Skip to main content
Top
Published in: Neurotherapeutics 4/2015

01-10-2015 | Review

Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe?

Authors: Shokouh Arjmand, Zohreh Vaziri, Mina Behzadi, Hassan Abbassian, Gary J. Stephens, Mohammad Shabani

Published in: Neurotherapeutics | Issue 4/2015

Login to get access

Abstract

Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.
Appendix
Available only for authorised users
Literature
1.
go back to reference Giacoppo S, Mandolino G, Galuppo M, et al. Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules 2014;19:18781-18816.PubMedCrossRef Giacoppo S, Mandolino G, Galuppo M, et al. Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules 2014;19:18781-18816.PubMedCrossRef
2.
3.
4.
go back to reference De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 2011;163:1479-1494.PubMedCentralPubMedCrossRef De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 2011;163:1479-1494.PubMedCentralPubMedCrossRef
5.
go back to reference El-Alfy AT, Ivey K, Robinson K, et al. Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol Biochem Behav 2010;95:434-442.PubMedCentralPubMedCrossRef El-Alfy AT, Ivey K, Robinson K, et al. Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol Biochem Behav 2010;95:434-442.PubMedCentralPubMedCrossRef
6.
go back to reference Tellioglu T, Celebi F. Synthetic marijuana: a recent turmoil in substance abuse. Bull Clin Psychopharmacol 2014;24:396-404. Tellioglu T, Celebi F. Synthetic marijuana: a recent turmoil in substance abuse. Bull Clin Psychopharmacol 2014;24:396-404.
8.
go back to reference Jones NA, Glyn SE, Akiyama S, et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 2012;21:344-352.PubMedCrossRef Jones NA, Glyn SE, Akiyama S, et al. Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 2012;21:344-352.PubMedCrossRef
9.
go back to reference Martin RS, Luong LA, Welsh NJ, et al. Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br J Pharmacol 2000;129:1707-1715.PubMedCentralPubMedCrossRef Martin RS, Luong LA, Welsh NJ, et al. Effects of cannabinoid receptor agonists on neuronally-evoked contractions of urinary bladder tissues isolated from rat, mouse, pig, dog, monkey and human. Br J Pharmacol 2000;129:1707-1715.PubMedCentralPubMedCrossRef
10.
go back to reference Marco EM, Viveros MP. [Functional role of the endocannabinoid system in emotional homeostasis]. Rev Neurol 2009;48:20-26 (in Spanish).PubMed Marco EM, Viveros MP. [Functional role of the endocannabinoid system in emotional homeostasis]. Rev Neurol 2009;48:20-26 (in Spanish).PubMed
11.
go back to reference Järvinen T, Pate DW, Laine K. Cannabinoids in the treatment of glaucoma. Pharmacol Ther 2002;95:203-220.PubMedCrossRef Järvinen T, Pate DW, Laine K. Cannabinoids in the treatment of glaucoma. Pharmacol Ther 2002;95:203-220.PubMedCrossRef
12.
go back to reference Baker D, Pryce G, Croxford JL, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 2000;404:84-87. dPubMedCrossRef Baker D, Pryce G, Croxford JL, et al. Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 2000;404:84-87. dPubMedCrossRef
13.
go back to reference Kumar RN, Chambers WA, Pertwee RG. Pharmacological actions and therapeutic uses of cannabis and cannabinoids. Anaesthesia 2008;56:1059-1068.CrossRef Kumar RN, Chambers WA, Pertwee RG. Pharmacological actions and therapeutic uses of cannabis and cannabinoids. Anaesthesia 2008;56:1059-1068.CrossRef
14.
go back to reference Florek-Luszczki M, Wlaz A, Kondrat-Wrobel MW, et al. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. J Neural Transm 2014;121:707-715.PubMedCentralPubMedCrossRef Florek-Luszczki M, Wlaz A, Kondrat-Wrobel MW, et al. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. J Neural Transm 2014;121:707-715.PubMedCentralPubMedCrossRef
15.
go back to reference Moulin DE, Clark AJ, Gilron I, Ware MA. Pharmacological management of chronic neuropathic pain - consensus statement and guidelines from the Canadian Pain Society. Pain Res Manag 2007;12:13-21.PubMedCentralPubMed Moulin DE, Clark AJ, Gilron I, Ware MA. Pharmacological management of chronic neuropathic pain - consensus statement and guidelines from the Canadian Pain Society. Pain Res Manag 2007;12:13-21.PubMedCentralPubMed
16.
go back to reference Devinsky O, Cilio MR, Cross H, et al. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014;55:791-802.PubMedPubMedCentralCrossRef Devinsky O, Cilio MR, Cross H, et al. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014;55:791-802.PubMedPubMedCentralCrossRef
18.
go back to reference Fichna J, Bawa M, Thakur GA, et al. Cannabinoids Alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors. PLoS One 2014;9:e109115.PubMedCentralPubMedCrossRef Fichna J, Bawa M, Thakur GA, et al. Cannabinoids Alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors. PLoS One 2014;9:e109115.PubMedCentralPubMedCrossRef
19.
go back to reference Silva GD, Lopes PS, Fonoff ET, Pagano RL. The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain? J Neuroinflammation 2015;12:1-11.CrossRef Silva GD, Lopes PS, Fonoff ET, Pagano RL. The spinal anti-inflammatory mechanism of motor cortex stimulation: cause of success and refractoriness in neuropathic pain? J Neuroinflammation 2015;12:1-11.CrossRef
20.
go back to reference Foltin RW. The behavioral pharmacology of anorexigenic drugs in nonhuman primates: 30 years of progress. Behav Pharmacol 2013;23:461-477.CrossRef Foltin RW. The behavioral pharmacology of anorexigenic drugs in nonhuman primates: 30 years of progress. Behav Pharmacol 2013;23:461-477.CrossRef
21.
go back to reference Galarreta M, Erdélyi F, Szabó G, Hestrin S. Cannabinoid sensitivity and synaptic properties of 2 GABAergic networks in the neocortex. Cereb Cortex 2008;18:2296-2305.PubMedCentralPubMedCrossRef Galarreta M, Erdélyi F, Szabó G, Hestrin S. Cannabinoid sensitivity and synaptic properties of 2 GABAergic networks in the neocortex. Cereb Cortex 2008;18:2296-2305.PubMedCentralPubMedCrossRef
22.
go back to reference Shabani M, Divsalar K, Janahmadi M. Destructive effects of prenatal WIN 55212-2 exposure on central nervous system of neonatal rats. Addict Health 2012;4:9-19.PubMedCentralPubMed Shabani M, Divsalar K, Janahmadi M. Destructive effects of prenatal WIN 55212-2 exposure on central nervous system of neonatal rats. Addict Health 2012;4:9-19.PubMedCentralPubMed
23.
go back to reference Wiley JL, Marusich JA, Huffman JW. Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci 2014;97:55-63.PubMedCentralPubMedCrossRef Wiley JL, Marusich JA, Huffman JW. Moving around the molecule: relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci 2014;97:55-63.PubMedCentralPubMedCrossRef
24.
go back to reference Brents LK, Prather PL. The K2/Spice phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev 2014;46:72–85.PubMedCentralPubMedCrossRef Brents LK, Prather PL. The K2/Spice phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev 2014;46:72–85.PubMedCentralPubMedCrossRef
25.
26.
go back to reference Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) 2006;30(Suppl. 1):S13-S18.CrossRef Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) 2006;30(Suppl. 1):S13-S18.CrossRef
27.
go back to reference Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561-564.PubMedCrossRef Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561-564.PubMedCrossRef
28.
go back to reference Griffin G, Tao Q, Abood ME. Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. J Pharmacol Exp Ther 2000;292:886-894.PubMed Griffin G, Tao Q, Abood ME. Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. J Pharmacol Exp Ther 2000;292:886-894.PubMed
29.
go back to reference Gérard CM, Mollereau C, Vassart G, Parmentier M. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 1991;279:129-134.PubMedCentralPubMedCrossRef Gérard CM, Mollereau C, Vassart G, Parmentier M. Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 1991;279:129-134.PubMedCentralPubMedCrossRef
30.
go back to reference Razavinasab M, Shamsizadeh A, Shabani M, et al. Pharmacological blockade of TRPV1 receptors modulates the effects of 6-OHDA on motor and cognitive functions in a rat model of Parkinson’s disease. Fundam Clin Pharmacol 2013;27:632-640.PubMedCrossRef Razavinasab M, Shamsizadeh A, Shabani M, et al. Pharmacological blockade of TRPV1 receptors modulates the effects of 6-OHDA on motor and cognitive functions in a rat model of Parkinson’s disease. Fundam Clin Pharmacol 2013;27:632-640.PubMedCrossRef
31.
go back to reference Fernández-Ruiz J, Gonzáles S. Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol 2005;168:479-507.PubMedCrossRef Fernández-Ruiz J, Gonzáles S. Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol 2005;168:479-507.PubMedCrossRef
37.
go back to reference Howlett AC, Breivogel CS, Childers SR, et al. Cannabinoid physiology and pharmacology: 30 Years of progress. Neuropharmacology 2004;47:345-358.PubMedCrossRef Howlett AC, Breivogel CS, Childers SR, et al. Cannabinoid physiology and pharmacology: 30 Years of progress. Neuropharmacology 2004;47:345-358.PubMedCrossRef
39.
go back to reference Marcaggi P. Cerebellar endocannabinoids: retrograde signaling from Purkinje cells. Cerebellum 2015;14:341-353.PubMedCrossRef Marcaggi P. Cerebellar endocannabinoids: retrograde signaling from Purkinje cells. Cerebellum 2015;14:341-353.PubMedCrossRef
40.
go back to reference Aguado T, Monory K, Palazuelos J, et al. The endocannabinoid system drives neural progenitor proliferation. FASEB J 2005;19:1704-1706.PubMed Aguado T, Monory K, Palazuelos J, et al. The endocannabinoid system drives neural progenitor proliferation. FASEB J 2005;19:1704-1706.PubMed
41.
go back to reference Egertová M, Elphick MR. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 2000;422:159-171.PubMedCrossRef Egertová M, Elphick MR. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB. J Comp Neurol 2000;422:159-171.PubMedCrossRef
43.
go back to reference Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002;54:161-202.PubMedCrossRef Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002;54:161-202.PubMedCrossRef
44.
go back to reference Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003;302:84-88.PubMedCrossRef Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003;302:84-88.PubMedCrossRef
45.
go back to reference Rodriguez JJ, Mackie K, Pickel VM. Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci 2001;21:823-833.PubMed Rodriguez JJ, Mackie K, Pickel VM. Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci 2001;21:823-833.PubMed
46.
go back to reference Molina-Holgado E, Vela JM, Arévalo-Martín A, et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 2002;22:9742-9753.PubMed Molina-Holgado E, Vela JM, Arévalo-Martín A, et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 2002;22:9742-9753.PubMed
47.
go back to reference Skosnik PD, Edwards CR, O’Donnell BF, et al. Cannabis use disrupts eyeblink conditioning: evidence for cannabinoid modulation of cerebellar-dependent learning. Neuropsychopharmacology 2008;33:1432-1440.PubMedCentralPubMedCrossRef Skosnik PD, Edwards CR, O’Donnell BF, et al. Cannabis use disrupts eyeblink conditioning: evidence for cannabinoid modulation of cerebellar-dependent learning. Neuropsychopharmacology 2008;33:1432-1440.PubMedCentralPubMedCrossRef
48.
go back to reference Kishimoto Y, Kano M. Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 2006;26:8829-8837.PubMedCrossRef Kishimoto Y, Kano M. Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 2006;26:8829-8837.PubMedCrossRef
49.
go back to reference Steinmetz AB, Edwards CR, Vollmer JM, et al. Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans. Psychopharmacology (Berl) 2012;221:133-141.CrossRef Steinmetz AB, Edwards CR, Vollmer JM, et al. Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans. Psychopharmacology (Berl) 2012;221:133-141.CrossRef
51.
go back to reference Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 1985;60:87-98.PubMedCrossRef Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 1985;60:87-98.PubMedCrossRef
53.
go back to reference Yoshida T, Fukaya M, Uchigashima M, et al. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 2006;26:4740-4751.PubMedCrossRef Yoshida T, Fukaya M, Uchigashima M, et al. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 2006;26:4740-4751.PubMedCrossRef
54.
go back to reference Tanimura A, Yamazaki M, Hashimotodani Y, et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 2010;65:320-327.PubMedCrossRef Tanimura A, Yamazaki M, Hashimotodani Y, et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase α mediates retrograde suppression of synaptic transmission. Neuron 2010;65:320-327.PubMedCrossRef
55.
go back to reference Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 2014;29:1-8.PubMedCrossRef Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Curr Opin Neurobiol 2014;29:1-8.PubMedCrossRef
56.
go back to reference Gao Y, Vasilyev DV, Goncalves MB, et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 2010;30:2017-2024.PubMedCrossRef Gao Y, Vasilyev DV, Goncalves MB, et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 2010;30:2017-2024.PubMedCrossRef
57.
go back to reference Di Marzo V, Breivogel CS, Tao Q, et al. Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. J Neurochem 2000;75:2434-2444.PubMedCrossRef Di Marzo V, Breivogel CS, Tao Q, et al. Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. J Neurochem 2000;75:2434-2444.PubMedCrossRef
58.
go back to reference Herkenham M, Lynn A, Johnson M, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991;11:563-583.PubMed Herkenham M, Lynn A, Johnson M, et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991;11:563-583.PubMed
59.
go back to reference Pertwee RG, Howlett a C, Abood ME, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol Rev 2010;62:588-631.PubMedCentralPubMedCrossRef Pertwee RG, Howlett a C, Abood ME, et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. Pharmacol Rev 2010;62:588-631.PubMedCentralPubMedCrossRef
60.
go back to reference Calabresi P, Picconi B, Tozzi A, et al. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014;17:1022-1030.PubMedCrossRef Calabresi P, Picconi B, Tozzi A, et al. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 2014;17:1022-1030.PubMedCrossRef
61.
go back to reference Van Der Stelt M, Di Marzo V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 2003;480:133-150.PubMedCrossRef Van Der Stelt M, Di Marzo V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 2003;480:133-150.PubMedCrossRef
63.
go back to reference Farlow J, Pankratz ND, Wojcieszek J, Foroud T. Parkinson disease overview. In: Pagon RA, Adam MP, Ardinger HH, et al. (eds) GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2015. 2004 May 25 [updated 2014 Feb 27]. Farlow J, Pankratz ND, Wojcieszek J, Foroud T. Parkinson disease overview. In: Pagon RA, Adam MP, Ardinger HH, et al. (eds) GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2015. 2004 May 25 [updated 2014 Feb 27].
64.
go back to reference García-Arencibia M, García C, Fernández-Ruiz J. Cannabinoids and Parkinson’ s disease. CNS Neurol Disord Drug Targets 2009;8:432-439.PubMedCrossRef García-Arencibia M, García C, Fernández-Ruiz J. Cannabinoids and Parkinson’ s disease. CNS Neurol Disord Drug Targets 2009;8:432-439.PubMedCrossRef
65.
go back to reference Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 2000;62:63-88.PubMedCrossRef Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 2000;62:63-88.PubMedCrossRef
66.
go back to reference Schapira AHV, Tolosa E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 2010;6:309-317.PubMedCrossRef Schapira AHV, Tolosa E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 2010;6:309-317.PubMedCrossRef
67.
go back to reference Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011;15:2605-2641.PubMedCrossRef Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011;15:2605-2641.PubMedCrossRef
68.
go back to reference Romero J, Lastres-Becker I, de Miguel R, et al. The endogenous cannabinoid system and the basal ganglia. biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 2002;95:137-152.PubMedCrossRef Romero J, Lastres-Becker I, de Miguel R, et al. The endogenous cannabinoid system and the basal ganglia. biochemical, pharmacological, and therapeutic aspects. Pharmacol Ther 2002;95:137-152.PubMedCrossRef
69.
go back to reference Chiurchiù V, Leuti A, Maccarrone M. Cannabinoid signaling and neuroinflammatory diseases: a melting pot for the regulation of brain immune responses. J Neuroimmune Pharmacol 2015;10:268-280.PubMedCrossRef Chiurchiù V, Leuti A, Maccarrone M. Cannabinoid signaling and neuroinflammatory diseases: a melting pot for the regulation of brain immune responses. J Neuroimmune Pharmacol 2015;10:268-280.PubMedCrossRef
70.
go back to reference Lastres-Becker I, Cebeira M, de Ceballos ML, et al. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci 2001;14:1827-1832.PubMedCrossRef Lastres-Becker I, Cebeira M, de Ceballos ML, et al. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci 2001;14:1827-1832.PubMedCrossRef
71.
go back to reference García-Arencibia M, García C, Kurz A, et al. Cannabinoid CB1 receptors are early downregulated followed by a further upregulation in the basal ganglia of mice with deletion of specific park genes. J Neural Transm Suppl 2009;(73):269-275.PubMed García-Arencibia M, García C, Kurz A, et al. Cannabinoid CB1 receptors are early downregulated followed by a further upregulation in the basal ganglia of mice with deletion of specific park genes. J Neural Transm Suppl 2009;(73):269-275.PubMed
72.
go back to reference Meschler JP, Howlet TAC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl) 2001;156:79-85.CrossRef Meschler JP, Howlet TAC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl) 2001;156:79-85.CrossRef
73.
go back to reference Pinna A, Bonaventura J, Farré D, et al. L-DOPA disrupts adenosine A2A-cannabinoid CB1-dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Exp Neurol 2014;253:180-191.PubMedCrossRef Pinna A, Bonaventura J, Farré D, et al. L-DOPA disrupts adenosine A2A-cannabinoid CB1-dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: Biochemical and behavioral studies. Exp Neurol 2014;253:180-191.PubMedCrossRef
75.
go back to reference Venderová K, Ružička E, Vorřísšek V, Višňovský P. Survey on cannabis use in Parkinson’s disease: Subjective improvement of motor symptoms. Mov Disord 2004;19:1102-1106.PubMedCrossRef Venderová K, Ružička E, Vorřísšek V, Višňovský P. Survey on cannabis use in Parkinson’s disease: Subjective improvement of motor symptoms. Mov Disord 2004;19:1102-1106.PubMedCrossRef
76.
go back to reference Sañudo-Peña MC, Tsou K, Walker JM. Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci 1999;65:703-713.PubMedCrossRef Sañudo-Peña MC, Tsou K, Walker JM. Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci 1999;65:703-713.PubMedCrossRef
77.
go back to reference Sañudo-Peña MC, Patrick SL, Khen S, et al. Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett 1998;248:171-174.PubMedCrossRef Sañudo-Peña MC, Patrick SL, Khen S, et al. Cannabinoid effects in basal ganglia in a rat model of Parkinson’s disease. Neurosci Lett 1998;248:171-174.PubMedCrossRef
78.
go back to reference Price DA, Owens WA, Gould GG, et al. CB1-independent inhibition of dopamine transporter activity by cannabinoids in mouse dorsal striatum. J Neurochem 2007;101:389-396.PubMedCrossRef Price DA, Owens WA, Gould GG, et al. CB1-independent inhibition of dopamine transporter activity by cannabinoids in mouse dorsal striatum. J Neurochem 2007;101:389-396.PubMedCrossRef
79.
go back to reference Chen N, Appell M, Berfield JL, Reith MEA. Inhibition by arachidonic acid and other fatty acids of dopamine uptake at the human dopamine transporter. Eur J Pharmacol 2003;478:89-95.PubMedCrossRef Chen N, Appell M, Berfield JL, Reith MEA. Inhibition by arachidonic acid and other fatty acids of dopamine uptake at the human dopamine transporter. Eur J Pharmacol 2003;478:89-95.PubMedCrossRef
80.
go back to reference Heumann R, Moratalla R, Herrero MT, et al. Dyskinesia in Parkinson’s disease: Mechanisms and current non-pharmacological interventions. J Neurochem 2014;130:472-489.PubMedCrossRef Heumann R, Moratalla R, Herrero MT, et al. Dyskinesia in Parkinson’s disease: Mechanisms and current non-pharmacological interventions. J Neurochem 2014;130:472-489.PubMedCrossRef
81.
go back to reference Müller-Vahl KR, Kolbe H, Schneider U, Emrich HM. Cannabis in movement disorders. Forsch Komplementarmed 1999;6(Suppl. 3):23-27.PubMedCrossRef Müller-Vahl KR, Kolbe H, Schneider U, Emrich HM. Cannabis in movement disorders. Forsch Komplementarmed 1999;6(Suppl. 3):23-27.PubMedCrossRef
82.
go back to reference Consroe P. Brain cannabinoid systems as targets for the therapy of neurological disorders. Neurobiol Dis 1998;5:534-551.PubMedCrossRef Consroe P. Brain cannabinoid systems as targets for the therapy of neurological disorders. Neurobiol Dis 1998;5:534-551.PubMedCrossRef
83.
go back to reference Samuel M, Rodriguez-Oroz M, Antonini A, et al. Management of impulse control disorders in Parkinson’s disease: controversies and future approaches. Mov Disord 2015;30:150-159.PubMedCrossRef Samuel M, Rodriguez-Oroz M, Antonini A, et al. Management of impulse control disorders in Parkinson’s disease: controversies and future approaches. Mov Disord 2015;30:150-159.PubMedCrossRef
84.
go back to reference Lotan I, Treves TA, Roditi Y, Djaldetti R. Cannabis (medical marijuana) treatment for motor and non–motor symptoms of Parkinson disease. Clin Neuropharmacol 2014;37:41-44.PubMedCrossRef Lotan I, Treves TA, Roditi Y, Djaldetti R. Cannabis (medical marijuana) treatment for motor and non–motor symptoms of Parkinson disease. Clin Neuropharmacol 2014;37:41-44.PubMedCrossRef
86.
go back to reference Consroe P, Musty R, Rein J, et al. The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur Neurol 1997;38:44-48.PubMedCrossRef Consroe P, Musty R, Rein J, et al. The perceived effects of smoked cannabis on patients with multiple sclerosis. Eur Neurol 1997;38:44-48.PubMedCrossRef
87.
go back to reference Ungerleider JT, Andyrsiak T, Fairbanks L, et al. Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse 1987;7:39-50.PubMedCrossRef Ungerleider JT, Andyrsiak T, Fairbanks L, et al. Delta-9-THC in the treatment of spasticity associated with multiple sclerosis. Adv Alcohol Subst Abuse 1987;7:39-50.PubMedCrossRef
88.
89.
90.
go back to reference Cabranes A, Venderova K, de Lago E, et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol Dis 2005;20:207-217.PubMedCrossRef Cabranes A, Venderova K, de Lago E, et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol Dis 2005;20:207-217.PubMedCrossRef
92.
go back to reference Meinck HM, Schönle PW, Conrad B. Effect of cannabinoids on spasticity and ataxia in multiple sclerosis. J Neurol 1989;236:120-122.PubMedCrossRef Meinck HM, Schönle PW, Conrad B. Effect of cannabinoids on spasticity and ataxia in multiple sclerosis. J Neurol 1989;236:120-122.PubMedCrossRef
93.
go back to reference De Lago E, Moreno-Martet M, Cabranes A, et al. Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology 2012;62:2299-2308.PubMedCrossRef De Lago E, Moreno-Martet M, Cabranes A, et al. Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology 2012;62:2299-2308.PubMedCrossRef
94.
go back to reference Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015;30:313-327.PubMedCrossRef Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015;30:313-327.PubMedCrossRef
95.
go back to reference Buccellato E, Carretta D, Utan A, et al. Acute and chronic cannabinoid extracts administration affects motor function in a CREAE model of multiple sclerosis. J Ethnopharmacol 2011;133:1033-1038.PubMedCrossRef Buccellato E, Carretta D, Utan A, et al. Acute and chronic cannabinoid extracts administration affects motor function in a CREAE model of multiple sclerosis. J Ethnopharmacol 2011;133:1033-1038.PubMedCrossRef
96.
go back to reference Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): Multicentre randomised placebo-controlled trial. Lancet 2003;362:1517-1526.PubMedCrossRef Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): Multicentre randomised placebo-controlled trial. Lancet 2003;362:1517-1526.PubMedCrossRef
97.
go back to reference Wade DT, Makela P, Robson P, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004;10:434-441.PubMedCrossRef Wade DT, Makela P, Robson P, et al. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients. Mult Scler 2004;10:434-441.PubMedCrossRef
98.
99.
go back to reference Fox P, Bain PG, Glickman S, et al. The effect of cannabis on tremor in patients with multiple sclerosis. Neurology 2004;62:1105-1109.PubMedCrossRef Fox P, Bain PG, Glickman S, et al. The effect of cannabis on tremor in patients with multiple sclerosis. Neurology 2004;62:1105-1109.PubMedCrossRef
100.
go back to reference Koppel BS, Brust JCM, Fife T, et al. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014;82:1556-1563.PubMedCentralPubMedCrossRef Koppel BS, Brust JCM, Fife T, et al. Systematic review: Efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2014;82:1556-1563.PubMedCentralPubMedCrossRef
101.
go back to reference Berrendero F, Sanchez A, Cabranes A, et al. Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 2001;41:195-202.PubMedCrossRef Berrendero F, Sanchez A, Cabranes A, et al. Changes in cannabinoid CB1 receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 2001;41:195-202.PubMedCrossRef
102.
go back to reference Martin JB. Huntington’s disease: new approaches to an old problem. The Robert Wartenberg lecture. Neurology 1984;34:1059-1072.PubMedCrossRef Martin JB. Huntington’s disease: new approaches to an old problem. The Robert Wartenberg lecture. Neurology 1984;34:1059-1072.PubMedCrossRef
103.
go back to reference Folstein SE, Leigh RJ, Parhad IM, Folstein MF. The diagnosis of Huntington’s disease. Neurology 1986;36:1279-1283.PubMedCrossRef Folstein SE, Leigh RJ, Parhad IM, Folstein MF. The diagnosis of Huntington’s disease. Neurology 1986;36:1279-1283.PubMedCrossRef
104.
go back to reference Lastres-Becker I, Hansen HH, Berrendero F, et al. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 2002;44:23-35.PubMedCrossRef Lastres-Becker I, Hansen HH, Berrendero F, et al. Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 2002;44:23-35.PubMedCrossRef
105.
go back to reference Pazos MR, Sagredo O, Fernández-Ruiz J. The endocannabinoid system in Huntington’s disease. Curr Pharm Des 2008;14:2317-2325.PubMedCrossRef Pazos MR, Sagredo O, Fernández-Ruiz J. The endocannabinoid system in Huntington’s disease. Curr Pharm Des 2008;14:2317-2325.PubMedCrossRef
106.
go back to reference Makowiecka J, Wielgus K. Therapeutic potential of cannabinoids—perspectives for the future. J Nat Fibers 2014;11:283-311.CrossRef Makowiecka J, Wielgus K. Therapeutic potential of cannabinoids—perspectives for the future. J Nat Fibers 2014;11:283-311.CrossRef
107.
go back to reference Richfield EK, Herkenham M. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 1994;36:577-584.PubMedCrossRef Richfield EK, Herkenham M. Selective vulnerability in Huntington’s disease: preferential loss of cannabinoid receptors in lateral globus pallidus. Ann Neurol 1994;36:577-584.PubMedCrossRef
108.
go back to reference Sandyk R, Consroe P, Stern LZ, et al. Effects of cannabidiol in Huntington’s disease. Neurology 1986;36:342. Sandyk R, Consroe P, Stern LZ, et al. Effects of cannabidiol in Huntington’s disease. Neurology 1986;36:342.
110.
go back to reference Consroe P, Laguna J, Allender J, et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 1991;40:701-708.PubMedCrossRef Consroe P, Laguna J, Allender J, et al. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 1991;40:701-708.PubMedCrossRef
111.
go back to reference Muller-Vahl KR, Schneider U, Emrich HM. Nabilone increases choreatic movements in Huntington’s disease. Mov Disord 1999;14:1038-1040.PubMedCrossRef Muller-Vahl KR, Schneider U, Emrich HM. Nabilone increases choreatic movements in Huntington’s disease. Mov Disord 1999;14:1038-1040.PubMedCrossRef
112.
go back to reference Curtis A, Rickards H. Nabilone could treat chorea and irritability in Huntington’s disease. J Neuropsychiatry Clin Neurosci 2006;18:553-554.PubMedCrossRef Curtis A, Rickards H. Nabilone could treat chorea and irritability in Huntington’s disease. J Neuropsychiatry Clin Neurosci 2006;18:553-554.PubMedCrossRef
113.
go back to reference Chesher GB, Consroe P, Musty RE. Marijuana: an international research report. In: Proceedings of the Melbourne Symposium on Cannabis, 2–4 September 1987. Government Publishing Service, Canberra, 1988. Chesher GB, Consroe P, Musty RE. Marijuana: an international research report. In: Proceedings of the Melbourne Symposium on Cannabis, 2–4 September 1987. Government Publishing Service, Canberra, 1988.
114.
go back to reference Curtis A, Mitchell I, Patel S, et al. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord 2009;24:2254-2259.PubMedCrossRef Curtis A, Mitchell I, Patel S, et al. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord 2009;24:2254-2259.PubMedCrossRef
115.
go back to reference Sagredo O, Pazos MR, Satta V, et al. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease. J Neurosci Res 2011;89:1509-1518.PubMedCrossRef Sagredo O, Pazos MR, Satta V, et al. Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease. J Neurosci Res 2011;89:1509-1518.PubMedCrossRef
116.
go back to reference Sagredo O, Ruth Pazos M, Valdeolivas S, Fernandez-Ruiz J. Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Pat CNS Drug Discov 2012;7:41-48.PubMedCrossRef Sagredo O, Ruth Pazos M, Valdeolivas S, Fernandez-Ruiz J. Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Pat CNS Drug Discov 2012;7:41-48.PubMedCrossRef
117.
go back to reference DeSanty KP, Dar MS Cannabinoid-induced motor incoordination through the cerebellar CB(1) receptor in mice. Pharmacol Biochem Behav 2001;69:251-259.PubMedCrossRef DeSanty KP, Dar MS Cannabinoid-induced motor incoordination through the cerebellar CB(1) receptor in mice. Pharmacol Biochem Behav 2001;69:251-259.PubMedCrossRef
118.
go back to reference Patel S, Hillard CJ. Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J Pharmacol Exp Ther 2001;297:629-637.PubMed Patel S, Hillard CJ. Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J Pharmacol Exp Ther 2001;297:629-637.PubMed
119.
go back to reference Wang X, Whalley BJ, Stephens GJ. The du(2J) mouse model of ataxia and absence epilepsy has deficient cannabinoid CB1 receptor-mediated signalling. J Physiol 2013;591:3919-3933.PubMedCentralPubMedCrossRef Wang X, Whalley BJ, Stephens GJ. The du(2J) mouse model of ataxia and absence epilepsy has deficient cannabinoid CB1 receptor-mediated signalling. J Physiol 2013;591:3919-3933.PubMedCentralPubMedCrossRef
120.
go back to reference Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 2012;133:79-97.PubMedCrossRef Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 2012;133:79-97.PubMedCrossRef
121.
go back to reference Mievis S, Blum D, Ledent C. Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiol Dis 2011;42:524-529.PubMedCrossRef Mievis S, Blum D, Ledent C. Worsening of Huntington disease phenotype in CB1 receptor knockout mice. Neurobiol Dis 2011;42:524-529.PubMedCrossRef
Metadata
Title
Cannabinoids and Tremor Induced by Motor-related Disorders: Friend or Foe?
Authors
Shokouh Arjmand
Zohreh Vaziri
Mina Behzadi
Hassan Abbassian
Gary J. Stephens
Mohammad Shabani
Publication date
01-10-2015
Publisher
Springer US
Published in
Neurotherapeutics / Issue 4/2015
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0367-5

Other articles of this Issue 4/2015

Neurotherapeutics 4/2015 Go to the issue