Skip to main content
Top

23-03-2024 | Type 1 Diabetes | Mini-Review

Advances in clinical research on glucagon

Authors: Ichiro Horie, Norio Abiru

Published in: Diabetology International

Login to get access

Abstract

We are now celebrating the 100th anniversary of the discovery of an important pancreatic hormone, glucagon. Glucagon is historically described as a diabetogenic hormone elevating glucose levels via increases in insulin resistance and hepatic gluconeogenesis. The more recently identified actions of glucagon include not only its pathophysiologic effects on glucose metabolism but also its significant roles in amino-acid metabolism in the liver. The possibility that abnormalities in α-cells’ secretion of glucagon in metabolic disorders are a compensatory adaptation for the maintenance of metabolic homeostasis is another current issue. However, the clinical research concerning glucagon has been considerably behind the advances in basic research due to the lack of suitable methodology for obtaining precise measurements of plasma glucagon levels in humans. The precise physiology of glucagon secretory dynamics in individuals with metabolic dysfunction (including diabetes) has been clarified since the development in 2014 of a quantitative measurement technique for glucagon. In this review, we summarize the advances in the clinical research concerning glucagon, including those of our studies and the relevant literature.
Literature
1.
go back to reference Scheen AJ, Lefebvre PJ. Glucagon, from past to present: a century of intensive research and controversies. Lancet Diabetes Endocrinol. 2023;11:129–38.PubMedCrossRef Scheen AJ, Lefebvre PJ. Glucagon, from past to present: a century of intensive research and controversies. Lancet Diabetes Endocrinol. 2023;11:129–38.PubMedCrossRef
2.
go back to reference Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, et al. 100 years of glucagon and 100 more. Diabetologia. 2023;66:1378–94.PubMedCrossRef Wewer Albrechtsen NJ, Holst JJ, Cherrington AD, Finan B, Gluud LL, et al. 100 years of glucagon and 100 more. Diabetologia. 2023;66:1378–94.PubMedCrossRef
4.
go back to reference Wewer Albrechtsen NJ, Hartmann B, Veedfald S, Windelov JA, Plamboeck A, et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: nonspecific interference or truly elevated levels? Diabetologia. 2014;57:1919–26.PubMedCrossRef Wewer Albrechtsen NJ, Hartmann B, Veedfald S, Windelov JA, Plamboeck A, et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: nonspecific interference or truly elevated levels? Diabetologia. 2014;57:1919–26.PubMedCrossRef
5.
go back to reference Miyachi A, Kobayashi M, Mieno E, Goto M, Furusawa K, et al. Accurate analytical method for human plasma glucagon levels using liquid chromatography-high resolution mass spectrometry: comparison with commercially available immunoassays. Anal Bioanal Chem. 2017;409:5911–8.PubMedCrossRef Miyachi A, Kobayashi M, Mieno E, Goto M, Furusawa K, et al. Accurate analytical method for human plasma glucagon levels using liquid chromatography-high resolution mass spectrometry: comparison with commercially available immunoassays. Anal Bioanal Chem. 2017;409:5911–8.PubMedCrossRef
6.
go back to reference Katahira T, Kanazawa A, Shinohara M, Koshibu M, Kaga H, et al. Postprandial plasma glucagon kinetics in type 2 diabetes mellitus: comparison of immunoassay and mass spectrometry. J Endocr Soc. 2019;3:42–51.PubMedCrossRef Katahira T, Kanazawa A, Shinohara M, Koshibu M, Kaga H, et al. Postprandial plasma glucagon kinetics in type 2 diabetes mellitus: comparison of immunoassay and mass spectrometry. J Endocr Soc. 2019;3:42–51.PubMedCrossRef
7.
go back to reference Muller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med. 1970;283:109–15.PubMedCrossRef Muller WA, Faloona GR, Aguilar-Parada E, Unger RH. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N Engl J Med. 1970;283:109–15.PubMedCrossRef
8.
go back to reference Holst JJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK. Glucagon and amino acids are linked in a mutual feedback cycle: the liver-alpha-cell axis. Diabetes. 2017;66:235–40.PubMedCrossRef Holst JJ, Wewer Albrechtsen NJ, Pedersen J, Knop FK. Glucagon and amino acids are linked in a mutual feedback cycle: the liver-alpha-cell axis. Diabetes. 2017;66:235–40.PubMedCrossRef
9.
go back to reference Kawai K, Murayama Y, Okuda Y, Yamashita K. Postprandial glucose, insulin and glucagon responses to meals with different nutrient compositions in non-insulin-dependent diabetes mellitus. Endocrinol Jpn. 1987;34:745–53.PubMedCrossRef Kawai K, Murayama Y, Okuda Y, Yamashita K. Postprandial glucose, insulin and glucagon responses to meals with different nutrient compositions in non-insulin-dependent diabetes mellitus. Endocrinol Jpn. 1987;34:745–53.PubMedCrossRef
10.
go back to reference Yabe D, Kuroe A, Watanabe K, Iwasaki M, Hamasaki A, et al. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. J Diabetes Complicat. 2015;29:413–21.CrossRef Yabe D, Kuroe A, Watanabe K, Iwasaki M, Hamasaki A, et al. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. J Diabetes Complicat. 2015;29:413–21.CrossRef
11.
go back to reference Matsuo T, Miyagawa J, Kusunoki Y, Miuchi M, Ikawa T, et al. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. J Diabetes Investig. 2016;7:324–31.PubMedCrossRef Matsuo T, Miyagawa J, Kusunoki Y, Miuchi M, Ikawa T, et al. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. J Diabetes Investig. 2016;7:324–31.PubMedCrossRef
12.
go back to reference Kobayashi M, Satoh H, Matsuo T, Kusunoki Y, Tokushima M, et al. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr J. 2020;67:903–22.PubMedCrossRef Kobayashi M, Satoh H, Matsuo T, Kusunoki Y, Tokushima M, et al. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr J. 2020;67:903–22.PubMedCrossRef
13.
go back to reference Ichikawa R, Takano K, Fujimoto K, Kobayashi M, Kitamura T, Shichiri M, Miyatsuka T. Robust increase in glucagon secretion after oral protein intake, but not after glucose or lipid intake in Japanese people without diabetes. J Diabetes Investig. 2023;14:1172–4.PubMedPubMedCentralCrossRef Ichikawa R, Takano K, Fujimoto K, Kobayashi M, Kitamura T, Shichiri M, Miyatsuka T. Robust increase in glucagon secretion after oral protein intake, but not after glucose or lipid intake in Japanese people without diabetes. J Diabetes Investig. 2023;14:1172–4.PubMedPubMedCentralCrossRef
14.
go back to reference Horie I, Abiru N, Eto M, Sako A, Akeshima J, et al. Sex differences in insulin and glucagon responses for glucose homeostasis in young healthy Japanese adults. J Diabetes Investig. 2018;9:1283–7.PubMedPubMedCentralCrossRef Horie I, Abiru N, Eto M, Sako A, Akeshima J, et al. Sex differences in insulin and glucagon responses for glucose homeostasis in young healthy Japanese adults. J Diabetes Investig. 2018;9:1283–7.PubMedPubMedCentralCrossRef
15.
go back to reference Faerch K, Borch-Johnsen K, Vaag A, Jorgensen T, Witte DR. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study. Diabetologia. 2010;53:858–65.PubMedCrossRef Faerch K, Borch-Johnsen K, Vaag A, Jorgensen T, Witte DR. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study. Diabetologia. 2010;53:858–65.PubMedCrossRef
16.
go back to reference Sicree RA, Zimmet PZ, Dunstan DW, Cameron AJ, Welborn TA, et al. Differences in height explain gender differences in the response to the oral glucose tolerance test—the AusDiab study. Diabet Med. 2008;25:296–302.PubMedCrossRef Sicree RA, Zimmet PZ, Dunstan DW, Cameron AJ, Welborn TA, et al. Differences in height explain gender differences in the response to the oral glucose tolerance test—the AusDiab study. Diabet Med. 2008;25:296–302.PubMedCrossRef
17.
go back to reference Rathmann W, Strassburger K, Giani G, Doring A, Meisinger C. Differences in height explain gender differences in the response to the oral glucose tolerance test. Diabet Med. 2008;25:1374–5.PubMedCrossRef Rathmann W, Strassburger K, Giani G, Doring A, Meisinger C. Differences in height explain gender differences in the response to the oral glucose tolerance test. Diabet Med. 2008;25:1374–5.PubMedCrossRef
18.
go back to reference Faerch K, Pacini G, Nolan JJ, Hansen T, Tura A, et al. Impact of glucose tolerance status, sex, and body size on glucose absorption patterns during OGTTs. Diabetes Care. 2013;36:3691–7.PubMedPubMedCentralCrossRef Faerch K, Pacini G, Nolan JJ, Hansen T, Tura A, et al. Impact of glucose tolerance status, sex, and body size on glucose absorption patterns during OGTTs. Diabetes Care. 2013;36:3691–7.PubMedPubMedCentralCrossRef
19.
go back to reference Qiao Q, Hu G, Tuomilehto J, Nakagami T, Balkau B, et al. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care. 2003;26:1770–80.PubMedCrossRef Qiao Q, Hu G, Tuomilehto J, Nakagami T, Balkau B, et al. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care. 2003;26:1770–80.PubMedCrossRef
20.
go back to reference Anderwald C, Gastaldelli A, Tura A, Krebs M, Promintzer-Schifferl M, et al. Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J Clin Endocrinol Metab. 2011;96:515–24.PubMedCrossRef Anderwald C, Gastaldelli A, Tura A, Krebs M, Promintzer-Schifferl M, et al. Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J Clin Endocrinol Metab. 2011;96:515–24.PubMedCrossRef
21.
go back to reference Knop FK, Aaboe K, Vilsboll T, Volund A, Holst JJ, et al. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes Metab. 2012;14:500–10.PubMedCrossRef Knop FK, Aaboe K, Vilsboll T, Volund A, Holst JJ, et al. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes Metab. 2012;14:500–10.PubMedCrossRef
22.
go back to reference Wewer Albrechtsen NJ, Junker AE, Christensen M, Haedersdal S, Wibrand F, et al. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes. Am J Physiol Gastrointest Liver Physiol. 2018;314:G91–6.PubMedCrossRef Wewer Albrechtsen NJ, Junker AE, Christensen M, Haedersdal S, Wibrand F, et al. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes. Am J Physiol Gastrointest Liver Physiol. 2018;314:G91–6.PubMedCrossRef
23.
go back to reference Morita Y, Ohno H, Kobuke K, Oki K, Yoneda M. Variation in plasma glucagon levels according to obesity status in Japanese Americans with normal glucose tolerance. Endocr J. 2021;68:95–102.PubMedCrossRef Morita Y, Ohno H, Kobuke K, Oki K, Yoneda M. Variation in plasma glucagon levels according to obesity status in Japanese Americans with normal glucose tolerance. Endocr J. 2021;68:95–102.PubMedCrossRef
24.
go back to reference Junker AE, Gluud L, Holst JJ, Knop FK, Vilsboll T. Diabetic and nondiabetic patients with nonalcoholic fatty liver disease have an impaired incretin effect and fasting hyperglucagonaemia. J Intern Med. 2016;279:485–93.PubMedCrossRef Junker AE, Gluud L, Holst JJ, Knop FK, Vilsboll T. Diabetic and nondiabetic patients with nonalcoholic fatty liver disease have an impaired incretin effect and fasting hyperglucagonaemia. J Intern Med. 2016;279:485–93.PubMedCrossRef
25.
go back to reference Suppli MP, Lund A, Bagger JI, Vilsboll T, Knop FK. Involvement of steatosis-induced glucagon resistance in hyperglucagonaemia. Med Hypotheses. 2016;86:100–3.PubMedCrossRef Suppli MP, Lund A, Bagger JI, Vilsboll T, Knop FK. Involvement of steatosis-induced glucagon resistance in hyperglucagonaemia. Med Hypotheses. 2016;86:100–3.PubMedCrossRef
26.
go back to reference Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sorensen M, Suppli MP, et al. The liver-alpha-cell axis and type 2 diabetes. Endocr Rev. 2019;40:1353–66.PubMedCrossRef Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sorensen M, Suppli MP, et al. The liver-alpha-cell axis and type 2 diabetes. Endocr Rev. 2019;40:1353–66.PubMedCrossRef
27.
go back to reference Suppli MP, Bagger JI, Lund A, Demant M, van Hall G, et al. Glucagon resistance at the level of amino acid turnover in obese subjects with hepatic steatosis. Diabetes. 2020;69:1090–9.PubMedCrossRef Suppli MP, Bagger JI, Lund A, Demant M, van Hall G, et al. Glucagon resistance at the level of amino acid turnover in obese subjects with hepatic steatosis. Diabetes. 2020;69:1090–9.PubMedCrossRef
28.
go back to reference Wewer Albrechtsen NJ. Glucagon receptor signaling in metabolic diseases. Peptides. 2018;100:42–7.PubMedCrossRef Wewer Albrechtsen NJ. Glucagon receptor signaling in metabolic diseases. Peptides. 2018;100:42–7.PubMedCrossRef
29.
go back to reference Wewer Albrechtsen NJ, Faerch K, Jensen TM, Witte DR, Pedersen J, et al. Evidence of a liver-alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia. 2018;61:671–80.PubMedCrossRef Wewer Albrechtsen NJ, Faerch K, Jensen TM, Witte DR, Pedersen J, et al. Evidence of a liver-alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia. 2018;61:671–80.PubMedCrossRef
30.
go back to reference Kjeldsen SAS, Thomsen MN, Skytte MJ, Samkani A, Richter MM, et al. Markers of glucagon resistance improve with reductions in hepatic steatosis and body weight in type 2 diabetes. J Endocr Soc. 2023;7:bvad122.PubMedPubMedCentralCrossRef Kjeldsen SAS, Thomsen MN, Skytte MJ, Samkani A, Richter MM, et al. Markers of glucagon resistance improve with reductions in hepatic steatosis and body weight in type 2 diabetes. J Endocr Soc. 2023;7:bvad122.PubMedPubMedCentralCrossRef
31.
go back to reference Bagger JI, Knop FK, Lund A, Holst JJ, Vilsboll T. Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals. Diabetologia. 2014;57:1720–5.PubMedCrossRef Bagger JI, Knop FK, Lund A, Holst JJ, Vilsboll T. Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals. Diabetologia. 2014;57:1720–5.PubMedCrossRef
32.
go back to reference Ichikawa R, Takano K, Fujimoto K, Motomiya T, Kobayashi M, et al. Basal glucagon hypersecretion and response to oral glucose load in prediabetes and mild type 2 diabetes. Endocr J. 2019;66:663–75.PubMedCrossRef Ichikawa R, Takano K, Fujimoto K, Motomiya T, Kobayashi M, et al. Basal glucagon hypersecretion and response to oral glucose load in prediabetes and mild type 2 diabetes. Endocr J. 2019;66:663–75.PubMedCrossRef
33.
go back to reference Gar C, Rottenkolber M, Sacco V, Moschko S, Banning F, et al. Patterns of plasma glucagon dynamics do not match metabolic phenotypes in young women. J Clin Endocrinol Metab. 2018;103:972–82.PubMedCrossRef Gar C, Rottenkolber M, Sacco V, Moschko S, Banning F, et al. Patterns of plasma glucagon dynamics do not match metabolic phenotypes in young women. J Clin Endocrinol Metab. 2018;103:972–82.PubMedCrossRef
34.
go back to reference Shah P, Vella A, Basu A, Basu R, Schwenk WF, et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2000;85:4053–9.PubMed Shah P, Vella A, Basu A, Basu R, Schwenk WF, et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2000;85:4053–9.PubMed
35.
36.
39.
go back to reference Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;165:1667–72.PubMedCrossRef Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women. Am J Obstet Gynecol. 1991;165:1667–72.PubMedCrossRef
40.
go back to reference Kuhl C. Etiology and pathogenesis of gestational diabetes. Diabetes Care. 1998;21(Suppl 2):B19–26.PubMed Kuhl C. Etiology and pathogenesis of gestational diabetes. Diabetes Care. 1998;21(Suppl 2):B19–26.PubMed
41.
go back to reference Grigorakis SI, Alevizaki M, Beis C, Anastasiou E, Alevizaki CC, et al. Hormonal parameters in gestational diabetes mellitus during the third trimester: high glucagon levels. Gynecol Obstet Invest. 2000;49:106–9.PubMedCrossRef Grigorakis SI, Alevizaki M, Beis C, Anastasiou E, Alevizaki CC, et al. Hormonal parameters in gestational diabetes mellitus during the third trimester: high glucagon levels. Gynecol Obstet Invest. 2000;49:106–9.PubMedCrossRef
42.
go back to reference Beis C, Grigorakis SI, Philippou G, Alevizaki M, Anastasiou E. Lack of suppression of plasma glucagon levels in late pregnancy persists postpartum only in women with previous gestational diabetes mellitus. Acta Diabetol. 2005;42:31–5.PubMedCrossRef Beis C, Grigorakis SI, Philippou G, Alevizaki M, Anastasiou E. Lack of suppression of plasma glucagon levels in late pregnancy persists postpartum only in women with previous gestational diabetes mellitus. Acta Diabetol. 2005;42:31–5.PubMedCrossRef
43.
go back to reference Bonde L, Vilsboll T, Nielsen T, Bagger JI, Svare JA, et al. Reduced postprandial GLP-1 responses in women with gestational diabetes mellitus. Diabetes Obes Metab. 2013;15:713–20.PubMedCrossRef Bonde L, Vilsboll T, Nielsen T, Bagger JI, Svare JA, et al. Reduced postprandial GLP-1 responses in women with gestational diabetes mellitus. Diabetes Obes Metab. 2013;15:713–20.PubMedCrossRef
44.
go back to reference Horie I, Haraguchi A, Ito A, Nozaki A, Natsuda S, et al. Impaired early-phase suppression of glucagon secretion after glucose load is associated with insulin requirement during pregnancy in gestational diabetes. J Diabetes Investig. 2020;11:232–40.PubMedCrossRef Horie I, Haraguchi A, Ito A, Nozaki A, Natsuda S, et al. Impaired early-phase suppression of glucagon secretion after glucose load is associated with insulin requirement during pregnancy in gestational diabetes. J Diabetes Investig. 2020;11:232–40.PubMedCrossRef
45.
go back to reference Committee on Practice B-O. ACOG Practice Bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol. 2018;131:e49–64.CrossRef Committee on Practice B-O. ACOG Practice Bulletin No. 190: Gestational diabetes mellitus. Obstet Gynecol. 2018;131:e49–64.CrossRef
47.
go back to reference Shigeno R, Horie I, Miwa M, Ito A, Haraguchi A, et al. Bihormonal dysregulation of insulin and glucagon contributes to glucose intolerance development at one year post-delivery in women with gestational diabetes: a prospective cohort study using an early postpartum 75-g glucose tolerance test. Endocr J. 2021;68:919–31.PubMedCrossRef Shigeno R, Horie I, Miwa M, Ito A, Haraguchi A, et al. Bihormonal dysregulation of insulin and glucagon contributes to glucose intolerance development at one year post-delivery in women with gestational diabetes: a prospective cohort study using an early postpartum 75-g glucose tolerance test. Endocr J. 2021;68:919–31.PubMedCrossRef
48.
go back to reference Kramer CK, Borgono CA, Van Nostrand P, Retnakaran R, Zinman B. Glucagon response to oral glucose challenge in type 1 diabetes: lack of impact of euglycemia. Diabetes Care. 2014;37:1076–82.PubMedCrossRef Kramer CK, Borgono CA, Van Nostrand P, Retnakaran R, Zinman B. Glucagon response to oral glucose challenge in type 1 diabetes: lack of impact of euglycemia. Diabetes Care. 2014;37:1076–82.PubMedCrossRef
49.
go back to reference Komada H, Hirota Y, Sakaguchi K, Okuno Y, Ogawa W, et al. Impaired glucagon secretion in patients with fulminant type 1 diabetes mellitus. Endocrine. 2019;63:476–9.PubMedCrossRef Komada H, Hirota Y, Sakaguchi K, Okuno Y, Ogawa W, et al. Impaired glucagon secretion in patients with fulminant type 1 diabetes mellitus. Endocrine. 2019;63:476–9.PubMedCrossRef
50.
go back to reference Kielgast U, Holst JJ, Madsbad S. Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual beta-cell function. Diabetes. 2011;60:1599–607.PubMedPubMedCentralCrossRef Kielgast U, Holst JJ, Madsbad S. Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual beta-cell function. Diabetes. 2011;60:1599–607.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Akturk HK, Rewers A, Joseph H, Schneider N, Garg SK. Possible ways to improve postprandial glucose control in type 1 diabetes. Diabetes Technol Ther. 2018;20:S224–32.PubMedCrossRef Akturk HK, Rewers A, Joseph H, Schneider N, Garg SK. Possible ways to improve postprandial glucose control in type 1 diabetes. Diabetes Technol Ther. 2018;20:S224–32.PubMedCrossRef
53.
go back to reference Hosokawa Y, Kozawa J, Nishizawa H, Kawamori D, Maeda N, et al. Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon. 2019;5: e01715.PubMedPubMedCentralCrossRef Hosokawa Y, Kozawa J, Nishizawa H, Kawamori D, Maeda N, et al. Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon. 2019;5: e01715.PubMedPubMedCentralCrossRef
55.
go back to reference Sherr J, Tsalikian E, Fox L, Buckingham B, Weinzimer S, et al. Evolution of abnormal plasma glucagon responses to mixed-meal feedings in youth with type 1 diabetes during the first 2 years after diagnosis. Diabetes Care. 2014;37:1741–4.PubMedPubMedCentralCrossRef Sherr J, Tsalikian E, Fox L, Buckingham B, Weinzimer S, et al. Evolution of abnormal plasma glucagon responses to mixed-meal feedings in youth with type 1 diabetes during the first 2 years after diagnosis. Diabetes Care. 2014;37:1741–4.PubMedPubMedCentralCrossRef
56.
go back to reference Fredheim S, Andersen ML, Porksen S, Nielsen LB, Pipper C, et al. The influence of glucagon on postprandial hyperglycaemia in children 5 years after onset of type 1 diabetes. Diabetologia. 2015;58:828–34.PubMedCrossRef Fredheim S, Andersen ML, Porksen S, Nielsen LB, Pipper C, et al. The influence of glucagon on postprandial hyperglycaemia in children 5 years after onset of type 1 diabetes. Diabetologia. 2015;58:828–34.PubMedCrossRef
57.
go back to reference Li K, Song WJ, Wu X, Gu DY, Zang P, et al. Associations of serum glucagon levels with glycemic variability in type 1 diabetes with different disease durations. Endocrine. 2018;61:473–81.PubMedCrossRef Li K, Song WJ, Wu X, Gu DY, Zang P, et al. Associations of serum glucagon levels with glycemic variability in type 1 diabetes with different disease durations. Endocrine. 2018;61:473–81.PubMedCrossRef
58.
go back to reference Thivolet C, Marchand L, Chikh K. Inappropriate glucagon and GLP-1 secretion in individuals with long-standing type 1 diabetes: effects of residual C-peptide. Diabetologia. 2019;62:593–7.PubMedCrossRef Thivolet C, Marchand L, Chikh K. Inappropriate glucagon and GLP-1 secretion in individuals with long-standing type 1 diabetes: effects of residual C-peptide. Diabetologia. 2019;62:593–7.PubMedCrossRef
59.
go back to reference Ito A, Horie I, Miwa M, Sako A, Niri T, et al. Impact of glucagon response on early postprandial glucose excursions irrespective of residual beta-cell function in type 1 diabetes: a cross-sectional study using a mixed meal tolerance test. J Diabetes Investig. 2021;12:1367–76.PubMedPubMedCentralCrossRef Ito A, Horie I, Miwa M, Sako A, Niri T, et al. Impact of glucagon response on early postprandial glucose excursions irrespective of residual beta-cell function in type 1 diabetes: a cross-sectional study using a mixed meal tolerance test. J Diabetes Investig. 2021;12:1367–76.PubMedPubMedCentralCrossRef
60.
go back to reference Takahashi N, Chujo D. Response to “preserved” glucagon secretion in fulminant type 1 diabetes. J Diabetes Investig. 2019;10:188–9.PubMedCrossRef Takahashi N, Chujo D. Response to “preserved” glucagon secretion in fulminant type 1 diabetes. J Diabetes Investig. 2019;10:188–9.PubMedCrossRef
61.
go back to reference Sayama K, Imagawa A, Okita K, Uno S, Moriwaki M, et al. Pancreatic beta and alpha cells are both decreased in patients with fulminant type 1 diabetes: a morphometrical assessment. Diabetologia. 2005;48:1560–4.PubMedCrossRef Sayama K, Imagawa A, Okita K, Uno S, Moriwaki M, et al. Pancreatic beta and alpha cells are both decreased in patients with fulminant type 1 diabetes: a morphometrical assessment. Diabetologia. 2005;48:1560–4.PubMedCrossRef
62.
go back to reference Kawamori D, Katakami N, Takahara M, Miyashita K, Sakamoto F, et al. Dysregulated plasma glucagon levels in Japanese young adult type 1 diabetes patients. J Diabetes Investig. 2019;10:62–6.PubMedCrossRef Kawamori D, Katakami N, Takahara M, Miyashita K, Sakamoto F, et al. Dysregulated plasma glucagon levels in Japanese young adult type 1 diabetes patients. J Diabetes Investig. 2019;10:62–6.PubMedCrossRef
64.
65.
go back to reference Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, et al. The relationship between glucose and the liver-alpha cell axis—a systematic review. Front Endocrinol. 2022;13:1061682.CrossRef Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, et al. The relationship between glucose and the liver-alpha cell axis—a systematic review. Front Endocrinol. 2022;13:1061682.CrossRef
68.
go back to reference Mitrakou A, Fanelli C, Veneman T, Perriello G, Calderone S, et al. Reversibility of unawareness of hypoglycemia in patients with insulinomas. N Engl J Med. 1993;329:834–9.PubMedCrossRef Mitrakou A, Fanelli C, Veneman T, Perriello G, Calderone S, et al. Reversibility of unawareness of hypoglycemia in patients with insulinomas. N Engl J Med. 1993;329:834–9.PubMedCrossRef
69.
go back to reference Arbelaez AM, Xing D, Cryer PE, Kollman C, Beck RW, et al. Blunted glucagon but not epinephrine responses to hypoglycemia occurs in youth with less than 1 yr duration of type 1 diabetes mellitus. Pediatr Diabetes. 2014;15:127–34.PubMedCrossRef Arbelaez AM, Xing D, Cryer PE, Kollman C, Beck RW, et al. Blunted glucagon but not epinephrine responses to hypoglycemia occurs in youth with less than 1 yr duration of type 1 diabetes mellitus. Pediatr Diabetes. 2014;15:127–34.PubMedCrossRef
70.
go back to reference Sherr J, Xing D, Ruedy KJ, Beck RW, Kollman C, et al. Lack of association between residual insulin production and glucagon response to hypoglycemia in youth with short duration of type 1 diabetes. Diabetes Care. 2013;36:1470–6.PubMedPubMedCentralCrossRef Sherr J, Xing D, Ruedy KJ, Beck RW, Kollman C, et al. Lack of association between residual insulin production and glucagon response to hypoglycemia in youth with short duration of type 1 diabetes. Diabetes Care. 2013;36:1470–6.PubMedPubMedCentralCrossRef
72.
go back to reference Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes. 2010;59:1765–70.PubMedPubMedCentralCrossRef Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes. 2010;59:1765–70.PubMedPubMedCentralCrossRef
73.
go back to reference Balas B, Baig MR, Watson C, Dunning BE, Ligueros-Saylan M, et al. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. J Clin Endocrinol Metab. 2007;92:1249–55.PubMedCrossRef Balas B, Baig MR, Watson C, Dunning BE, Ligueros-Saylan M, et al. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. J Clin Endocrinol Metab. 2007;92:1249–55.PubMedCrossRef
74.
go back to reference Kuhadiya ND, Dhindsa S, Ghanim H, Mehta A, Makdissi A, et al. Addition of liraglutide to insulin in patients with type 1 diabetes: a randomized placebo-controlled clinical trial of 12 weeks. Diabetes Care. 2016;39:1027–35.PubMedPubMedCentralCrossRef Kuhadiya ND, Dhindsa S, Ghanim H, Mehta A, Makdissi A, et al. Addition of liraglutide to insulin in patients with type 1 diabetes: a randomized placebo-controlled clinical trial of 12 weeks. Diabetes Care. 2016;39:1027–35.PubMedPubMedCentralCrossRef
75.
go back to reference Redondo MJ, Bacha F. GLP-1 receptor agonist as adjuvant therapy in type 1 diabetes: no apparent benefit for beta-cell function or glycemia. J Clin Endocrinol Metab. 2020;105:e3000–2.PubMedPubMedCentralCrossRef Redondo MJ, Bacha F. GLP-1 receptor agonist as adjuvant therapy in type 1 diabetes: no apparent benefit for beta-cell function or glycemia. J Clin Endocrinol Metab. 2020;105:e3000–2.PubMedPubMedCentralCrossRef
76.
go back to reference Riddle MC, Nahra R, Han J, Castle J, Hanavan K, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: a randomized, two-way crossover study. Diabetes Care. 2018;41:2346–52.PubMedCrossRef Riddle MC, Nahra R, Han J, Castle J, Hanavan K, et al. Control of postprandial hyperglycemia in type 1 diabetes by 24-hour fixed-dose coadministration of pramlintide and regular human insulin: a randomized, two-way crossover study. Diabetes Care. 2018;41:2346–52.PubMedCrossRef
77.
go back to reference Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.PubMedPubMedCentralCrossRef Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.PubMedPubMedCentralCrossRef
78.
go back to reference Suga T, Kikuchi O, Kobayashi M, Matsui S, Yokota-Hashimoto H, et al. SGLT1 in pancreatic alpha cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol Metab. 2019;19:1–12.PubMedCrossRef Suga T, Kikuchi O, Kobayashi M, Matsui S, Yokota-Hashimoto H, et al. SGLT1 in pancreatic alpha cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol Metab. 2019;19:1–12.PubMedCrossRef
79.
go back to reference Committee on the Proper Use of SI. Recommendations on the proper use of SGLT2 inhibitors. J Diabetes Investig. 2020;11:257–61.CrossRef Committee on the Proper Use of SI. Recommendations on the proper use of SGLT2 inhibitors. J Diabetes Investig. 2020;11:257–61.CrossRef
80.
go back to reference Nakamura Y, Horie I, Tashiro S, Kobayashi M, Kitamura T, et al. Study of glucagon response and its association with glycemic control and variability after administration of ipragliflozin as an adjunctive to insulin treatment in patients with type 1 diabetes (Suglat-AID): a protocol for single-arm, multicenter, open-label, prospective exploratory trial. Med Case Rep Study Protoc. 2021;2: e0135.CrossRef Nakamura Y, Horie I, Tashiro S, Kobayashi M, Kitamura T, et al. Study of glucagon response and its association with glycemic control and variability after administration of ipragliflozin as an adjunctive to insulin treatment in patients with type 1 diabetes (Suglat-AID): a protocol for single-arm, multicenter, open-label, prospective exploratory trial. Med Case Rep Study Protoc. 2021;2: e0135.CrossRef
81.
go back to reference Lefebvre PJ, Paquot N, Scheen AJ. Inhibiting or antagonizing glucagon: making progress in diabetes care. Diabetes Obes Metab. 2015;17:720–5.PubMedCrossRef Lefebvre PJ, Paquot N, Scheen AJ. Inhibiting or antagonizing glucagon: making progress in diabetes care. Diabetes Obes Metab. 2015;17:720–5.PubMedCrossRef
82.
go back to reference Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care. 2016;39:1241–9.PubMedCrossRef Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care. 2016;39:1241–9.PubMedCrossRef
83.
go back to reference Yabe D, Kawamori D, Seino Y, Oura T, Takeuchi M. Change in pharmacodynamic variables following once-weekly tirzepatide treatment versus dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono substudy). Diabetes Obes Metab. 2023;25:398–406.PubMedCrossRef Yabe D, Kawamori D, Seino Y, Oura T, Takeuchi M. Change in pharmacodynamic variables following once-weekly tirzepatide treatment versus dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono substudy). Diabetes Obes Metab. 2023;25:398–406.PubMedCrossRef
84.
go back to reference Heise T, Mari A, DeVries JH, Urva S, Li J, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022;10:418–29.PubMedCrossRef Heise T, Mari A, DeVries JH, Urva S, Li J, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022;10:418–29.PubMedCrossRef
85.
go back to reference Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet. 2018;391:2607–18.PubMedCrossRef Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet. 2018;391:2607–18.PubMedCrossRef
86.
go back to reference Tillner J, Posch MG, Wagner F, Teichert L, Hijazi Y, et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes Metab. 2019;21:120–8.PubMedCrossRef Tillner J, Posch MG, Wagner F, Teichert L, Hijazi Y, et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes Metab. 2019;21:120–8.PubMedCrossRef
88.
go back to reference Cegla J, Troke RC, Jones B, Tharakan G, Kenkre J, et al. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes. 2014;63:3711–20.PubMedCrossRef Cegla J, Troke RC, Jones B, Tharakan G, Kenkre J, et al. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes. 2014;63:3711–20.PubMedCrossRef
89.
go back to reference Finan B, Capozzi ME, Campbell JE. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes. 2020;69:532–41.PubMedCrossRef Finan B, Capozzi ME, Campbell JE. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes. 2020;69:532–41.PubMedCrossRef
Metadata
Title
Advances in clinical research on glucagon
Authors
Ichiro Horie
Norio Abiru
Publication date
23-03-2024
Publisher
Springer Nature Singapore
Published in
Diabetology International
Print ISSN: 2190-1678
Electronic ISSN: 2190-1686
DOI
https://doi.org/10.1007/s13340-024-00705-w
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.