Skip to main content
Top
Published in: Tumor Biology 8/2016

01-08-2016 | Original Article

Long-noncoding RNAs in basal cell carcinoma

Authors: Michael Sand, Falk G. Bechara, Daniel Sand, Thilo Gambichler, Stephan A. Hahn, Michael Bromba, Eggert Stockfleth, Schapoor Hessam

Published in: Tumor Biology | Issue 8/2016

Login to get access

Abstract

Long noncoding RNAs (lncRNAs) are fundamental regulators of pre- and post-transcriptional gene regulation. Over 35,000 different lncRNAs have been described with some of them being involved in cancer formation. The present study was initiated to describe differentially expressed lncRNAs in basal cell carcinoma (BCC). Patients with BCC (n = 6) were included in this study. Punch biopsies were harvested from the tumor center and nonlesional epidermal skin (NLES, control, n = 6). Microarray-based lncRNA and mRNA expression profiles were identified through screening for 30,586 lncRNAs and 26,109 protein-coding transcripts (mRNAs). The microarray data were validated by RT-PCR in a second set of BCC versus control samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of mRNAs were performed to assess biologically relevant pathways. A total of 1851 lncRNAs were identified as being significantly up-regulated, whereas 2165 lncRNAs were identified as being significantly down-regulated compared to nonlesional skin (p < 0.05). Oncogenic and/or epidermis-specific lncRNAs, such as CASC15 or ANRIL, were among the differentially expressed sequences. GO analysis showed that the highest enriched GO targeted by up-regulated transcripts was “extracellular matrix.” KEGG pathway analysis showed the highest enrichment scores in “Focal adhesion.” BCC showed a significantly altered lncRNA and mRNA expression profile. Dysregulation of previously described lncRNAs may play a role in the molecular pathogenesis of BCC and should be subject of further analysis.
Appendix
Available only for authorised users
Literature
3.
go back to reference Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG. MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci. 2009;53:169–75.CrossRefPubMed Sand M, Gambichler T, Sand D, Skrygan M, Altmeyer P, Bechara FG. MicroRNAs and the skin: tiny players in the body’s largest organ. J Dermatol Sci. 2009;53:169–75.CrossRefPubMed
4.
go back to reference Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, et al. Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 2012;167:847–55.CrossRefPubMed Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, et al. Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 2012;167:847–55.CrossRefPubMed
5.
go back to reference Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P, et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Investig. 2010;28:649–53.CrossRef Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P, et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Investig. 2010;28:649–53.CrossRef
6.
go back to reference Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog. 2012;51:916–22.CrossRefPubMed Sand M, Skrygan M, Georgas D, Arenz C, Gambichler T, Sand D, et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer. Mol Carcinog. 2012;51:916–22.CrossRefPubMed
7.
go back to reference Sand M, Sand D, Altmeyer P, Bechara FG. MicroRNA in non-melanoma skin cancer. Cancer Biomarkers : Sect Dis Markers. 2012;11:253–7.CrossRef Sand M, Sand D, Altmeyer P, Bechara FG. MicroRNA in non-melanoma skin cancer. Cancer Biomarkers : Sect Dis Markers. 2012;11:253–7.CrossRef
8.
go back to reference Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.CrossRefPubMedPubMedCentral Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.CrossRefPubMedPubMedCentral
9.
go back to reference Guo X, Gao L, Wang Y, Chiu DK, Wang T, Deng Y et al. Advances in long noncoding rnas: Identification, structure prediction and function annotation. Brief Funct Genomics 2015, in press Guo X, Gao L, Wang Y, Chiu DK, Wang T, Deng Y et al. Advances in long noncoding rnas: Identification, structure prediction and function annotation. Brief Funct Genomics 2015, in press
10.
go back to reference Hombach S, Kretz M. The non-coding skin: exploring the roles of long non-coding RNAs in epidermal homeostasis and disease. Bioessays. 2013;35:1093–100.CrossRefPubMed Hombach S, Kretz M. The non-coding skin: exploring the roles of long non-coding RNAs in epidermal homeostasis and disease. Bioessays. 2013;35:1093–100.CrossRefPubMed
11.
go back to reference Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–78.CrossRefPubMedPubMedCentral Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet. 2014;23:5866–78.CrossRefPubMedPubMedCentral
12.
go back to reference Li X, Wu Z, Fu X, Han W. LncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res. 2014;762:1–21.CrossRefPubMed Li X, Wu Z, Fu X, Han W. LncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res. 2014;762:1–21.CrossRefPubMed
14.
go back to reference Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26:338–43.CrossRefPubMedPubMedCentral Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26:338–43.CrossRefPubMedPubMedCentral
15.
go back to reference Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, et al. A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell. 2015;32:693–706.CrossRefPubMedPubMedCentral Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, et al. A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell. 2015;32:693–706.CrossRefPubMedPubMedCentral
16.
go back to reference Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143:46–58.CrossRefPubMedPubMedCentral Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143:46–58.CrossRefPubMedPubMedCentral
17.
go back to reference Mazar J, Sinha S, Dinger ME, Mattick JS, Perera RJ. Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent. Mol Genet Genomics : MGG. 2010;284:1–9.CrossRefPubMed Mazar J, Sinha S, Dinger ME, Mattick JS, Perera RJ. Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent. Mol Genet Genomics : MGG. 2010;284:1–9.CrossRefPubMed
19.
go back to reference Hajjari M, Khoshnevisan A, Shin YK. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer. Tumour Biol. 2014;35:10645–63.CrossRefPubMed Hajjari M, Khoshnevisan A, Shin YK. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer. Tumour Biol. 2014;35:10645–63.CrossRefPubMed
20.
go back to reference Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D. The UCSC known genes. Bioinformatics. 2006;22:1036–46.CrossRefPubMed Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D. The UCSC known genes. Bioinformatics. 2006;22:1036–46.CrossRefPubMed
21.
go back to reference Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, Chrast J, et al. GENCODE: producing a reference annotation for encode. Genome Biol. 2006;7(1):1–9. S4.CrossRef Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, Chrast J, et al. GENCODE: producing a reference annotation for encode. Genome Biol. 2006;7(1):1–9. S4.CrossRef
22.
go back to reference Pang KC, Stephen S, Dinger ME, Engstrom PG, Lenhard B, Mattick JS. RNAdb 2.0-—an expanded database of mammalian non-coding RNAs. Nucleic Acids Res. 2007;35:D178–82.CrossRefPubMed Pang KC, Stephen S, Dinger ME, Engstrom PG, Lenhard B, Mattick JS. RNAdb 2.0-—an expanded database of mammalian non-coding RNAs. Nucleic Acids Res. 2007;35:D178–82.CrossRefPubMed
23.
go back to reference Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 2009;37:D122–6.CrossRefPubMed Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 2009;37:D122–6.CrossRefPubMed
24.
go back to reference Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. LncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res. 2011;39:D146–51.CrossRefPubMed Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. LncRNAdb: A reference database for long noncoding RNAs. Nucleic Acids Res. 2011;39:D146–51.CrossRefPubMed
25.
go back to reference Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72.CrossRefPubMedPubMedCentral Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72.CrossRefPubMedPubMedCentral
26.
go back to reference Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncodingRNA reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.CrossRefPubMedPubMedCentral Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncodingRNA reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.CrossRefPubMedPubMedCentral
27.
go back to reference Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in the human genome. Science. 2004;304:1321–5.CrossRefPubMed Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in the human genome. Science. 2004;304:1321–5.CrossRefPubMed
28.
go back to reference Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.CrossRefPubMedPubMedCentral Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.CrossRefPubMedPubMedCentral
29.
go back to reference Luo X, Shi Q, Gu Y, Pan J, Hua M, Liu M, et al. LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders. PLoS One. 2013;8, e79897.CrossRefPubMedPubMedCentral Luo X, Shi Q, Gu Y, Pan J, Hua M, Liu M, et al. LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders. PLoS One. 2013;8, e79897.CrossRefPubMedPubMedCentral
30.
go back to reference Gene Ontology C. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.CrossRef Gene Ontology C. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.CrossRef
31.
go back to reference Consortium TGO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.CrossRef Consortium TGO. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56.CrossRef
32.
go back to reference Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.CrossRefPubMed Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.CrossRefPubMed
33.
34.
go back to reference Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull. 1958;28:1409–38. Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull. 1958;28:1409–38.
35.
go back to reference Gene Ontology C. The gene ontology project in 2008. Nucleic Acids Res. 2008;36:D440–4.CrossRef Gene Ontology C. The gene ontology project in 2008. Nucleic Acids Res. 2008;36:D440–4.CrossRef
36.
go back to reference Gene Ontology C. The gene ontology in 2010: extensions and refinements. Nucleic Acids Res. 2010;38:D331–5.CrossRef Gene Ontology C. The gene ontology in 2010: extensions and refinements. Nucleic Acids Res. 2010;38:D331–5.CrossRef
37.
go back to reference Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159:1110–25.CrossRefPubMedPubMedCentral Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159:1110–25.CrossRefPubMedPubMedCentral
38.
39.
40.
go back to reference Wang Y, Chen W, Chen J, Pan Q, Pan J. LncRNA expression profiles of EGFR exon 19 deletions in lung adenocarcinoma ascertained by using microarray analysis. Med Oncol. 2014;31:137.CrossRefPubMed Wang Y, Chen W, Chen J, Pan Q, Pan J. LncRNA expression profiles of EGFR exon 19 deletions in lung adenocarcinoma ascertained by using microarray analysis. Med Oncol. 2014;31:137.CrossRefPubMed
41.
go back to reference Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep. 2015;5:13186.CrossRefPubMedPubMedCentral Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep. 2015;5:13186.CrossRefPubMedPubMedCentral
42.
go back to reference Zhuang M, Gao W, Xu J, Wang P, Shu Y. The long non-coding RNA h19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun. 2014;448:315–22.CrossRefPubMed Zhuang M, Gao W, Xu J, Wang P, Shu Y. The long non-coding RNA h19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem Biophys Res Commun. 2014;448:315–22.CrossRefPubMed
43.
go back to reference Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.CrossRefPubMedPubMedCentral Li H, Yu B, Li J, Su L, Yan M, Zhu Z, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget. 2014;5:2318–29.CrossRefPubMedPubMedCentral
44.
go back to reference Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008;24:325–32.CrossRefPubMed Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008;24:325–32.CrossRefPubMed
45.
go back to reference Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1a and promote cell cycle progression. Mol Cell Biol. 2008;28:2167–74.CrossRefPubMedPubMedCentral Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1a and promote cell cycle progression. Mol Cell Biol. 2008;28:2167–74.CrossRefPubMedPubMedCentral
46.
go back to reference Russell MR, Penikis A, Oldridge DA, Alvarez-Dominguez JR, McDaniel L, Diamond M, et al. CASC15-s is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus. Cancer Res. 2015;75:3155–66.CrossRefPubMedPubMedCentral Russell MR, Penikis A, Oldridge DA, Alvarez-Dominguez JR, McDaniel L, Diamond M, et al. CASC15-s is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus. Cancer Res. 2015;75:3155–66.CrossRefPubMedPubMedCentral
47.
go back to reference Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N et al. The casc15 long intergenic noncoding rna locus is involved in melanoma progression and phenotype switching. J Invest Dermatol 2015;135(10):2464–74. Lessard L, Liu M, Marzese DM, Wang H, Chong K, Kawas N et al. The casc15 long intergenic noncoding rna locus is involved in melanoma progression and phenotype switching. J Invest Dermatol 2015;135(10):2464–74.
48.
go back to reference Rabinowitz YS, Dong L, Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5. Invest Ophthalmol Vis Sci. 2005;46:1239–46.CrossRefPubMed Rabinowitz YS, Dong L, Wistow G. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5. Invest Ophthalmol Vis Sci. 2005;46:1239–46.CrossRefPubMed
49.
go back to reference Naemura M, Murasaki C, Inoue Y, Okamoto H, Kotake Y. Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells. Anticancer Res. 2015;35:5377–82.PubMed Naemura M, Murasaki C, Inoue Y, Okamoto H, Kotake Y. Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells. Anticancer Res. 2015;35:5377–82.PubMed
50.
go back to reference Iranpour M, Soudyab M, Geranpayeh L, Mirfakhraie R, Azargashb E, Movafagh A et al. Expression analysis of four long noncoding rnas in breast cancer. Tumour Biol 2015, in press Iranpour M, Soudyab M, Geranpayeh L, Mirfakhraie R, Azargashb E, Movafagh A et al. Expression analysis of four long noncoding rnas in breast cancer. Tumour Biol 2015, in press
51.
go back to reference Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231–5.CrossRefPubMed Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231–5.CrossRefPubMed
52.
go back to reference Wan DC, Wang KC. Long noncoding RNA: significance and potential in skin biology. Cold Spring Harb Perspect Med. 2014;4. Wan DC, Wang KC. Long noncoding RNA: significance and potential in skin biology. Cold Spring Harb Perspect Med. 2014;4.
54.
go back to reference Szegedi K, Sonkoly E, Nagy N, Nemeth IB, Bata-Csorgo Z, Kemeny L, et al. The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA, PRINS. Exp Dermatol. 2010;19:269–78.CrossRefPubMed Szegedi K, Sonkoly E, Nagy N, Nemeth IB, Bata-Csorgo Z, Kemeny L, et al. The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA, PRINS. Exp Dermatol. 2010;19:269–78.CrossRefPubMed
55.
go back to reference Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.CrossRefPubMedPubMedCentral Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.CrossRefPubMedPubMedCentral
56.
go back to reference Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(Pt A):87–90.PubMed Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(Pt A):87–90.PubMed
Metadata
Title
Long-noncoding RNAs in basal cell carcinoma
Authors
Michael Sand
Falk G. Bechara
Daniel Sand
Thilo Gambichler
Stephan A. Hahn
Michael Bromba
Eggert Stockfleth
Schapoor Hessam
Publication date
01-08-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-4927-z

Other articles of this Issue 8/2016

Tumor Biology 8/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine