Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system

Authors: Fadwa Chaabane, Nadia Mustapha, Imen Mokdad-Bzeouich, Aicha Sassi, Soumaya Kilani-Jaziri, Marie-Geneviève Dijoux Franca, Serge Michalet, Mayssa Fathallah, Mounira Krifa, Kamel Ghedira, Leila Chekir-Ghedira

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

The purpose of this study was to assess the antitumor and immunomodulatory effects of the aqueous extract from Daphne gnidium in mice-bearing melanoma tumor. Balb/C mice were subcutaneously implanted with B16-F10 cells and treated intraperitoneally with the aqueous extract at 200 mg/Kg b.w for 21 days. After euthanization on day 22, the tumors were weighed; lymphocyte proliferation, cytotoxic T lymphocyte (CTL), and natural killer (NK) cell activities were evaluated using the MTT assay. Macrophage phagocytosis was studied by measuring the lysosomal activity. In addition to its potential to inhibit the growth of the transplantable tumor, the aqueous extract remarkably induced splenocyte proliferation and both NK and CTL activities in tumor-bearing mice. The aqueous extract was also seen to have promoted lysosomal activity of host macrophages.
Literature
1.
2.
go back to reference Hoang MT, Eichenfield LF. The rising incidence of melanoma in children and adolescents. Dermatol Nurs. 2000;12:188–9. 192–3.PubMed Hoang MT, Eichenfield LF. The rising incidence of melanoma in children and adolescents. Dermatol Nurs. 2000;12:188–9. 192–3.PubMed
3.
go back to reference Burlage HM, McKenna GF, Taylor A. Anticancer activity of plant extracts. Tex Rep Biol Med. 1956;14:538–56.PubMed Burlage HM, McKenna GF, Taylor A. Anticancer activity of plant extracts. Tex Rep Biol Med. 1956;14:538–56.PubMed
4.
go back to reference Mitchell MS. Immunotherapy as part of combinations for the treatment of cancer. Int Immunopharmacol. 2003;3:1051–9.CrossRefPubMed Mitchell MS. Immunotherapy as part of combinations for the treatment of cancer. Int Immunopharmacol. 2003;3:1051–9.CrossRefPubMed
5.
go back to reference Naithani R, Huma L, Moriarty RM, McCormick DL, Mehta RG. Comprehensive review of cancer chemopreventive agents evaluated in experimental chemoprevention models and clinical trials. Curr Med Chem. 2008;15:1044–71.CrossRefPubMed Naithani R, Huma L, Moriarty RM, McCormick DL, Mehta RG. Comprehensive review of cancer chemopreventive agents evaluated in experimental chemoprevention models and clinical trials. Curr Med Chem. 2008;15:1044–71.CrossRefPubMed
6.
go back to reference Arora R, Chawla R, Singh S, Sagar RK, Kumar R, Sharma A. Bioprospection for radioprotective molecules from indigenous plants. In: Govil JN, editor. Recent progress in medicinal plants. Phytomedicine, vol. 16. Houston, Texas, USA: Published by Studium Press LLC; 2006. p. 179–219. Arora R, Chawla R, Singh S, Sagar RK, Kumar R, Sharma A. Bioprospection for radioprotective molecules from indigenous plants. In: Govil JN, editor. Recent progress in medicinal plants. Phytomedicine, vol. 16. Houston, Texas, USA: Published by Studium Press LLC; 2006. p. 179–219.
7.
go back to reference Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012.CrossRefPubMed Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109:3012.CrossRefPubMed
8.
go back to reference Borris RP, Blasko PG, Cordell GA. Ethnopharmacologic and phytochemical studies of the Thymelaeaceae. J Ethnopharmacol. 1998;24:41–91.CrossRef Borris RP, Blasko PG, Cordell GA. Ethnopharmacologic and phytochemical studies of the Thymelaeaceae. J Ethnopharmacol. 1998;24:41–91.CrossRef
9.
go back to reference Bellakhdar J, Claisse R, Fleurentin J, Younos C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol. 1991;35:123–43.CrossRefPubMed Bellakhdar J, Claisse R, Fleurentin J, Younos C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J Ethnopharmacol. 1991;35:123–43.CrossRefPubMed
10.
go back to reference Chaabane F, Pinon A, Simon A, Ghedira K, Chekir-Ghedira L. Phytochemical potential of Daphne gnidium in inhibiting growth of melanoma cells and enhancing melanogenesis of B16-F0 melanoma. Cell Biochem Funct. 2013;31:460–7.CrossRefPubMed Chaabane F, Pinon A, Simon A, Ghedira K, Chekir-Ghedira L. Phytochemical potential of Daphne gnidium in inhibiting growth of melanoma cells and enhancing melanogenesis of B16-F0 melanoma. Cell Biochem Funct. 2013;31:460–7.CrossRefPubMed
11.
go back to reference Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep. 1972;3:1–103. Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep. 1972;3:1–103.
12.
go back to reference Manosroi A, Saraphanchotiwitthaya A, Manosroi J. In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J Ethnopharmacol. 2005;101:90–4.CrossRefPubMed Manosroi A, Saraphanchotiwitthaya A, Manosroi J. In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J Ethnopharmacol. 2005;101:90–4.CrossRefPubMed
13.
