Skip to main content
Log in

Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The epidermal compartment is complex and organized into several strata composed of keratinocytes (KCs), including basal, spinous, granular, and cornified layers. The continuous process of self-renewal and barrier formation is dependent on a homeostatic balance achieved amongst KCs involving proliferation, differentiation, and cell death. To determine genes responsible for initiating and maintaining a cornified epidermis, organotypic cultures comprised entirely of stratified KCs creating epidermal equivalents (EE) were raised from a submerged state to an air/liquid (A/L) interface. Compared to the array profile of submerged cultures containing KCs predominantly in a proliferative (relatively undifferentiated) state, EEs raised to an A/L interface displayed a remarkably consistent and distinct profile of mRNAs. Cultures lifted to an A/L interface triggered the induction of gene groups that regulate proliferation, differentiation, and cell death. Next, differentially expressed microRNAs (miRNAs) and long non-coding (lncRNA) RNAs were identified in EEs. Several differentially expressed miRNAs were validated by qRT-PCR and Northern blots. miRNAs 203, 205 and Let-7b were up-regulated at early time points (6, 18 and 24 h) but down-regulated by 120 h. To study the lncRNA regulation in EEs, we profiled lncRNA expression by microarray and validated the results by qRT-PCR. Although the differential expression of several lncRNAs is suggestive of a role in epidermal differentiation, their biological functions remain to be elucidated. The current studies lay the foundation for relevant model systems to address such fundamentally important biological aspects of epidermal structure and function in normal and diseased human skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789

    Article  CAS  PubMed  Google Scholar 

  • Barker JN, Mitra RS, Griffiths CE, Dixit VM, Nickoloff BJ (1991) Keratinocytes as initiators of inflammation. Lancet 337:211–214

    Article  CAS  PubMed  Google Scholar 

  • Boehm I (2006) Apoptosis in physiological and pathological skin: implications for therapy. Curr Mol Med 6:375–394

    Article  CAS  PubMed  Google Scholar 

  • Burchiel SW, Thompson TA, Lauer FT, Oprea TI (2007) Activation of dioxin response element (DRE)-associated genes by benzo(a)pyrene 3, 6-quinone and benzo(a)pyrene 1, 6-quinone in MCF-10A human mammary epithelial cells. Toxicol Appl Pharmacol 221:203–214

    Article  CAS  PubMed  Google Scholar 

  • Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6:328–340

    Article  CAS  PubMed  Google Scholar 

  • Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Sitailo LA, Bodner B, Denning MF, Nickoloff BJ (2006) Defining the caspase-containing apoptotic machinery contributing to cornification in human epidermal equivalents. Exp Dermatol 15:14–22

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18:1433–1445

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    CAS  PubMed  Google Scholar 

  • Garces C, Ruiz-Hidalgo MJ, Font de Mora J, Park C, Miele L, Goldstein J, Bonvini E, Porras A, Laborda J (1997) Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem 272:29729–29734

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  Google Scholar 

  • Harris IR, Siefken W, Beck-Oldach K, Wittern KP, Pollet D (2002) NAD(P)H:quinone reductase activity in human epidermal keratinocytes and reconstructed epidermal models. Skin Pharmacol Appl Skin Physiol 15(Suppl 1):68–73

    CAS  PubMed  Google Scholar 

  • Hendrix MJ, Seftor RE, Seftor EA, Gruman LM, Lee LM, Nickoloff BJ, Miele L, Sheriff DD, Schatteman GC (2002) Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res 62:665–668

    CAS  PubMed  Google Scholar 

  • Jordan SA, Jackson IJ (2000) MGF (KIT ligand) is a chemokinetic factor for melanoblast migration into hair follicles. Dev Biol 225:424–436

    Article  CAS  PubMed  Google Scholar 

  • Kalinin A, Marekov LN, Steinert PM (2001) Assembly of the epidermal cornified cell envelope. J Cell Sci 114:3069–3070

    CAS  PubMed  Google Scholar 

  • Koria P, Andreadis ST (2006) Epidermal morphogenesis: the transcriptional program of human keratinocytes during stratification. J Invest Dermatol 126:1834–1841

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81

    Article  CAS  PubMed  Google Scholar 

  • Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W (2005) Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12(Suppl 2):1497–1508

    Article  CAS  PubMed  Google Scholar 

  • Luscher-Firzlaff JM, Westendorf JM, Zwicker J, Burkhardt H, Henriksson M, Muller R, Pirollet F, Luscher B (1999) Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 18:5620–5630

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS Genet 5:e1000459

    Article  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff BJ, Qin JZ, Chaturvedi V, Bacon P, Panella J, Denning MF (2002) Life and death signaling pathways contributing to skin cancer. J Investig Dermatol Symp Proc 7:27–35

    Article  CAS  PubMed  Google Scholar 

  • Perera RJ, Koo S, Bennett CF, Dean NM, Gupta N, Qin JZ, Nickoloff BJ (2006a) Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways. J Cell Biochem 98:394–408

    Article  CAS  PubMed  Google Scholar 

  • Perera RJ, Marcusson EG, Koo S, Kang X, Kim Y, White N, Dean NM (2006b) Identification of novel PPARgamma target genes in primary human adipocytes. Gene 369:90–99

    Article  CAS  PubMed  Google Scholar 

  • Radoja N, Gazel A, Banno T, Yano S, Blumenberg M (2006) Transcriptional profiling of epidermal differentiation. Physiol Genomics 27:65–78

    Article  CAS  PubMed  Google Scholar 

  • Seiberg M, Marthinuss J (1995) Clusterin expression within skin correlates with hair growth. Dev Dyn 202:294–301

    CAS  PubMed  Google Scholar 

  • Watt FM (1989) Terminal differentiation of epidermal keratinocytes. Curr Opin Cell Biol 1:1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Weijzen S, Velders MP, Elmishad AG, Bacon PE, Panella JR, Nickoloff BJ, Miele L, Kast WM (2002) The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol 169:4273–4278

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Laura Brovold and Ally Perlina from GeneGo, Inc. (http://www.genego.com) for assistance with systems level network mapping and the Affymetrix chip design team for making the custom miRNA array and protocols. We also would like to thank the Invitrogen/Life Technologies epigenetic gene regulation team for miRNA and lncRNA NCode array support and Dr. Brian Nickoloff for providing RNA for expression analysis and Fig. 1 for EE differentiation. Debbie McFadden provided assistance in formatting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan J. Perera.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazar, J., Sinha, S., Dinger, M.E. et al. Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent. Mol Genet Genomics 284, 1–9 (2010). https://doi.org/10.1007/s00438-010-0543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0543-6

Keywords

Navigation