. Takahashi, A.R. Forrest, E. Maeno, T. Hashimoto, C.O. Daub, J. Yasuda, MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 4, e6677 (2009)PubMedPubMedCentralCrossRef
339.
go back to reference M. Liu, N. Lang, X. Chen, Q. Tang, S. Liu, J. Huang, Y. Zheng, F. Bi, miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett 301, 151–160 (2011)PubMedCrossRef M. Liu, N. Lang, X. Chen, Q. Tang, S. Liu, J. Huang, Y. Zheng, F. Bi, miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett 301, 151–160 (2011)PubMedCrossRef
340.
go back to reference J.S. Imam, K. Buddavarapu, J.S. Lee-Chang, S. Ganapathy, C. Camosy, Y. Chen, M.K. Rao, MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29, 4971–4979 (2010)PubMedCrossRef J.S. Imam, K. Buddavarapu, J.S. Lee-Chang, S. Ganapathy, C. Camosy, Y. Chen, M.K. Rao, MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene 29, 4971–4979 (2010)PubMedCrossRef
341.
go back to reference R. Wang, S. Tian, H.B. Wang, D.P. Chu, J.L. Cao, H.F. Xia, X. Ma, MiR-185 is involved in human breast carcinogenesis by targeting Vegfa. FEBS Lett 588, 4438–4447 (2014)PubMedCrossRef R. Wang, S. Tian, H.B. Wang, D.P. Chu, J.L. Cao, H.F. Xia, X. Ma, MiR-185 is involved in human breast carcinogenesis by targeting Vegfa. FEBS Lett 588, 4438–4447 (2014)PubMedCrossRef
342.
go back to reference P. Yuan, X.H. He, Y.F. Rong, J. Cao, Y. Li, Y. Hu, Y. Liu, D. Li, W. Lou, M.F. Liu, KRAS-NFkappaB-YY1-miR-489 signaling axis controls pancreatic cancer metastasis. Cancer Res 77, 100–111 (2016)PubMedCrossRef P. Yuan, X.H. He, Y.F. Rong, J. Cao, Y. Li, Y. Hu, Y. Liu, D. Li, W. Lou, M.F. Liu, KRAS-NFkappaB-YY1-miR-489 signaling axis controls pancreatic cancer metastasis. Cancer Res 77, 100–111 (2016)PubMedCrossRef
343.
go back to reference J. Li, H. Wu, W. Li, L. Yin, S. Guo, X. Xu, Y. Ouyang, Z. Zhao, S. Liu, Y. Tian, Z. Tian, J. Ju, B. Ni, H. Wang, Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-kappaB signaling. Oncogene 35, 5501–5514 (2016)PubMedPubMedCentralCrossRef J. Li, H. Wu, W. Li, L. Yin, S. Guo, X. Xu, Y. Ouyang, Z. Zhao, S. Liu, Y. Tian, Z. Tian, J. Ju, B. Ni, H. Wang, Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-kappaB signaling. Oncogene 35, 5501–5514 (2016)PubMedPubMedCentralCrossRef
344.
go back to reference S.F. Tavazoie, C. Alarcon, T. Oskarsson, D. Padua, Q. Wang, P.D. Bos, W.L. Gerald, J. Massague, Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008)PubMedPubMedCentralCrossRef S.F. Tavazoie, C. Alarcon, T. Oskarsson, D. Padua, Q. Wang, P.D. Bos, W.L. Gerald, J. Massague, Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008)PubMedPubMedCentralCrossRef
345.
go back to reference T. Yokobori, S. Suzuki, N. Tanaka, T. Inose, M. Sohda, A. Sano, M. Sakai, M. Nakajima, T. Miyazaki, H. Kato, MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci 104, 48–54 (2013)PubMedCrossRef T. Yokobori, S. Suzuki, N. Tanaka, T. Inose, M. Sohda, A. Sano, M. Sakai, M. Nakajima, T. Miyazaki, H. Kato, MiR-150 is associated with poor prognosis in esophageal squamous cell carcinoma via targeting the EMT inducer ZEB1. Cancer Sci 104, 48–54 (2013)PubMedCrossRef
346.
go back to reference X. Peng, W. Guo, T. Liu, X. Wang, X.a. Tu, D. Xiong, S. Chen, Y. Lai, H. Du, G. Chen, Identification of miRs-143 and-145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PloS One 6, e20341 (2011) X. Peng, W. Guo, T. Liu, X. Wang, X.a. Tu, D. Xiong, S. Chen, Y. Lai, H. Du, G. Chen, Identification of miRs-143 and-145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PloS One 6, e20341 (2011)
348.
go back to reference N. Kosaka, H. Iguchi, Y. Yoshioka, K. Hagiwara, F. Takeshita, T. Ochiya, Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287, 1397–1405 (2012)PubMedCrossRef N. Kosaka, H. Iguchi, Y. Yoshioka, K. Hagiwara, F. Takeshita, T. Ochiya, Competitive interactions of cancer cells and normal cells via secretory microRNAs. J Biol Chem 287, 1397–1405 (2012)PubMedCrossRef
349.
go back to reference A. Lujambio, G.A. Calin, A. Villanueva, S. Ropero, M. Sanchez-Cespedes, D. Blanco, L.M. Montuenga, S. Rossi, M.S. Nicoloso, W.J. Faller, W.M. Gallagher, S.A. Eccles, C.M. Croce, M. Esteller, A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105, 13556–13561 (2008) A. Lujambio, G.A. Calin, A. Villanueva, S. Ropero, M. Sanchez-Cespedes, D. Blanco, L.M. Montuenga, S. Rossi, M.S. Nicoloso, W.J. Faller, W.M. Gallagher, S.A. Eccles, C.M. Croce, M. Esteller, A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105, 13556–13561 (2008)
350.
351.
go back to reference N. Nadiminty, R. Tummala, W. Lou, Y. Zhu, X.-B. Shi, J.X. Zou, H. Chen, J. Zhang, X. Chen, J. Luo, MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One 7, e32832 (2012)PubMedPubMedCentralCrossRef N. Nadiminty, R. Tummala, W. Lou, Y. Zhu, X.-B. Shi, J.X. Zou, H. Chen, J. Zhang, X. Chen, J. Luo, MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One 7, e32832 (2012)PubMedPubMedCentralCrossRef
352.
go back to reference B. Zhao, H. Han, J. Chen, Z. Zhang, S. Li, F. Fang, Q. Zheng, Y. Ma, J. Zhang, N. Wu, MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 342, 43–51 (2014)PubMedCrossRef B. Zhao, H. Han, J. Chen, Z. Zhang, S. Li, F. Fang, Q. Zheng, Y. Ma, J. Zhang, N. Wu, MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 342, 43–51 (2014)PubMedCrossRef
353.
go back to reference A. Esquela-Kerscher, P. Trang, J.F. Wiggins, L. Patrawala, A. Cheng, L. Ford, J.B. Weidhaas, D. Brown, A.G. Bader, F.J. Slack, The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7, 759–764 (2008)PubMedCrossRef A. Esquela-Kerscher, P. Trang, J.F. Wiggins, L. Patrawala, A. Cheng, L. Ford, J.B. Weidhaas, D. Brown, A.G. Bader, F.J. Slack, The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7, 759–764 (2008)PubMedCrossRef
355.
356.
go back to reference S. Valastyan, F. Reinhardt, N. Benaich, D. Calogrias, A.M. Szasz, Z.C. Wang, J.E. Brock, A.L. Richardson, R.A. Weinberg, A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009)PubMedPubMedCentralCrossRef S. Valastyan, F. Reinhardt, N. Benaich, D. Calogrias, A.M. Szasz, Z.C. Wang, J.E. Brock, A.L. Richardson, R.A. Weinberg, A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009)PubMedPubMedCentralCrossRef
357.
go back to reference M. Yamagishi, K. Nakano, A. Miyake, T. Yamochi, Y. Kagami, A. Tsutsumi, Y. Matsuda, A. Sato-Otsubo, S. Muto, A. Utsunomiya, K. Yamaguchi, K. Uchimaru, S. Ogawa, T. Watanabe, Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121–135 (2012)PubMedCrossRef M. Yamagishi, K. Nakano, A. Miyake, T. Yamochi, Y. Kagami, A. Tsutsumi, Y. Matsuda, A. Sato-Otsubo, S. Muto, A. Utsunomiya, K. Yamaguchi, K. Uchimaru, S. Ogawa, T. Watanabe, Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121–135 (2012)PubMedCrossRef
358.
go back to reference I. Uribesalgo, C. Ballare, L. Di Croce, Polycomb regulates NF-kappaB signaling in cancer through miRNA. Cancer Cell 21, 5–7 (2012)PubMedCrossRef I. Uribesalgo, C. Ballare, L. Di Croce, Polycomb regulates NF-kappaB signaling in cancer through miRNA. Cancer Cell 21, 5–7 (2012)PubMedCrossRef
359.
go back to reference Q. Huang, K. Gumireddy, M. Schrier, C. Le Sage, R. Nagel, S. Nair, D.A. Egan, A. Li, G. Huang, A.J. Klein-Szanto, The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10, 202–210 (2008)PubMedCrossRef Q. Huang, K. Gumireddy, M. Schrier, C. Le Sage, R. Nagel, S. Nair, D.A. Egan, A. Li, G. Huang, A.J. Klein-Szanto, The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10, 202–210 (2008)PubMedCrossRef
360.
