Skip to main content
Top
Published in: Diabetes Therapy 1/2021

Open Access 01-01-2021 | Sitagliptin | Brief Report

A Prospective, Open-Label Short-Term Pilot Study on Modification of the Skin Hydration Status During Treatment With a Sodium-Glucose Cotransporter-2 Inhibitor

Authors: Yuji Tezuka, Osamu Sekine, Akiko Hirano, Yukako Hanada, Ikuhisa Nakanishi, Misaki Ariga, Choka Azuma, Yukako Yamamoto, Jun Ito-Kobayashi, Miki Washiyama, Masanori Iwanishi, Miyuki Furuta, Masao Kanamori, Akira Shimatsu, Atsunori Kashiwagi

Published in: Diabetes Therapy | Issue 1/2021

Login to get access

Abstract

Introduction

Various types of skin lesions with pruritus have been reported in participants of Asian clinical trials on sodium-glucose cotransporter-2 (SGLT2) inhibitors. The aim of this study was to determine whether the diuretic effect of a SGLT2 inhibitor could modify skin hydration status in patients with type 2 diabetes mellitus.

Methods

A prospective, short-term, open-label, two-parallel-arm, pilot study was conducted. Eligible patients were assigned to either a SGLT2 inhibitor (50 mg ipragliflozin once daily) group or to a dipeptidyl peptidase-4 inhibitor (50 mg sitagliptin once daily) group (control). The biophysical characteristics of the skin were measured and blood chemistry tests were run in all participants 1 day prior to medication initiation (pre-treatment values) and 14 days thereafter (post-treatment values).

Results

Fourteen patients were enrolled in the study, of whom eight were in the ipragliflozin group and six in the sitagliptin group. Compared to the pre-treatment values, the glycated hemoglobin (HbA1c) levels were slightly but significantly reduced in the ipragliflozin group (p = 0.02), but the changes in HbA1c from the pre-treatment to post-treatment time points did not significantly differ between the two treatment groups. Serum 3-hydroxy butyrate levels were significantly higher in the ipragliflozin group than in the sitagliptin group (p < 0.02). Neither electrical capacitance nor electrical conductance of the stratum corneum (SC), parameters that reflect skin water content, was reduced by 14 days of ipragliflozin treatment; similarly, no changes in these parameters were found in the sitagliptin control group. There was also no difference in the changes in water barrier function of the SC between the two treatment groups. There was a significant linear correlation (p < 0.01) in skin water content at pre-treatment and that 14 days after treatment with each drug, respectively.

Conclusion

Ipragliflozin treatment for 14 days did not significantly affect the skin hydration status in patients with well-controlled type 2 diabetes mellitus.
Literature
1.
go back to reference DeFronzo RA, Hompesch M, Kasichayanula S, et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care. 2013;12(36):3169–76.CrossRef DeFronzo RA, Hompesch M, Kasichayanula S, et al. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care. 2013;12(36):3169–76.CrossRef
3.
go back to reference Kashiwagi A, Sakatani T, Nakamura I, et al. Improved cardiometabolic risk factors in Japanese patients with type 2 diabetes treated with ipragliflozin: a pooled analysis of six randomized, placebo-controlled trials. Endocr J. 2018;65:691–705.CrossRef Kashiwagi A, Sakatani T, Nakamura I, et al. Improved cardiometabolic risk factors in Japanese patients with type 2 diabetes treated with ipragliflozin: a pooled analysis of six randomized, placebo-controlled trials. Endocr J. 2018;65:691–705.CrossRef
4.
go back to reference Kashiwagi A, Maegawa H. Metabolic and hemodynamic effects of sodium dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J Diabetes Investig. 2017;8:416–27.CrossRef Kashiwagi A, Maegawa H. Metabolic and hemodynamic effects of sodium dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus. J Diabetes Investig. 2017;8:416–27.CrossRef
6.
go back to reference Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRef Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.CrossRef
7.
go back to reference Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRef Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.CrossRef
8.
go back to reference Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.CrossRef Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.CrossRef
9.
go back to reference Yokote K, Terauchi Y, Nakamura I, et al. Real-world evidence for the safety of ipragliflozin in elderly Japanese patients with type 2 diabetes mellitus (STELLA-ELDER): final results of a post-marketing surveillance study. Expert Opin Pharmacother. 2016;17:1995–2003.CrossRef Yokote K, Terauchi Y, Nakamura I, et al. Real-world evidence for the safety of ipragliflozin in elderly Japanese patients with type 2 diabetes mellitus (STELLA-ELDER): final results of a post-marketing surveillance study. Expert Opin Pharmacother. 2016;17:1995–2003.CrossRef
10.
go back to reference Lu CH, Min KW, Chuang LM, et al. Efficacy, safety, and tolerability of ipragliflozin in Asian patients with type 2 diabetes mellitus and inadequate glycemic control with metformin: results of a phase 3 randomized, placebo-controlled, double-blind, multicenter trial. J Diabetes Investig. 2016;7:366–73.CrossRef Lu CH, Min KW, Chuang LM, et al. Efficacy, safety, and tolerability of ipragliflozin in Asian patients with type 2 diabetes mellitus and inadequate glycemic control with metformin: results of a phase 3 randomized, placebo-controlled, double-blind, multicenter trial. J Diabetes Investig. 2016;7:366–73.CrossRef
11.
go back to reference Yabe D, Nishikino R, Kaneko M, et al. Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: considerations for their appropriate use to avoid serious adverse events. Expert Opin Drug Saf. 2015;14:795–800.CrossRef Yabe D, Nishikino R, Kaneko M, et al. Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: considerations for their appropriate use to avoid serious adverse events. Expert Opin Drug Saf. 2015;14:795–800.CrossRef
12.
go back to reference Tanaka H, Takano K, Iijima H, et al. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther. 2017;34:436–51.CrossRef Tanaka H, Takano K, Iijima H, et al. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv Ther. 2017;34:436–51.CrossRef
13.
go back to reference Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20:479–87.CrossRef Hallow KM, Helmlinger G, Greasley PJ, et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20:479–87.CrossRef
14.
go back to reference Mekic S, Jacobs LC, Gunn DA, et al. Prevalence and determinants for xerosis cutis in the middle-aged and elderly population: a cross-sectional study. J Am Acad Dermatol. 2019;81(4):963-9.e2. Mekic S, Jacobs LC, Gunn DA, et al. Prevalence and determinants for xerosis cutis in the middle-aged and elderly population: a cross-sectional study. J Am Acad Dermatol. 2019;81(4):963-9.e2.
15.
go back to reference Lumbers Heerspink HJ, deZeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62.CrossRef Lumbers Heerspink HJ, deZeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15:853–62.CrossRef
16.
go back to reference Seirafi H1, Farsinejad K, Firooz A, et al. Biophysical characteristics of skin in diabetes: a controlled study. J Eur Acad Dermatol Venereol. 2009; 23:146–9. Seirafi H1, Farsinejad K, Firooz A, et al. Biophysical characteristics of skin in diabetes: a controlled study. J Eur Acad Dermatol Venereol. 2009; 23:146–9.
17.
go back to reference Sakai S, Kikuchi K, Satoh J, et al. Functional properties of the stratum corneum in patients with diabetes mellitus: similarities to senile xerosis. Br J Dermatol. 2005;153:319–23.CrossRef Sakai S, Kikuchi K, Satoh J, et al. Functional properties of the stratum corneum in patients with diabetes mellitus: similarities to senile xerosis. Br J Dermatol. 2005;153:319–23.CrossRef
18.
go back to reference du Plessis J1, Stefaniak A, Eloff F, et al. International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 2. transepidermal water loss and skin hydration. Skin Res Technol. 2013;19:265–78. du Plessis J1, Stefaniak A, Eloff F, et al. International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 2. transepidermal water loss and skin hydration. Skin Res Technol. 2013;19:265–78.
19.
go back to reference Clarys P, Clijsen R, Taeymans J, et al. Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer CM 825®) and the impedance method (Skicon-200EX®). Skin Res Technol. 2012;18:316–23.CrossRef Clarys P, Clijsen R, Taeymans J, et al. Hydration measurements of the stratum corneum: comparison between the capacitance method (digital version of the Corneometer CM 825®) and the impedance method (Skicon-200EX®). Skin Res Technol. 2012;18:316–23.CrossRef
20.
go back to reference Tagami H, Ohi M, Iwatsuki K, et al. Evaluation of the skin surface hydration in vivo by electrical measurement. J Invest Dermatol. 1980;75:500–7.CrossRef Tagami H, Ohi M, Iwatsuki K, et al. Evaluation of the skin surface hydration in vivo by electrical measurement. J Invest Dermatol. 1980;75:500–7.CrossRef
21.
go back to reference Rogiers V, EEMCO Group. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol. 2001;14:117–28.CrossRef Rogiers V, EEMCO Group. EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Skin Physiol. 2001;14:117–28.CrossRef
22.
go back to reference Sha S, Devineni D, Ghosh A, et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increase urinary glucose excretion in healthy subjects. Diabetes Obes Metab. 2011;13:669–72.CrossRef Sha S, Devineni D, Ghosh A, et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increase urinary glucose excretion in healthy subjects. Diabetes Obes Metab. 2011;13:669–72.CrossRef
Metadata
Title
A Prospective, Open-Label Short-Term Pilot Study on Modification of the Skin Hydration Status During Treatment With a Sodium-Glucose Cotransporter-2 Inhibitor
Authors
Yuji Tezuka
Osamu Sekine
Akiko Hirano
Yukako Hanada
Ikuhisa Nakanishi
Misaki Ariga
Choka Azuma
Yukako Yamamoto
Jun Ito-Kobayashi
Miki Washiyama
Masanori Iwanishi
Miyuki Furuta
Masao Kanamori
Akira Shimatsu
Atsunori Kashiwagi
Publication date
01-01-2021
Publisher
Springer Healthcare
Published in
Diabetes Therapy / Issue 1/2021
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-020-00950-7

Other articles of this Issue 1/2021

Diabetes Therapy 1/2021 Go to the issue