Skip to main content
Top
Published in: Diabetes Therapy 3/2018

Open Access 01-06-2018 | Original Research

Comparison of Glycemic Variability in Chinese T2DM Patients Treated with Exenatide or Insulin Glargine: A Randomized Controlled Trial

Authors: Ting-Ting Yin, Yan Bi, Ping Li, Shan-Mei Shen, Xiao-Lu Xiong, Li-Jun Gao, Can Jiang, Yan Wang, Wen-Huan Feng, Da-Long Zhu

Published in: Diabetes Therapy | Issue 3/2018

Login to get access

Abstract

Introduction

Increasing the frequency of blood glucose monitoring aids the evaluation of glycemic variability and blood glucose control by antidiabetic drugs. It remains unclear, however, whether GLP-1 receptor agonists or basal insulin has a better effect on glycemic variability in type 2 diabetes mellitus (T2DM) patients who are inadequately controlled by metformin. We used a continuous glucose monitoring system (CGMS) to compare patients on a GLP-1 receptor agonist with patients on basal insulin in terms of glycemic variability.

Methods

This prospective randomized study assigned T2DM patients treated with metformin (N = 39) to either exenatide treatment or insulin glargine treatment for 16 weeks. Glycemic variability was assessed using a CGMS; hemoglobin A1c (HbA1c), β-cell function, weight, body mass index (BMI), and waist circumference were also evaluated.

Results

Mean blood glucose level, continuous overlapping net glycemic action, mean amplitude of glycemic excursions, percentage of the time that the blood glucose value was > 10.0 mmol/L, and highest blood glucose level (P  < 0.01–0.05) significantly decreased in both groups. Standard deviation of the mean glucose value, largest amplitude of glycemic excursions, and waist circumference significantly decreased for those treated with exenatide (P  < 0.05), while no changes were observed with insulin glargine treatment. Percentage of the time that the blood glucose value was > 7.8 mmol/L decreased after insulin glargine use (P  < 0.05) but not with the exenatide intervention. Similar decreases in fasting blood glucose and HbA1c and increases in the 1/homeostasis model assessment of insulin resistance, disposition index 30, and disposition index 120 were observed in both groups (P  < 0.01–0.05). Reductions in weight and BMI were greater with exenatide than with insulin glargine treatment (P  < 0.05).

Conclusions

In overweight and obese patients with T2DM inadequately controlled by metformin, exenatide and insulin glargine have similar efficacies in terms of glycemic variability, HbA1c alleviation, and β-cell function, but exenatide has a greater effect on body weight and BMI.
Literature
1.
go back to reference Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev. 2010;31(2):171–82.CrossRef Siegelaar SE, Holleman F, Hoekstra JB, DeVries JH. Glucose variability; does it matter? Endocr Rev. 2010;31(2):171–82.CrossRef
2.
go back to reference Jin YP, Su XF, Yin GP, et al. Blood glucose fluctuations in hemodialysis patients with end stage diabetic nephropathy. J Diabetes Complicat. 2015;29(3):395–9.CrossRef Jin YP, Su XF, Yin GP, et al. Blood glucose fluctuations in hemodialysis patients with end stage diabetic nephropathy. J Diabetes Complicat. 2015;29(3):395–9.CrossRef
3.
go back to reference Lee MK, Lee KH, Yoo SH, Park CY. Impact of initial active engagement in self-monitoring with a telemonitoring device on glycemic control among patients with type 2 diabetes. Sci Rep. 2017;7(1):3866.CrossRef Lee MK, Lee KH, Yoo SH, Park CY. Impact of initial active engagement in self-monitoring with a telemonitoring device on glycemic control among patients with type 2 diabetes. Sci Rep. 2017;7(1):3866.CrossRef
4.
go back to reference Tildesley HD, Mazanderani AB, Ross SA. Effect of Internet therapeutic intervention on A1C levels in patients with type 2 diabetes treated with insulin. Diabetes Care. 2010;33(8):1738–40.CrossRef Tildesley HD, Mazanderani AB, Ross SA. Effect of Internet therapeutic intervention on A1C levels in patients with type 2 diabetes treated with insulin. Diabetes Care. 2010;33(8):1738–40.CrossRef
5.
go back to reference Clar C, Barnard K, Cummins E, Royle P, Waugh N, Aberdeen Health Technology Assessment Group. Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Assess. 2010;14(12):1–140. Clar C, Barnard K, Cummins E, Royle P, Waugh N, Aberdeen Health Technology Assessment Group. Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Assess. 2010;14(12):1–140.
6.
go back to reference Malanda UL, Bot SD, Nijpels G. Self-monitoring of blood glucose in noninsulin-using type 2 diabetic patients: it is time to face the evidence. Diabetes Care. 2013;36(1):176–8.CrossRef Malanda UL, Bot SD, Nijpels G. Self-monitoring of blood glucose in noninsulin-using type 2 diabetic patients: it is time to face the evidence. Diabetes Care. 2013;36(1):176–8.CrossRef
7.
go back to reference Levy JC, Davies MJ, Holman RR, Group TS. Continuous glucose monitoring detected hypoglycaemia in the Treating to Target in Type 2 Diabetes Trial (4-T). Diabetes Res Clin Pract. 2017;131:161–8.CrossRef Levy JC, Davies MJ, Holman RR, Group TS. Continuous glucose monitoring detected hypoglycaemia in the Treating to Target in Type 2 Diabetes Trial (4-T). Diabetes Res Clin Pract. 2017;131:161–8.CrossRef
8.
go back to reference Wei Q, Sun Z, Yang Y, Yu H, Ding H, Wang S. Effect of a CGMS and SMBG on maternal and neonatal outcomes in gestational diabetes mellitus: a randomized controlled trial. Sci Rep. 2016;6:19920.CrossRef Wei Q, Sun Z, Yang Y, Yu H, Ding H, Wang S. Effect of a CGMS and SMBG on maternal and neonatal outcomes in gestational diabetes mellitus: a randomized controlled trial. Sci Rep. 2016;6:19920.CrossRef
9.
go back to reference Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.CrossRef Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.CrossRef
10.
go back to reference Di Flaviani A, Picconi F, Di Stefano P, et al. Impact of glycemic and blood pressure variability on surrogate measures of cardiovascular outcomes in type 2 diabetic patients. Diabetes Care. 2011;34(7):1605–9.CrossRef Di Flaviani A, Picconi F, Di Stefano P, et al. Impact of glycemic and blood pressure variability on surrogate measures of cardiovascular outcomes in type 2 diabetic patients. Diabetes Care. 2011;34(7):1605–9.CrossRef
11.
go back to reference Murata GH, Duckworth WC, Shah JH, Wendel CS, Hoffman RM. Sources of glucose variability in insulin-treated type 2 diabetes: the Diabetes Outcomes in Veterans Study (DOVES). Clin Endocrinol. 2004;60(4):451–6.CrossRef Murata GH, Duckworth WC, Shah JH, Wendel CS, Hoffman RM. Sources of glucose variability in insulin-treated type 2 diabetes: the Diabetes Outcomes in Veterans Study (DOVES). Clin Endocrinol. 2004;60(4):451–6.CrossRef
12.
go back to reference Figueira FR, Umpierre D, Casali KR, et al. Aerobic and combined exercise sessions reduce glucose variability in type 2 diabetes: crossover randomized trial. PLoS One. 2013;8(3):e57733.CrossRef Figueira FR, Umpierre D, Casali KR, et al. Aerobic and combined exercise sessions reduce glucose variability in type 2 diabetes: crossover randomized trial. PLoS One. 2013;8(3):e57733.CrossRef
13.
go back to reference Cohen O, Korner A, Chlup R, et al. Improved glycemic control through continuous glucose sensor-augmented insulin pump therapy: prospective results from a community and academic practice patient registry. J Diabetes Sci Technol. 2009;3(4):804–11.CrossRef Cohen O, Korner A, Chlup R, et al. Improved glycemic control through continuous glucose sensor-augmented insulin pump therapy: prospective results from a community and academic practice patient registry. J Diabetes Sci Technol. 2009;3(4):804–11.CrossRef
14.
go back to reference Peterson K, Zapletalova J, Kudlova P, et al. Benefits of three-month continuous glucose monitoring for persons with diabetes using insulin pumps and sensors. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslovakia. 2009;153(1):47–51.CrossRef Peterson K, Zapletalova J, Kudlova P, et al. Benefits of three-month continuous glucose monitoring for persons with diabetes using insulin pumps and sensors. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslovakia. 2009;153(1):47–51.CrossRef
15.
go back to reference Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm—2017 Executive Summary. Endocr Pract. 2017;23(2):207–38.CrossRef Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm—2017 Executive Summary. Endocr Pract. 2017;23(2):207–38.CrossRef
16.
go back to reference Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet. 2014;384(9961):2228–34.CrossRef Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet. 2014;384(9961):2228–34.CrossRef
17.
go back to reference Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med. 2011;154(2):103–12. Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med. 2011;154(2):103–12.
18.
go back to reference Barnett AH, Burger J, Johns D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial. Clin Ther. 2007;29(11):2333–48.CrossRef Barnett AH, Burger J, Johns D, et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial. Clin Ther. 2007;29(11):2333–48.CrossRef
19.
go back to reference McCall AL, Cox DJ, Brodows R, Crean J, Johns D, Kovatchev B. Reduced daily risk of glycemic variability: comparison of exenatide with insulin glargine. Diabetes Technol Therap. 2009;11(6):339–44.CrossRef McCall AL, Cox DJ, Brodows R, Crean J, Johns D, Kovatchev B. Reduced daily risk of glycemic variability: comparison of exenatide with insulin glargine. Diabetes Technol Therap. 2009;11(6):339–44.CrossRef
20.
go back to reference Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(5):355–66.CrossRef Aroda VR, Bain SC, Cariou B, et al. Efficacy and safety of once-weekly semaglutide versus once-daily insulin glargine as add-on to metformin (with or without sulfonylureas) in insulin-naive patients with type 2 diabetes (SUSTAIN 4): a randomised, open-label, parallel-group, multicentre, multinational, phase 3a trial. Lancet Diabetes Endocrinol. 2017;5(5):355–66.CrossRef
21.
go back to reference Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52(10):2046–55.CrossRef Russell-Jones D, Vaag A, Schmitz O, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52(10):2046–55.CrossRef
22.
go back to reference Diamant M, Van Gaal L, Stranks S, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010;375(9733):2234–43.CrossRef Diamant M, Van Gaal L, Stranks S, et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010;375(9733):2234–43.CrossRef
23.
go back to reference Twigg SM, Daja MM, O’Leary BA, Adena MA. Once-daily liraglutide (1.2 mg) compared with twice-daily exenatide (10 mug) in the treatment of type 2 diabetes patients: an indirect treatment comparison meta-analysis. J Diabetes. 2016;8(6):866–76.CrossRef Twigg SM, Daja MM, O’Leary BA, Adena MA. Once-daily liraglutide (1.2 mg) compared with twice-daily exenatide (10 mug) in the treatment of type 2 diabetes patients: an indirect treatment comparison meta-analysis. J Diabetes. 2016;8(6):866–76.CrossRef
24.
go back to reference Meier JJ, Rosenstock J, Hincelin-Mery A, et al. Contrasting effects of lixisenatide and liraglutide on postprandial glycemic control, gastric emptying, and safety parameters in patients with type 2 diabetes on optimized insulin glargine with or without metformin: a randomized, open-label trial. Diabetes Care. 2015;38(7):1263–73.CrossRef Meier JJ, Rosenstock J, Hincelin-Mery A, et al. Contrasting effects of lixisenatide and liraglutide on postprandial glycemic control, gastric emptying, and safety parameters in patients with type 2 diabetes on optimized insulin glargine with or without metformin: a randomized, open-label trial. Diabetes Care. 2015;38(7):1263–73.CrossRef
25.
go back to reference Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15(1):83–96. Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002;15(1):83–96.
26.
go back to reference Murphy KG. Editorial overview: endocrine and metabolic diseases: waistline weapons: new therapeutic avenues for the treatment of obesity and metabolic disease. Curr Opin Pharmacol. 2015;25:iv–vi.CrossRef Murphy KG. Editorial overview: endocrine and metabolic diseases: waistline weapons: new therapeutic avenues for the treatment of obesity and metabolic disease. Curr Opin Pharmacol. 2015;25:iv–vi.CrossRef
27.
go back to reference Li C, Yang H, Tong G, et al. Correlations between A1c, fasting glucose, 2 h postload glucose, and beta-cell function in the Chinese population. Acta Diabetol. 2014;51(4):601–8.CrossRef Li C, Yang H, Tong G, et al. Correlations between A1c, fasting glucose, 2 h postload glucose, and beta-cell function in the Chinese population. Acta Diabetol. 2014;51(4):601–8.CrossRef
28.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRef
29.
go back to reference Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRef Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRef
30.
go back to reference Stancakova A, Javorsky M, Kuulasmaa T, Haffner SM, Kuusisto J, Laakso M. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes. 2009;58(5):1212–21.CrossRef Stancakova A, Javorsky M, Kuulasmaa T, Haffner SM, Kuusisto J, Laakso M. Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men. Diabetes. 2009;58(5):1212–21.CrossRef
31.
go back to reference Pistrosch F, Kohler C, Schaper F, Landgraf W, Forst T, Hanefeld M. Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes. Acta Diabetol. 2013;50(4):587–95.CrossRef Pistrosch F, Kohler C, Schaper F, Landgraf W, Forst T, Hanefeld M. Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes. Acta Diabetol. 2013;50(4):587–95.CrossRef
32.
go back to reference Irace C, Fiorentino R, Carallo C, Scavelli F, Gnasso A. Exenatide improves glycemic variability assessed by continuous glucose monitoring in subjects with type 2 diabetes. Diabetes Technol Therap. 2011;13(12):1261–3.CrossRef Irace C, Fiorentino R, Carallo C, Scavelli F, Gnasso A. Exenatide improves glycemic variability assessed by continuous glucose monitoring in subjects with type 2 diabetes. Diabetes Technol Therap. 2011;13(12):1261–3.CrossRef
33.
go back to reference Heine RJ, Van Gaal LF, Johns D, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2005;143(8):559–69.CrossRef Heine RJ, Van Gaal LF, Johns D, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2005;143(8):559–69.CrossRef
34.
go back to reference Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.CrossRef Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.CrossRef
35.
go back to reference Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRef Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.CrossRef
36.
go back to reference Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.CrossRef Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.CrossRef
37.
go back to reference Cui R, Qi Z, Zhou L, Li Z, Li Q, Zhang J. Evaluation of serum lipid profile, body mass index, and waistline in Chinese patients with type 2 diabetes mellitus. Clin Interv Aging. 2016;11:445–52.PubMedPubMedCentral Cui R, Qi Z, Zhou L, Li Z, Li Q, Zhang J. Evaluation of serum lipid profile, body mass index, and waistline in Chinese patients with type 2 diabetes mellitus. Clin Interv Aging. 2016;11:445–52.PubMedPubMedCentral
Metadata
Title
Comparison of Glycemic Variability in Chinese T2DM Patients Treated with Exenatide or Insulin Glargine: A Randomized Controlled Trial
Authors
Ting-Ting Yin
Yan Bi
Ping Li
Shan-Mei Shen
Xiao-Lu Xiong
Li-Jun Gao
Can Jiang
Yan Wang
Wen-Huan Feng
Da-Long Zhu
Publication date
01-06-2018
Publisher
Springer Healthcare
Published in
Diabetes Therapy / Issue 3/2018
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-018-0412-6

Other articles of this Issue 3/2018

Diabetes Therapy 3/2018 Go to the issue