go back to reference C. Liu, K. Kelnar, B. Liu, X. Chen, T. Calhoun-Davis, H. Li, L. Patrawala, H. Yan, C. Jeter, S. Honorio, The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17, 211–215 (2011)PubMedPubMedCentralCrossRef C. Liu, K. Kelnar, B. Liu, X. Chen, T. Calhoun-Davis, H. Li, L. Patrawala, H. Yan, C. Jeter, S. Honorio, The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17, 211–215 (2011)PubMedPubMedCentralCrossRef
361.
go back to reference S. Knoll, K. Furst, B. Kowtharapu, U. Schmitz, S. Marquardt, O. Wolkenhauer, H. Martin, B.M. Putzer, E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 15, 1315–1329 (2014)PubMedPubMedCentralCrossRef S. Knoll, K. Furst, B. Kowtharapu, U. Schmitz, S. Marquardt, O. Wolkenhauer, H. Martin, B.M. Putzer, E2F1 induces miR-224/452 expression to drive EMT through TXNIP downregulation. EMBO Rep 15, 1315–1329 (2014)PubMedPubMedCentralCrossRef
362.
go back to reference V. Kulda, M. Pesta, O. Topolcan, V. Liska, V. Treska, A. Sutnar, K. Rupert, M. Ludvikova, V. Babuska, L. Holubec, Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet 200, 154–160 (2010)PubMedCrossRef V. Kulda, M. Pesta, O. Topolcan, V. Liska, V. Treska, A. Sutnar, K. Rupert, M. Ludvikova, V. Babuska, L. Holubec, Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet 200, 154–160 (2010)PubMedCrossRef
363.
go back to reference S. Zhu, H. Wu, F. Wu, D. Nie, S. Sheng, Y.-Y. Mo, MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18, 350–359 (2008)PubMedCrossRef S. Zhu, H. Wu, F. Wu, D. Nie, S. Sheng, Y.-Y. Mo, MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18, 350–359 (2008)PubMedCrossRef
364.
go back to reference L. Ma, J. Young, H. Prabhala, E. Pan, P. Mestdagh, D. Muth, J. Teruya-Feldstein, F. Reinhardt, T.T. Onder, S. Valastyan, F. Westermann, F. Speleman, J. Vandesompele, R.A. Weinberg, miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12, 247–256 (2010)PubMedPubMedCentral L. Ma, J. Young, H. Prabhala, E. Pan, P. Mestdagh, D. Muth, J. Teruya-Feldstein, F. Reinhardt, T.T. Onder, S. Valastyan, F. Westermann, F. Speleman, J. Vandesompele, R.A. Weinberg, miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12, 247–256 (2010)PubMedPubMedCentral
365.
go back to reference G. Martello, A. Rosato, F. Ferrari, A. Manfrin, M. Cordenonsi, S. Dupont, E. Enzo, V. Guzzardo, M. Rondina, T. Spruce, A.R. Parenti, M.G. Daidone, S. Bicciato, S. Piccolo, A MicroRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010)PubMedCrossRef G. Martello, A. Rosato, F. Ferrari, A. Manfrin, M. Cordenonsi, S. Dupont, E. Enzo, V. Guzzardo, M. Rondina, T. Spruce, A.R. Parenti, M.G. Daidone, S. Bicciato, S. Piccolo, A MicroRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010)PubMedCrossRef
366.
go back to reference L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007)PubMedCrossRef L. Ma, J. Teruya-Feldstein, R.A. Weinberg, Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007)PubMedCrossRef
367.
go back to reference C.W. Li, W. Xia, L. Huo, S.O. Lim, Y. Wu, J.L. Hsu, C.H. Chao, H. Yamaguchi, N.K. Yang, Q. Ding, Y. Wang, Y.J. Lai, A.M. LaBaff, T.J. Wu, B.R. Lin, M.H. Yang, G.N. Hortobagyi, M.C. Hung, Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res 72, 1290–1300 (2012)PubMedPubMedCentralCrossRef C.W. Li, W. Xia, L. Huo, S.O. Lim, Y. Wu, J.L. Hsu, C.H. Chao, H. Yamaguchi, N.K. Yang, Q. Ding, Y. Wang, Y.J. Lai, A.M. LaBaff, T.J. Wu, B.R. Lin, M.H. Yang, G.N. Hortobagyi, M.C. Hung, Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappaB-mediated transcriptional upregulation of Twist1. Cancer Res 72, 1290–1300 (2012)PubMedPubMedCentralCrossRef
368.
go back to reference M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–3988 (2003) M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–3988 (2003)
369.
go back to reference R. Chhabra, N. Saini, MicroRNAs in cancer stem cells: current status and future directions. Tumour Biol 35, 8395–8405 (2014)PubMedCrossRef R. Chhabra, N. Saini, MicroRNAs in cancer stem cells: current status and future directions. Tumour Biol 35, 8395–8405 (2014)PubMedCrossRef
370.
go back to reference M. Garofalo, C.M. Croce, Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev 81, 53–61 (2015)PubMedCrossRef M. Garofalo, C.M. Croce, Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev 81, 53–61 (2015)PubMedCrossRef
371.
372.
go back to reference M.A. Antonyak, R.A. Cerione, Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol 1165, 147–173 (2014)PubMedCrossRef M.A. Antonyak, R.A. Cerione, Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol 1165, 147–173 (2014)PubMedCrossRef
373.
go back to reference J. Skog, T. Wurdinger, S. van Rijn, D.H. Meijer, L. Gainche, M. Sena-Esteves, W.T. Curry Jr., B.S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10, 1470–1476 (2008)PubMedPubMedCentralCrossRef J. Skog, T. Wurdinger, S. van Rijn, D.H. Meijer, L. Gainche, M. Sena-Esteves, W.T. Curry Jr., B.S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10, 1470–1476 (2008)PubMedPubMedCentralCrossRef
374.
go back to reference K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10, 619–624 (2008)PubMedCrossRef K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10, 619–624 (2008)PubMedCrossRef
375.
go back to reference M.T. Le, P. Hamar, C. Guo, E. Basar, R. Perdigao-Henriques, L. Balaj, J. Lieberman, miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124, 5109–5128 (2014)PubMedPubMedCentralCrossRef M.T. Le, P. Hamar, C. Guo, E. Basar, R. Perdigao-Henriques, L. Balaj, J. Lieberman, miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest 124, 5109–5128 (2014)PubMedPubMedCentralCrossRef
376.
go back to reference M. Fabbri, A. Paone, F. Calore, R. Galli, E. Gaudio, R. Santhanam, F. Lovat, P. Fadda, C. Mao, G.J. Nuovo, N. Zanesi, M. Crawford, G.H. Ozer, D. Wernicke, H. Alder, M.A. Caligiuri, P. Nana-Sinkam, D. Perrotti, C.M. Croce, MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109, E2110–E2116 (2012) M. Fabbri, A. Paone, F. Calore, R. Galli, E. Gaudio, R. Santhanam, F. Lovat, P. Fadda, C. Mao, G.J. Nuovo, N. Zanesi, M. Crawford, G.H. Ozer, D. Wernicke, H. Alder, M.A. Caligiuri, P. Nana-Sinkam, D. Perrotti, C.M. Croce, MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109, E2110–E2116 (2012)
378.
go back to reference J.R. Chevillet, Q. Kang, I.K. Ruf, H.A. Briggs, L.N. Vojtech, S.M. Hughes, H.H. Cheng, J.D. Arroyo, E.K. Meredith, E.N. Gallichotte, E.L. Pogosova-Agadjanyan, C. Morrissey, D.L. Stirewalt, F. Hladik, E.Y. Yu, C.S. Higano, M. Tewari, Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111, 14888–14893 (2014) J.R. Chevillet, Q. Kang, I.K. Ruf, H.A. Briggs, L.N. Vojtech, S.M. Hughes, H.H. Cheng, J.D. Arroyo, E.K. Meredith, E.N. Gallichotte, E.L. Pogosova-Agadjanyan, C. Morrissey, D.L. Stirewalt, F. Hladik, E.Y. Yu, C.S. Higano, M. Tewari, Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111, 14888–14893 (2014)
380.
go back to reference H. Ling, M. Fabbri, G.A. Calin, MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12, 847–865 (2013)PubMedPubMedCentralCrossRef H. Ling, M. Fabbri, G.A. Calin, MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12, 847–865 (2013)PubMedPubMedCentralCrossRef
381.
go back to reference D. Kim, Y.M. Sung, J. Park, S. Kim, J. Kim, H. Ha, J.Y. Bae, D. Baek, General rules for functional microRNA targeting. Nat Genet 48, 1517–1526 (2016)PubMedCrossRef D. Kim, Y.M. Sung, J. Park, S. Kim, J. Kim, H. Ha, J.Y. Bae, D. Baek, General rules for functional microRNA targeting. Nat Genet 48, 1517–1526 (2016)PubMedCrossRef
Metadata
Title
A step-by-step microRNA guide to cancer development and metastasis
Authors
Georgios S. Markopoulos
Eugenia Roupakia
Maria Tokamani
Evangelia Chavdoula
Maria Hatziapostolou
Christos Polytarchou
Kenneth B. Marcu
Athanasios G. Papavassiliou
Raphael Sandaltzopoulos
Evangelos Kolettas
Publication date
01-08-2017
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 4/2017
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-017-0341-9

Other articles of this Issue 4/2017

Cellular Oncology 4/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine