Skip to main content
Top
Published in: Neurotherapeutics 4/2015

01-10-2015 | Review

Endocannabinoid Signaling in Autism

Authors: Bhismadev Chakrabarti, Antonio Persico, Natalia Battista, Mauro Maccarrone

Published in: Neurotherapeutics | Issue 4/2015

Login to get access

Abstract

Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions). In the last 25 years a good deal of information has been accumulated on the main components of the “endocannabinoid (eCB) system”, a rather complex ensemble of lipid signals (“endocannabinoids”), their target receptors, purported transporters, and metabolic enzymes. It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders. Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561-564.PubMedCrossRef Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561-564.PubMedCrossRef
3.
go back to reference Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T. Programming and reprogramming neural cells by (endo-)cannabinoids: from physiological rules to emerging therapies. Nature Rev Neurosci 2014;15:786-801.CrossRef Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T. Programming and reprogramming neural cells by (endo-)cannabinoids: from physiological rules to emerging therapies. Nature Rev Neurosci 2014;15:786-801.CrossRef
4.
go back to reference Maccarrone M, Bab I, Bíró T, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015;36:277-296.PubMedCrossRef Maccarrone M, Bab I, Bíró T, et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015;36:277-296.PubMedCrossRef
5.
go back to reference Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci 2010;35:601-608.PubMedCrossRef Maccarrone M, Dainese E, Oddi S. Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci 2010;35:601-608.PubMedCrossRef
6.
go back to reference Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013;280:1874-1894.PubMedCrossRef Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013;280:1874-1894.PubMedCrossRef
7.
go back to reference Fezza F, Bari M, Florio R, Talamonti E, Feole M, Maccarrone M. Endocannabinoids, related compounds and their metabolic routes. Molecules 2014;19:17078-17106.PubMedCrossRef Fezza F, Bari M, Florio R, Talamonti E, Feole M, Maccarrone M. Endocannabinoids, related compounds and their metabolic routes. Molecules 2014;19:17078-17106.PubMedCrossRef
8.
go back to reference Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 2004;279:5298-5305.PubMedCrossRef Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 2004;279:5298-5305.PubMedCrossRef
9.
go back to reference Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996;384:83-87.PubMedCrossRef Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996;384:83-87.PubMedCrossRef
10.
go back to reference Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 2006;281:36569-36578.PubMedCrossRef Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 2006;281:36569-36578.PubMedCrossRef
11.
go back to reference Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 2005;280:11082-11092.PubMedCrossRef Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N. Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 2005;280:11082-11092.PubMedCrossRef
12.
go back to reference Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010;49:299-315.PubMedCrossRef Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010;49:299-315.PubMedCrossRef
13.
go back to reference Bisogno T, Howell F, Williams G, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 2003;163:463-468.PubMedCentralPubMedCrossRef Bisogno T, Howell F, Williams G, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 2003;163:463-468.PubMedCentralPubMedCrossRef
14.
go back to reference Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 2002;121:149-158.PubMedCrossRef Dinh TP, Freund TF, Piomelli D. A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 2002;121:149-158.PubMedCrossRef
15.
go back to reference Kozak KR, Crews BC, Morrow JD, et al. Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem 2002;277:44877-44885.PubMedCrossRef Kozak KR, Crews BC, Morrow JD, et al. Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem 2002;277:44877-44885.PubMedCrossRef
16.
go back to reference Kozak KR, Crews BC, Ray JL, Tai HH, Morrow JD, Marnett LJ. Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J Biol Chem 2001;276:36993-36998.PubMedCrossRef Kozak KR, Crews BC, Ray JL, Tai HH, Morrow JD, Marnett LJ. Metabolism of prostaglandin glycerol esters and prostaglandin ethanolamides in vitro and in vivo. J Biol Chem 2001;276:36993-36998.PubMedCrossRef
17.
go back to reference Van der Stelt M, van Kuik JA, Bari M, et al. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J Med Chem 2002;45:3709-3720.PubMedCrossRef Van der Stelt M, van Kuik JA, Bari M, et al. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J Med Chem 2002;45:3709-3720.PubMedCrossRef
18.
go back to reference Chen JK, Chen J, Imig JD, et al. Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J Biol Chem 2008;283:24514-24524.PubMedCentralPubMedCrossRef Chen JK, Chen J, Imig JD, et al. Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J Biol Chem 2008;283:24514-24524.PubMedCentralPubMedCrossRef
20.
go back to reference Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 2013;280:1895-1904.PubMedCrossRef Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 2013;280:1895-1904.PubMedCrossRef
21.
go back to reference Ehehalt R, Füllekrug J, Pohl J, Ring A, Herrmann T, Stremmel W. Translocation of long chain fatty acids across the plasma membrane – lipid rafts and fatty acid transport proteins. Mol Cell Biochem 2006;284:135-140.PubMedCrossRef Ehehalt R, Füllekrug J, Pohl J, Ring A, Herrmann T, Stremmel W. Translocation of long chain fatty acids across the plasma membrane – lipid rafts and fatty acid transport proteins. Mol Cell Biochem 2006;284:135-140.PubMedCrossRef
22.
go back to reference Di Pasquale E, Chahinian H, Sanchez P, Fantini J. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent. PLoS One 2009;4:e4989.PubMedCentralPubMedCrossRef Di Pasquale E, Chahinian H, Sanchez P, Fantini J. The insertion and transport of anandamide in synthetic lipid membranes are both cholesterol-dependent. PLoS One 2009;4:e4989.PubMedCentralPubMedCrossRef
23.
go back to reference Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012;287:34660-34682.PubMedCentralPubMedCrossRef Chicca A, Marazzi J, Nicolussi S, Gertsch J. Evidence for bidirectional endocannabinoid transport across cell membranes. J Biol Chem 2012;287:34660-34682.PubMedCentralPubMedCrossRef
24.
go back to reference Dainese E, Oddi S, Bari M, Maccarrone M. Modulation of the endocannabinoid system by lipid rafts. Curr Med Chem 2007;14:2702-2715.PubMedCrossRef Dainese E, Oddi S, Bari M, Maccarrone M. Modulation of the endocannabinoid system by lipid rafts. Curr Med Chem 2007;14:2702-2715.PubMedCrossRef
25.
go back to reference Oddi S, Fezza F, Pasquariello N, et al. Evidence for the intracellular accumulation of anandamide in adiposomes. Cell Mol Life Sci 2008;65:840-850.PubMedCrossRef Oddi S, Fezza F, Pasquariello N, et al. Evidence for the intracellular accumulation of anandamide in adiposomes. Cell Mol Life Sci 2008;65:840-850.PubMedCrossRef
26.
go back to reference Maccarrone M, Bernardi G, Finazzi Agrò A, Centonze D. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. Br J Pharmacol 2011;163:1379-1390.PubMedCentralPubMedCrossRef Maccarrone M, Bernardi G, Finazzi Agrò A, Centonze D. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. Br J Pharmacol 2011;163:1379-1390.PubMedCentralPubMedCrossRef
27.
go back to reference Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 2010;17:1430-1449.PubMedCrossRef Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 2010;17:1430-1449.PubMedCrossRef
28.
29.
go back to reference Pistis M, Melis M. From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem 2010;17:1450-1467.PubMedCrossRef Pistis M, Melis M. From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem 2010;17:1450-1467.PubMedCrossRef
30.
go back to reference Moriconi A, Cerbara I, Maccarrone M, Topai A. GPR55: current knowledge and future perspectives of a purported “type-3” cannabinoid receptor. Curr Med Chem 2010;17:1411-1429.PubMedCrossRef Moriconi A, Cerbara I, Maccarrone M, Topai A. GPR55: current knowledge and future perspectives of a purported “type-3” cannabinoid receptor. Curr Med Chem 2010;17:1411-1429.PubMedCrossRef
31.
go back to reference Ross RA. L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Trends Pharmacol Sci 2011;32:265-269.PubMedCrossRef Ross RA. L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Trends Pharmacol Sci 2011;32:265-269.PubMedCrossRef
33.
go back to reference Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 1998;353:23-31.PubMedCrossRef Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 1998;353:23-31.PubMedCrossRef
34.
go back to reference Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 2008;139:541-550.PubMedCrossRef Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 2008;139:541-550.PubMedCrossRef
35.
go back to reference Ho WS, Barrett DA, Randall MD. “Entourage” effects of N-palmitoylethanolamine and N-oleoylethanolamine on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol 2008;155:837-846.PubMedCentralPubMedCrossRef Ho WS, Barrett DA, Randall MD. “Entourage” effects of N-palmitoylethanolamine and N-oleoylethanolamine on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol 2008;155:837-846.PubMedCentralPubMedCrossRef
36.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association, Arlington, VA, 2013. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association, Arlington, VA, 2013.
37.
go back to reference Lord C, Rutter M, DiLavore PC, Risi S. ADOS, Autism Diagnostic Observation Schedule. Western Psychological Services, Los Angeles, CA, 2002. Lord C, Rutter M, DiLavore PC, Risi S. ADOS, Autism Diagnostic Observation Schedule. Western Psychological Services, Los Angeles, CA, 2002.
38.
go back to reference Gotham K, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord 2007;37:613-627.PubMedCrossRef Gotham K, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised algorithms for improved diagnostic validity. J Autism Dev Disord 2007;37:613-627.PubMedCrossRef
39.
go back to reference Rutter M, Le Couter A, Lord C. ADI-R, Autism Diagnostic Interview-Revised. Western Psychological Services, Los Angeles, CA, 2003. Rutter M, Le Couter A, Lord C. ADI-R, Autism Diagnostic Interview-Revised. Western Psychological Services, Los Angeles, CA, 2003.
40.
go back to reference Persico AM. Autisms. In: Neural circuit development and function in the healthy and diseased brain: comprehensive developmental neuroscience, vol. 3 (Rakic P. and Rubenstein J, eds). Elsevier, New York, 2013, pp. 651-694. Persico AM. Autisms. In: Neural circuit development and function in the healthy and diseased brain: comprehensive developmental neuroscience, vol. 3 (Rakic P. and Rubenstein J, eds). Elsevier, New York, 2013, pp. 651-694.
41.
go back to reference Piven J, Palmer P, Jacobi D, Childress D, Arndt S. Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry 1997;154:185-190.PubMedCrossRef Piven J, Palmer P, Jacobi D, Childress D, Arndt S. Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry 1997;154:185-190.PubMedCrossRef
42.
go back to reference Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord 2001;31:5-17.PubMedCrossRef Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord 2001;31:5-17.PubMedCrossRef
43.
go back to reference Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014;63:1-21. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014;63:1-21.
44.
go back to reference Ozonoff S, Young GS, Carter A, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 2011;128:e488-e495.PubMedCentralPubMed Ozonoff S, Young GS, Carter A, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 2011;128:e488-e495.PubMedCentralPubMed
45.
go back to reference Elsabbagh M, Fernandes J, Jane Webb S, et al. Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychiatry 2013;74:189-194.PubMedCentralPubMedCrossRef Elsabbagh M, Fernandes J, Jane Webb S, et al. Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychiatry 2013;74:189-194.PubMedCentralPubMedCrossRef
46.
go back to reference Chawarska K, Shic F, Macari S, et al. 18-month predictors of later outcomes in younger siblings of children with autism spectrum disorder: a baby siblings research consortium study. J Am Acad Child Adolesc Psychiatry 2014;53:1317-1327.PubMedPubMedCentralCrossRef Chawarska K, Shic F, Macari S, et al. 18-month predictors of later outcomes in younger siblings of children with autism spectrum disorder: a baby siblings research consortium study. J Am Acad Child Adolesc Psychiatry 2014;53:1317-1327.PubMedPubMedCentralCrossRef
47.
go back to reference Gangi DN, Ibañez LV, Messinger DS. Joint attention initiation with and without positive affect: risk group differences and associations with ASD symptoms. J Autism Dev Disord 2014;44:1414-1424.PubMedCentralPubMedCrossRef Gangi DN, Ibañez LV, Messinger DS. Joint attention initiation with and without positive affect: risk group differences and associations with ASD symptoms. J Autism Dev Disord 2014;44:1414-1424.PubMedCentralPubMedCrossRef
48.
50.
go back to reference Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 2005;66:3-8.PubMed Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 2005;66:3-8.PubMed
51.
go back to reference Souders MC, Mason TB, Valladares O, et al. Sleep behaviors and sleep quality in children with autism spectrum disorders. Sleep 2009;32:1566-1578.PubMedCentralPubMed Souders MC, Mason TB, Valladares O, et al. Sleep behaviors and sleep quality in children with autism spectrum disorders. Sleep 2009;32:1566-1578.PubMedCentralPubMed
52.
go back to reference Tarazi F, Sahli Z, Pleskow J, Mousa S. Asperger’s syndrome: diagnosis, comorbidity and therapy. Expert Rev Neurother 2015;15:281-293.PubMedCrossRef Tarazi F, Sahli Z, Pleskow J, Mousa S. Asperger’s syndrome: diagnosis, comorbidity and therapy. Expert Rev Neurother 2015;15:281-293.PubMedCrossRef
53.
go back to reference Di Cicco-Bloom E, Lord C, Zwaigenbaum L, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci 2006;26:6897-6906.CrossRef Di Cicco-Bloom E, Lord C, Zwaigenbaum L, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci 2006;26:6897-6906.CrossRef
54.
56.
go back to reference Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005;23:183-187.PubMedCrossRef Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005;23:183-187.PubMedCrossRef
57.
go back to reference Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;108(Suppl. 3):511-533.PubMedCentralPubMedCrossRef Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000;108(Suppl. 3):511-533.PubMedCentralPubMedCrossRef
58.
go back to reference Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007;17:103-111.PubMedCrossRef Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007;17:103-111.PubMedCrossRef
59.
go back to reference Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 2015;18:302-309.PubMedCrossRef Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 2015;18:302-309.PubMedCrossRef
62.
go back to reference Persico AM, Merelli S. Environmental factors and autism spectrum disorder. Curr Dev Disord Rep 2014;1:8-19.CrossRef Persico AM, Merelli S. Environmental factors and autism spectrum disorder. Curr Dev Disord Rep 2014;1:8-19.CrossRef
63.
go back to reference Tordjman S, Somogyi E, Coulon N, et al. Gene × environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014;5:53.PubMedCentralPubMedCrossRef Tordjman S, Somogyi E, Coulon N, et al. Gene × environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014;5:53.PubMedCentralPubMedCrossRef
64.
go back to reference Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005;57:67-81.PubMedCrossRef Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005;57:67-81.PubMedCrossRef
65.
go back to reference Garbett KA, Ebert PJ, Mitchell A, et al. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008;30:303-311.PubMedCentralPubMedCrossRef Garbett KA, Ebert PJ, Mitchell A, et al. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008;30:303-311.PubMedCentralPubMedCrossRef
66.
go back to reference Lintas C, Sacco R, Persico AM. Genome-wide expression studies in Autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiol Dis 2012;45:57-68.PubMedCrossRef Lintas C, Sacco R, Persico AM. Genome-wide expression studies in Autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiol Dis 2012;45:57-68.PubMedCrossRef
67.
go back to reference Sacco R, Curatolo P, Manzi B, et al. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res 2010;3:237-252.PubMedCrossRef Sacco R, Curatolo P, Manzi B, et al. Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res 2010;3:237-252.PubMedCrossRef
70.
go back to reference McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 2014;133:872-883.PubMedCrossRef McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 2014;133:872-883.PubMedCrossRef
71.
go back to reference Piras I, Haapanen L, Napolioni V, Sacco R, Van de Water J, Persico A. Anti-brain antibodies are associated with more severe cognitive and behavioural profiles in Italian children with Autism Spectrum Disorder. Brain Behav Immun 2014;38:91-99.PubMedCentralPubMedCrossRef Piras I, Haapanen L, Napolioni V, Sacco R, Van de Water J, Persico A. Anti-brain antibodies are associated with more severe cognitive and behavioural profiles in Italian children with Autism Spectrum Disorder. Brain Behav Immun 2014;38:91-99.PubMedCentralPubMedCrossRef
72.
go back to reference Chakrabarti B, Baron-Cohen S. Empathizing: neurocognitive developmental mechanisms and individual differences. Prog Brain Res 2006;156:403-417.PubMedCrossRef Chakrabarti B, Baron-Cohen S. Empathizing: neurocognitive developmental mechanisms and individual differences. Prog Brain Res 2006;156:403-417.PubMedCrossRef
74.
go back to reference Sims TB, Van Reekum CM, Johnstone T, Chakrabarti B. How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding happy faces. Psychophysiology 2012;49:998-1004.PubMedCrossRef Sims TB, Van Reekum CM, Johnstone T, Chakrabarti B. How reward modulates mimicry: EMG evidence of greater facial mimicry of more rewarding happy faces. Psychophysiology 2012;49:998-1004.PubMedCrossRef
75.
go back to reference Sims TB, Neufeld J, Johnstone T, Chakrabarti B. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces. Soc Cogn Affect Neurosci 2014;9:2010201-2010206.CrossRef Sims TB, Neufeld J, Johnstone T, Chakrabarti B. Autistic traits modulate frontostriatal connectivity during processing of rewarding faces. Soc Cogn Affect Neurosci 2014;9:2010201-2010206.CrossRef
76.
go back to reference Dawson G, Carver L, Meltzoff AN, Panagiotides H, McPartland J, Webb SJ.Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Dev 2002;73:700-717.PubMedCentralPubMedCrossRef Dawson G, Carver L, Meltzoff AN, Panagiotides H, McPartland J, Webb SJ.Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Dev 2002;73:700-717.PubMedCentralPubMedCrossRef
77.
go back to reference Pierce K, Conant D, Hazin R, Stoner R, Desmond J. Preference for geometric patterns early in life as a risk factor for autism. Arch Gen Psychiatry 2011;68:101-109.PubMedCrossRef Pierce K, Conant D, Hazin R, Stoner R, Desmond J. Preference for geometric patterns early in life as a risk factor for autism. Arch Gen Psychiatry 2011;68:101-109.PubMedCrossRef
78.
go back to reference Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DG. Neural correlates of reward in autism. Br J Psychiatry 2008;192:19-24.PubMedCrossRef Schmitz N, Rubia K, van Amelsvoort T, Daly E, Smith A, Murphy DG. Neural correlates of reward in autism. Br J Psychiatry 2008;192:19-24.PubMedCrossRef
79.
go back to reference Dichter GS, Richey JA, Rittenberg AM, Sabatino A, Bodfish JW. Reward circuitry function in autism during face anticipation and outcomes. J Autism Dev Disord 2012;42:147-160.PubMedCrossRef Dichter GS, Richey JA, Rittenberg AM, Sabatino A, Bodfish JW. Reward circuitry function in autism during face anticipation and outcomes. J Autism Dev Disord 2012;42:147-160.PubMedCrossRef
81.
go back to reference Demurie E, Roeyers H, Baeyens D, Sonuga-Barke E. Common alterations in sensitivity to type but not amount of reward in ADHD and autism spectrum disorders. J Child Psychol Psychiatry 2011;52:1164-1173.PubMedCrossRef Demurie E, Roeyers H, Baeyens D, Sonuga-Barke E. Common alterations in sensitivity to type but not amount of reward in ADHD and autism spectrum disorders. J Child Psychol Psychiatry 2011;52:1164-1173.PubMedCrossRef
82.
83.
go back to reference Fletcher-Watson S, Leekam SR, Benson V, Frank MC, Findlay JM. Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia 2009;47:248-257.PubMedCrossRef Fletcher-Watson S, Leekam SR, Benson V, Frank MC, Findlay JM. Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia 2009;47:248-257.PubMedCrossRef
84.
go back to reference Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 2002;59:809-816.PubMedCrossRef Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 2002;59:809-816.PubMedCrossRef
85.
go back to reference Sasson NJ, Dichter GS, Bodfish JW. Affective responses by adults with autism are reduced to social images but elevated to images related to circumscribed interests. PLoS One 2012;7:e42457.PubMedCentralPubMedCrossRef Sasson NJ, Dichter GS, Bodfish JW. Affective responses by adults with autism are reduced to social images but elevated to images related to circumscribed interests. PLoS One 2012;7:e42457.PubMedCentralPubMedCrossRef
86.
go back to reference Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in simple choice. Nat Neurosci 2010;13:1292-1298.PubMedCrossRef Krajbich I, Armel C, Rangel A. Visual fixations and the computation and comparison of value in simple choice. Nat Neurosci 2010;13:1292-1298.PubMedCrossRef
87.
go back to reference Stavropoulos KK, Carver LJ. Effect of familiarity on reward anticipation in children with and without autism spectrum disorders. PLoS One 2014;9:e106667.PubMedCentralPubMedCrossRef Stavropoulos KK, Carver LJ. Effect of familiarity on reward anticipation in children with and without autism spectrum disorders. PLoS One 2014;9:e106667.PubMedCentralPubMedCrossRef
88.
go back to reference Richey JA, Rittenberg A, Hughes L, et al. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Soc Cogn Affect Neurosci 2014;9:367-377.PubMedCentralPubMedCrossRef Richey JA, Rittenberg A, Hughes L, et al. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Soc Cogn Affect Neurosci 2014;9:367-377.PubMedCentralPubMedCrossRef
89.
go back to reference Chakrabarti B, Bullmore E, Baron-Cohen S. Empathizing with basic emotions: common and discrete neural substrates. Soc Neurosci 2006;1:364-384.PubMedCrossRef Chakrabarti B, Bullmore E, Baron-Cohen S. Empathizing with basic emotions: common and discrete neural substrates. Soc Neurosci 2006;1:364-384.PubMedCrossRef
90.
go back to reference Ruggeri B, Sarkans U, Schumann G, Persico AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology 2014;231:1201-1216.PubMedCrossRef Ruggeri B, Sarkans U, Schumann G, Persico AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology 2014;231:1201-1216.PubMedCrossRef
91.
go back to reference Vorstman JA, Spooren W, Persico AM, et al. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology 2014;231:1063-1078.PubMedCrossRef Vorstman JA, Spooren W, Persico AM, et al. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology 2014;231:1063-1078.PubMedCrossRef
92.
go back to reference Battista N, Bari M, Tarditi A, et al. Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiol Dis 2007;27:108-116.PubMedCrossRef Battista N, Bari M, Tarditi A, et al. Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiol Dis 2007;27:108-116.PubMedCrossRef
93.
go back to reference Centonze D, Battistini L, Maccarrone M. The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des 2008;14:2370-2382.PubMedCrossRef Centonze D, Battistini L, Maccarrone M. The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases. Curr Pharm Des 2008;14:2370-2382.PubMedCrossRef
94.
go back to reference Marco EM, Scattoni ML, Rapino C, et al. Emotional, endocrine and brain anandamide response to social challenge in infant male rats. Psychoneuroendocrinology 2013;38:2152-2162.PubMedCrossRef Marco EM, Scattoni ML, Rapino C, et al. Emotional, endocrine and brain anandamide response to social challenge in infant male rats. Psychoneuroendocrinology 2013;38:2152-2162.PubMedCrossRef
95.
go back to reference Sciolino NR, Bortolato M, Eisenstein SA, et al. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 2010;168:371-386.PubMedCentralPubMedCrossRef Sciolino NR, Bortolato M, Eisenstein SA, et al. Social isolation and chronic handling alter endocannabinoid signaling and behavioral reactivity to context in adult rats. Neuroscience 2010;168:371-386.PubMedCentralPubMedCrossRef
96.
go back to reference Marco EM, Rapino C, Caprioli A, Borsini F, Maccarrone M, Laviola G. Social encounter with a novel partner in adolescent rats: activation of the central endocannabinoid system. Behav Brain Res 2011;220:140-145.PubMedCrossRef Marco EM, Rapino C, Caprioli A, Borsini F, Maccarrone M, Laviola G. Social encounter with a novel partner in adolescent rats: activation of the central endocannabinoid system. Behav Brain Res 2011;220:140-145.PubMedCrossRef
97.
98.
go back to reference Ludwig AL, Espinal GM, Pretto DI, et al. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet 2014;23:3228-3238.PubMedCentralPubMedCrossRef Ludwig AL, Espinal GM, Pretto DI, et al. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet 2014;23:3228-3238.PubMedCentralPubMedCrossRef
100.
go back to reference Maccarrone M, Rossi S, Bari M, et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology. 2010;35:1500-1509.PubMedCentralPubMedCrossRef Maccarrone M, Rossi S, Bari M, et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neuropsychopharmacology. 2010;35:1500-1509.PubMedCentralPubMedCrossRef
101.
go back to reference Jung KM, Sepers M, Henstridge CM, et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 2012;3:1080.PubMedCentralPubMedCrossRef Jung KM, Sepers M, Henstridge CM, et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 2012;3:1080.PubMedCentralPubMedCrossRef
102.
go back to reference Busquets-Garcia A, Gomis-González M, Guegan T, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 2013;19:603-607.PubMedCrossRef Busquets-Garcia A, Gomis-González M, Guegan T, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 2013;19:603-607.PubMedCrossRef
103.
go back to reference Schultz ST. Can autism be triggered by acetaminophen activation of the endocannabinoid system? Acta Neurobiol Exp (Wars) 2010;70:227-231. Schultz ST. Can autism be triggered by acetaminophen activation of the endocannabinoid system? Acta Neurobiol Exp (Wars) 2010;70:227-231.
104.
go back to reference Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res 2013;249:124-132.PubMedCrossRef Kerr DM, Downey L, Conboy M, Finn DP, Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res 2013;249:124-132.PubMedCrossRef
105.
go back to reference Liu QR, Pan CH, Hishimoto A, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav 2009;8:519-530.PubMedCentralPubMedCrossRef Liu QR, Pan CH, Hishimoto A, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav 2009;8:519-530.PubMedCentralPubMedCrossRef
106.
go back to reference Onaivi ES, Benno R, Halpern T, et al. Consequences of cannabinoid and monoaminergic system disruption in a mouse model of autism spectrum disorders. Curr Neuropharmacol 2011;9:209-214.PubMedCentralPubMedCrossRef Onaivi ES, Benno R, Halpern T, et al. Consequences of cannabinoid and monoaminergic system disruption in a mouse model of autism spectrum disorders. Curr Neuropharmacol 2011;9:209-214.PubMedCentralPubMedCrossRef
107.
go back to reference Siniscalco D, Sapone A, Giordano C, et al. Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord 2013;43:2686-2695.PubMedCrossRef Siniscalco D, Sapone A, Giordano C, et al. Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord 2013;43:2686-2695.PubMedCrossRef
108.
go back to reference Depino AM. Peripheral and central inflammation in autism spectrum disorders. Mol Cell Neurosci 2013;53:69-76.PubMedCrossRef Depino AM. Peripheral and central inflammation in autism spectrum disorders. Mol Cell Neurosci 2013;53:69-76.PubMedCrossRef
109.
go back to reference Leleu-Chavain N, Desreumaux P, Chavatte P, Millet R. Therapeutical potential of CB2 receptors in immune-related diseases. Curr Mol Pharmacol 2013;6:183-203.PubMedCrossRef Leleu-Chavain N, Desreumaux P, Chavatte P, Millet R. Therapeutical potential of CB2 receptors in immune-related diseases. Curr Mol Pharmacol 2013;6:183-203.PubMedCrossRef
110.
111.
go back to reference Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signaling in innate and adaptive immunity. Immunol 2015;144:352-364. Chiurchiù V, Battistini L, Maccarrone M. Endocannabinoid signaling in innate and adaptive immunity. Immunol 2015;144:352-364.
112.
go back to reference Cencioni MT, Chiurchiù V, Catanzaro G, et al. Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS One 2010;5:e8688.PubMedCentralPubMedCrossRef Cencioni MT, Chiurchiù V, Catanzaro G, et al. Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS One 2010;5:e8688.PubMedCentralPubMedCrossRef
113.
go back to reference Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013;52:80-109.PubMedCrossRef Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013;52:80-109.PubMedCrossRef
114.
go back to reference Das U. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 2013;29:1175-1185.PubMedCrossRef Das U. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 2013;29:1175-1185.PubMedCrossRef
115.
go back to reference Van der Stelt M, Di Marzo V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 2003;480:133-150.PubMedCrossRef Van der Stelt M, Di Marzo V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 2003;480:133-150.PubMedCrossRef
116.
go back to reference Chakrabarti B, Kent L, Suckling J, Bullmore E, Baron-Cohen S. Variations in the human cannabinoid receptor (CNR1) gene modulate striatal responses to happy faces. Eur J Neurosci 2006;23:1944-1948.PubMedCrossRef Chakrabarti B, Kent L, Suckling J, Bullmore E, Baron-Cohen S. Variations in the human cannabinoid receptor (CNR1) gene modulate striatal responses to happy faces. Eur J Neurosci 2006;23:1944-1948.PubMedCrossRef
117.
go back to reference Domschke K, Dannlowski U, Ohrmann P, et al. Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol 2008;18:751-759.PubMedCrossRef Domschke K, Dannlowski U, Ohrmann P, et al. Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol 2008;18:751-759.PubMedCrossRef
118.
119.
go back to reference Chakrabarti B, Dudbridge F, Kent L, et al. Genes related to sex steroids, neural growth, and social–emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res 2009;2:157-177.PubMedCrossRef Chakrabarti B, Dudbridge F, Kent L, et al. Genes related to sex steroids, neural growth, and social–emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res 2009;2:157-177.PubMedCrossRef
120.
go back to reference Baron-Cohen S, Wheelwright S. The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J Autism Dev Disord 2004;34:163-175.PubMedCrossRef Baron-Cohen S, Wheelwright S. The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J Autism Dev Disord 2004;34:163-175.PubMedCrossRef
121.
go back to reference Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurol 2001;57:1618-1628.CrossRef Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurol 2001;57:1618-1628.CrossRef
122.
go back to reference Trezza V, Vanderschuren LJ. Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacol 2008;197:217-227.CrossRef Trezza V, Vanderschuren LJ. Bidirectional cannabinoid modulation of social behavior in adolescent rats. Psychopharmacol 2008;197:217-227.CrossRef
123.
go back to reference Trezza V, Baarendse PJ, Vanderschuren LJ. The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol Sci 2010;31:463-469.PubMedCentralPubMedCrossRef Trezza V, Baarendse PJ, Vanderschuren LJ. The pleasures of play: pharmacological insights into social reward mechanisms. Trends Pharmacol Sci 2010;31:463-469.PubMedCentralPubMedCrossRef
124.
go back to reference Maccarrone M, Guzmán M, Mackie K, Doherty P, Harkany T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 2014;15:786-801.PubMedCrossRef Maccarrone M, Guzmán M, Mackie K, Doherty P, Harkany T. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 2014;15:786-801.PubMedCrossRef
125.
go back to reference Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci 2004;24:9228-9231.PubMedCrossRef Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ. Autism and abnormal development of brain connectivity. J Neurosci 2004;24:9228-9231.PubMedCrossRef
126.
go back to reference Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006;29:349-358.PubMedCrossRef Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006;29:349-358.PubMedCrossRef
127.
go back to reference Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 2012;33:669-684.PubMedCrossRef Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 2012;33:669-684.PubMedCrossRef
128.
go back to reference Tsai NP, Wilkerson JR, Guo W, et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 2012;151:1581-1594.PubMedCentralPubMedCrossRef Tsai NP, Wilkerson JR, Guo W, et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 2012;151:1581-1594.PubMedCentralPubMedCrossRef
129.
go back to reference Bourgeron T. A synaptic trek to autism. Current Opin Neurobiol 2009;19:231-234.CrossRef Bourgeron T. A synaptic trek to autism. Current Opin Neurobiol 2009;19:231-234.CrossRef
130.
go back to reference Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res 2014;7:264-272.PubMedCentralPubMedCrossRef Jaramillo TC, Liu S, Pettersen A, Birnbaum SG, Powell CM. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res 2014;7:264-272.PubMedCentralPubMedCrossRef
131.
132.
go back to reference Cota D, Steiner MA, Marsicano G, et al. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinol 2007;148:1574-1581.CrossRef Cota D, Steiner MA, Marsicano G, et al. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinol 2007;148:1574-1581.CrossRef
133.
go back to reference Atkinson HC, Leggett JD, Wood SA, Castrique ES, Kershaw YM, Lightman SL. Regulation of the hypothalamic-pituitary-adrenal axis circadian rhythm by endocannabinoids is sexually diergic. Endocrinol 2010;15:3720-3727.CrossRef Atkinson HC, Leggett JD, Wood SA, Castrique ES, Kershaw YM, Lightman SL. Regulation of the hypothalamic-pituitary-adrenal axis circadian rhythm by endocannabinoids is sexually diergic. Endocrinol 2010;15:3720-3727.CrossRef
134.
135.
go back to reference Glickman G. Circadian rhythms and sleep in children with autism. Neurosci Biobehav Rev 2010;34:755-768.PubMedCrossRef Glickman G. Circadian rhythms and sleep in children with autism. Neurosci Biobehav Rev 2010;34:755-768.PubMedCrossRef
136.
go back to reference Melke J, Goubran Botros H, Chaste P. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiat 2008;13:90-98.CrossRef Melke J, Goubran Botros H, Chaste P. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiat 2008;13:90-98.CrossRef
137.
go back to reference Campos AC, Guimarães FS.Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology 2008;199:223-230.PubMedCrossRef Campos AC, Guimarães FS.Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology 2008;199:223-230.PubMedCrossRef
138.
go back to reference Rubino T, Guidali C, Vigano D, et al. CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacol 2008;54:151-160.CrossRef Rubino T, Guidali C, Vigano D, et al. CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacol 2008;54:151-160.CrossRef
139.
go back to reference Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 2008;14:923-930.PubMedCrossRef Katona I, Freund TF. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat Med 2008;14:923-930.PubMedCrossRef
140.
go back to reference Sasso O, Migliore M, Habrant D, et al. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug dependent gastrointestinal damage. FASEB J 2015;29:2616-2627.PubMedCrossRef Sasso O, Migliore M, Habrant D, et al. Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti-inflammatory drug dependent gastrointestinal damage. FASEB J 2015;29:2616-2627.PubMedCrossRef
141.
go back to reference Arosio B, D’Addario C, Gussago C, et al. Peripheral blood mononuclear cells (PBMCs) as a laboratory to study dementia in the elderly. BioMed Res Int 2014;2014:169203.PubMedCentralPubMedCrossRef Arosio B, D’Addario C, Gussago C, et al. Peripheral blood mononuclear cells (PBMCs) as a laboratory to study dementia in the elderly. BioMed Res Int 2014;2014:169203.PubMedCentralPubMedCrossRef
Metadata
Title
Endocannabinoid Signaling in Autism
Authors
Bhismadev Chakrabarti
Antonio Persico
Natalia Battista
Mauro Maccarrone
Publication date
01-10-2015
Publisher
Springer US
Published in
Neurotherapeutics / Issue 4/2015
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0371-9

Other articles of this Issue 4/2015

Neurotherapeutics 4/2015 Go to the issue