go back to reference Manosroi A, Saraphanchotiwitthaya A, Manosroi J. Immunomodulatory activities of Clausena excavata Burm. f. wood extracts. J Ethnopharmacol. 2003;89:155–60.CrossRefPubMed Manosroi A, Saraphanchotiwitthaya A, Manosroi J. Immunomodulatory activities of Clausena excavata Burm. f. wood extracts. J Ethnopharmacol. 2003;89:155–60.CrossRefPubMed
14.
go back to reference Krifa M, Skandrani I, Pizzi A, Nasr N, Ghedira Z, Mustapha N, et al. An aqueous extract of Limoniastrum guyonianum gall induces anti-tumor effects in melanoma-injected mice via modulation of the immune response. Food Chem Toxicol. 2014;69:76–85.CrossRefPubMed Krifa M, Skandrani I, Pizzi A, Nasr N, Ghedira Z, Mustapha N, et al. An aqueous extract of Limoniastrum guyonianum gall induces anti-tumor effects in melanoma-injected mice via modulation of the immune response. Food Chem Toxicol. 2014;69:76–85.CrossRefPubMed
15.
go back to reference Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med. 1998;188:2357–68.CrossRefPubMedPubMedCentral Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med. 1998;188:2357–68.CrossRefPubMedPubMedCentral
16.
go back to reference Cascio D, Ernst W, Modlin R, Krensky A, Eisenberg D, Anderson DH, et al. Granulysin crystal structure and a structure-derived lytic mechanism. Mol Biol. 2003;325:355–65.CrossRef Cascio D, Ernst W, Modlin R, Krensky A, Eisenberg D, Anderson DH, et al. Granulysin crystal structure and a structure-derived lytic mechanism. Mol Biol. 2003;325:355–65.CrossRef
17.
go back to reference Kumar J, Okada S, Clayberger C, Krensky AM. Granulysin: a novel antimicrobial. Expert Opin Investig Drugs. 2001;10:321–9.CrossRefPubMed Kumar J, Okada S, Clayberger C, Krensky AM. Granulysin: a novel antimicrobial. Expert Opin Investig Drugs. 2001;10:321–9.CrossRefPubMed
18.
go back to reference Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76.CrossRefPubMedPubMedCentral Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115:2167–76.CrossRefPubMedPubMedCentral
19.
go back to reference Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.CrossRefPubMed Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.CrossRefPubMed
20.
go back to reference Roit I, Brostoff J, Male D. Immunology. London. Mosby International Ltd. 1998; 5:155–169. Roit I, Brostoff J, Male D. Immunology. London. Mosby International Ltd. 1998; 5:155–169.
21.
go back to reference Abbas AK. Cellular and molecular immunology, U.S.A. W.B. Saunders Company. 1997; 253, 289: 294. Abbas AK. Cellular and molecular immunology, U.S.A. W.B. Saunders Company. 1997; 253, 289: 294.
22.
go back to reference Ribeiro-Dias F, Russo M, Marzagão Barbuto JA, Fernandes do Nascimento FR, Timenetsky J, Jancar S. Mycoplasma arginini enhances cytotoxicity of thioglycollate-elicited murine macrophages toward YAC-1 tumor cells through production of NO. J Leukoc Biol. 1999;65:808–14.PubMed Ribeiro-Dias F, Russo M, Marzagão Barbuto JA, Fernandes do Nascimento FR, Timenetsky J, Jancar S. Mycoplasma arginini enhances cytotoxicity of thioglycollate-elicited murine macrophages toward YAC-1 tumor cells through production of NO. J Leukoc Biol. 1999;65:808–14.PubMed
23.
go back to reference Kowalski J. Effect of enkephalins and endorphins on cytotoxic activity of natural killer cells and macrophages/monocytes in mice. Eur J Pharm. 1997;326:251–5.CrossRef Kowalski J. Effect of enkephalins and endorphins on cytotoxic activity of natural killer cells and macrophages/monocytes in mice. Eur J Pharm. 1997;326:251–5.CrossRef
24.
go back to reference Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218:1402–10.CrossRefPubMed Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218:1402–10.CrossRefPubMed
25.
go back to reference Klimp AH, de Vries EGE, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Cr Rev Oncol-Hem. 2002;44:143–61.CrossRef Klimp AH, de Vries EGE, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Cr Rev Oncol-Hem. 2002;44:143–61.CrossRef
26.
go back to reference Page RC, Davies P, Allison AC. The macrophage as a secretory cell. Int Rev Cytol. 1978;52:119–23.CrossRefPubMed Page RC, Davies P, Allison AC. The macrophage as a secretory cell. Int Rev Cytol. 1978;52:119–23.CrossRefPubMed
27.
go back to reference D’Agostini C, Pica F, Febbraro G, Grelli S, Chiavaroli C, Garaci E. Antitumour effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int Immunopharmacol. 2005;5:1205–12.CrossRefPubMed D’Agostini C, Pica F, Febbraro G, Grelli S, Chiavaroli C, Garaci E. Antitumour effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int Immunopharmacol. 2005;5:1205–12.CrossRefPubMed
Metadata
Title
In vitro and in vivo anti-melanoma effects of Daphne gnidium aqueous extract via activation of the immune system
Authors
Fadwa Chaabane
Nadia Mustapha
Imen Mokdad-Bzeouich
Aicha Sassi
Soumaya Kilani-Jaziri
Marie-Geneviève Dijoux Franca
Serge Michalet
Mayssa Fathallah
Mounira Krifa
Kamel Ghedira
Leila Chekir-Ghedira
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4492-x

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine