Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach

Authors: Yang Yang, Yiqiao Xing, Chaoqun Liang, Liya Hu, Fei Xu, Qi Mei

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

We aimed to explore molecular mechanism and drug candidates of vascular toxicities associated with melphalan after treating human retinal endothelial cells (RECs). GSE34381 microarray data was firstly downloaded and used to identify the differentially expressed genes (DEGs) in human REC treated with melphalan vs. untreated cells by limma package in R language. The transcription network was constructed based on TRANSFAC database and the top five transcription factors (TFs) were select with a measure of regulatory impact factor, followed by the construction of function modules. Gene ontology enrichment analyses were performed to explore the enriched functions. Connectivity Map analysis was conducted to predict the potential drugs overcoming the melphalan’s actions on REC. Totally, 75 DEGs were identified, including 70 up-regulated and five down-regulated genes. Transcription network with 1311 nodes and 1875 edges was constructed and the top five TFs were CREM, MYC, FLI1, NF-κB1, and JUN. Functional modules indicated that NF-κB1 and MYC were the important nodes. The upregulated genes as well as the genes involved in the modules mainly participated in biological process of immune response, cell proliferation, and cell motion. Five small molecules were predicted to be potential drug candidates, including doxorubicin, fipexide, daunorubicin, tiabendazole, and GW-8510. Based on these results, we speculate that NF-κB1 and MYC might involve in the molecular mechanism of vascular toxicity induced by melphalan through regulating their target genes. Five small molecules might be drug candidates to overcome the melphalan-induced vascular toxicity via targeting to MYC and JUN.
Literature
3.
go back to reference Jehanne M, Brisse H, Gauthier-Villars M, Lumbroso-le Rouic L, Freneaux P, Aerts I. Retinoblastoma: recent advances. Bull Cancer. 2014;101(4):380–7.PubMed Jehanne M, Brisse H, Gauthier-Villars M, Lumbroso-le Rouic L, Freneaux P, Aerts I. Retinoblastoma: recent advances. Bull Cancer. 2014;101(4):380–7.PubMed
4.
go back to reference Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129–31.CrossRefPubMed Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93(9):1129–31.CrossRefPubMed
6.
go back to reference Vajzovic LM, Murray TG, Aziz-Sultan MA, Schefler AC, Fernandes CE, Wolfe SC, et al. Clinicopathologic review of enucleated eyes after intra-arterial chemotherapy with melphalan for advanced retinoblastoma. Arch Ophthalmol. 2010;128(12):1619–23. doi:10.1001/archophthalmol.2010.296.CrossRefPubMed Vajzovic LM, Murray TG, Aziz-Sultan MA, Schefler AC, Fernandes CE, Wolfe SC, et al. Clinicopathologic review of enucleated eyes after intra-arterial chemotherapy with melphalan for advanced retinoblastoma. Arch Ophthalmol. 2010;128(12):1619–23. doi:10.​1001/​archophthalmol.​2010.​296.CrossRefPubMed
7.
go back to reference Reese AB, Hyman GA, Tapley ND, Forrest AW. The treatment of retinoblastoma by x-ray and triethylene melamine. AMA Arch Ophthalmol. 1958;60(5):897–906.CrossRefPubMed Reese AB, Hyman GA, Tapley ND, Forrest AW. The treatment of retinoblastoma by x-ray and triethylene melamine. AMA Arch Ophthalmol. 1958;60(5):897–906.CrossRefPubMed
8.
go back to reference Kiribuchi M. Retrograde infusion of anti-cancer drugs to ophthalmic artery for intraocular malignant tumors. Nihon Ganka Gakkai Zasshi. 1966;70(11):1829–33.PubMed Kiribuchi M. Retrograde infusion of anti-cancer drugs to ophthalmic artery for intraocular malignant tumors. Nihon Ganka Gakkai Zasshi. 1966;70(11):1829–33.PubMed
9.
go back to reference Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.CrossRefPubMed Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.CrossRefPubMed
10.
go back to reference Doll DC, Ringenberg QS, Yarbro J. Vascular toxicity associated with antineoplastic agents. J Clin Oncol. 1986;4(9):1405–17.CrossRefPubMed Doll DC, Ringenberg QS, Yarbro J. Vascular toxicity associated with antineoplastic agents. J Clin Oncol. 1986;4(9):1405–17.CrossRefPubMed
11.
go back to reference Scutaru AM, Wenzel M, Scheffler H, Wolber G, Gust R. Optimization of the N-lost drugs melphalan and bendamustine: synthesis and cytotoxicity of a new set of dendrimer-drug conjugates as tumor therapeutic agents. Bioconjug Chem. 2010;21(10):1728–43. doi:10.1021/bc900453f.CrossRefPubMed Scutaru AM, Wenzel M, Scheffler H, Wolber G, Gust R. Optimization of the N-lost drugs melphalan and bendamustine: synthesis and cytotoxicity of a new set of dendrimer-drug conjugates as tumor therapeutic agents. Bioconjug Chem. 2010;21(10):1728–43. doi:10.​1021/​bc900453f.CrossRefPubMed
12.
go back to reference Steinle JJ, Zhang Q, Thompson KE, Toutounchian J, Yates CR, Soderland C, et al. Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis. Invest Ophthalmol Vis Sci. 2012;53(4):2439–45. doi:10.1167/iovs.12-9466.CrossRefPubMedPubMedCentral Steinle JJ, Zhang Q, Thompson KE, Toutounchian J, Yates CR, Soderland C, et al. Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis. Invest Ophthalmol Vis Sci. 2012;53(4):2439–45. doi:10.​1167/​iovs.​12-9466.CrossRefPubMedPubMedCentral
13.
go back to reference Zhang Q, Jiang Y, Toutounchian J, Wilson MW, Morales-Tirado V, Miller DD, et al. Novel quinic acid derivative KZ-41 prevents retinal endothelial cell apoptosis without inhibiting retinoblastoma cell death through p38 signaling. Invest Ophthalmol Vis Sci. 2013;54(9):5937–43.CrossRefPubMedPubMedCentral Zhang Q, Jiang Y, Toutounchian J, Wilson MW, Morales-Tirado V, Miller DD, et al. Novel quinic acid derivative KZ-41 prevents retinal endothelial cell apoptosis without inhibiting retinoblastoma cell death through p38 signaling. Invest Ophthalmol Vis Sci. 2013;54(9):5937–43.CrossRefPubMedPubMedCentral
14.
go back to reference Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(Database issue):D991–5. doi:10.1093/nar/gks1193.CrossRefPubMed Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41(Database issue):D991–5. doi:10.​1093/​nar/​gks1193.CrossRefPubMed
16.
go back to reference Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.CrossRefPubMed Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.CrossRefPubMed
20.
go back to reference Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996;24(1):238–41.CrossRefPubMedPubMedCentral Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996;24(1):238–41.CrossRefPubMedPubMedCentral
24.
go back to reference Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.CrossRefPubMed Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.CrossRefPubMed
25.
go back to reference Shields CL, Bianciotto CG, Jabbour P, Griffin GC, Ramasubramanian A, Rosenwasser R, et al. Intra-arterial chemotherapy for retinoblastoma: report no. 2, treatment complications. Arch Ophthalmol. 2011;129(11):1407–15.CrossRefPubMed Shields CL, Bianciotto CG, Jabbour P, Griffin GC, Ramasubramanian A, Rosenwasser R, et al. Intra-arterial chemotherapy for retinoblastoma: report no. 2, treatment complications. Arch Ophthalmol. 2011;129(11):1407–15.CrossRefPubMed
26.
go back to reference Bharti AC, Aggarwal BB. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol. 2002;64(5–6):883–8.CrossRefPubMed Bharti AC, Aggarwal BB. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol. 2002;64(5–6):883–8.CrossRefPubMed
27.
go back to reference O’Neill LA, Kaltschmidt C. NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997;20(6):252–8.CrossRefPubMed O’Neill LA, Kaltschmidt C. NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997;20(6):252–8.CrossRefPubMed
28.
go back to reference Soultati A, Mountzios G, Avgerinou C, Papaxoinis G, Pectasides D, Dimopoulos MA, et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012;38(5):473–83. doi:10.1016/j.ctrv.2011.09.002.CrossRefPubMed Soultati A, Mountzios G, Avgerinou C, Papaxoinis G, Pectasides D, Dimopoulos MA, et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012;38(5):473–83. doi:10.​1016/​j.​ctrv.​2011.​09.​002.CrossRefPubMed
30.
go back to reference Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells implications for vascular disease. Circulation. 2001;103(22):2717–23.CrossRefPubMed Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells implications for vascular disease. Circulation. 2001;103(22):2717–23.CrossRefPubMed
31.
go back to reference Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988;52(6):925–33.CrossRefPubMed Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell. 1988;52(6):925–33.CrossRefPubMed
32.
go back to reference Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;7(6):693–8. doi:10.1038/89068.CrossRefPubMed Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;7(6):693–8. doi:10.​1038/​89068.CrossRefPubMed
33.
go back to reference Van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers J, Johnson JP, et al. 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem. 1994;269(8):6185–92.PubMed Van de Stolpe A, Caldenhoven E, Stade BG, Koenderman L, Raaijmakers J, Johnson JP, et al. 12-O-tetradecanoylphorbol-13-acetate-and tumor necrosis factor alpha-mediated induction of intercellular adhesion molecule-1 is inhibited by dexamethasone. Functional analysis of the human intercellular adhesion molecular-1 promoter. J Biol Chem. 1994;269(8):6185–92.PubMed
34.
go back to reference Liu MT, Keirstead HS, Lane TE. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol. 2001;167(7):4091–7.CrossRefPubMed Liu MT, Keirstead HS, Lane TE. Neutralization of the chemokine CXCL10 reduces inflammatory cell invasion and demyelination and improves neurological function in a viral model of multiple sclerosis. J Immunol. 2001;167(7):4091–7.CrossRefPubMed
37.
go back to reference Amati B, Land H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev. 1994;4(1):102–8.CrossRefPubMed Amati B, Land H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev. 1994;4(1):102–8.CrossRefPubMed
38.
go back to reference Kipshidze NN, Iversen P, Kim HS, Yiazdi H, Dangas G, Seaborn R, et al. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model. Catheter Cardiovasc Interv. 2004;61(4):518–27.CrossRefPubMed Kipshidze NN, Iversen P, Kim HS, Yiazdi H, Dangas G, Seaborn R, et al. Advanced c-myc antisense (AVI-4126)-eluting phosphorylcholine-coated stent implantation is associated with complete vascular healing and reduced neointimal formation in the porcine coronary restenosis model. Catheter Cardiovasc Interv. 2004;61(4):518–27.CrossRefPubMed
39.
go back to reference Doll DC, Yarbro JW. Vascular toxicity associated with chemotherapy and hormonotherapy. Curr Opin Oncol. 1994;6(4):345–50.CrossRefPubMed Doll DC, Yarbro JW. Vascular toxicity associated with chemotherapy and hormonotherapy. Curr Opin Oncol. 1994;6(4):345–50.CrossRefPubMed
40.
go back to reference Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.CrossRefPubMedPubMedCentral Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603–14.CrossRefPubMedPubMedCentral
42.
go back to reference Murata T, Yamawaki H, Yoshimoto R, Hori M, Sato K, Ozaki H, et al. Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study. Life Sci. 2001;69(22):2685–95.CrossRefPubMed Murata T, Yamawaki H, Yoshimoto R, Hori M, Sato K, Ozaki H, et al. Chronic effect of doxorubicin on vascular endothelium assessed by organ culture study. Life Sci. 2001;69(22):2685–95.CrossRefPubMed
43.
go back to reference Wojcik T, Buczek E, Majzner K, Kolodziejczyk A, Miszczyk J, Kaczara P, et al. Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. Toxicol In Vitro. 2015;29(3):512–21.CrossRefPubMed Wojcik T, Buczek E, Majzner K, Kolodziejczyk A, Miszczyk J, Kaczara P, et al. Comparative endothelial profiling of doxorubicin and daunorubicin in cultured endothelial cells. Toxicol In Vitro. 2015;29(3):512–21.CrossRefPubMed
44.
go back to reference Jr FF, Jarvis WD, Grant S. Growth arrest and non-apoptotic cell death associated with the suppression of c-myc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol. 1996;51(7):931–40.CrossRef Jr FF, Jarvis WD, Grant S. Growth arrest and non-apoptotic cell death associated with the suppression of c-myc expression in MCF-7 breast tumor cells following acute exposure to doxorubicin. Biochem Pharmacol. 1996;51(7):931–40.CrossRef
45.
go back to reference Javelaud D, Wietzerbin J, Delattre O, Besançon F. Induction of p21Waf1/Cip1 by TNF|[alpha]| requires NF-|[kappa]|B activity and antagonizes apoptosis in Ewing tumor cells. Oncogene. 2000;19(1):61–8.CrossRefPubMed Javelaud D, Wietzerbin J, Delattre O, Besançon F. Induction of p21Waf1/Cip1 by TNF|[alpha]| requires NF-|[kappa]|B activity and antagonizes apoptosis in Ewing tumor cells. Oncogene. 2000;19(1):61–8.CrossRefPubMed
46.
go back to reference Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. Plos Biol. 2012;10(8):255–70.CrossRef Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. Plos Biol. 2012;10(8):255–70.CrossRef
47.
go back to reference Dunn C, Wiltshire C, MacLaren A, Gillespie DA. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 2002;14(7):585–93.CrossRefPubMed Dunn C, Wiltshire C, MacLaren A, Gillespie DA. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 2002;14(7):585–93.CrossRefPubMed
48.
go back to reference Fogelstrand P, Feral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J Exp Med. 2009;206(11):2397–406.CrossRefPubMedPubMedCentral Fogelstrand P, Feral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J Exp Med. 2009;206(11):2397–406.CrossRefPubMedPubMedCentral
Metadata
Title
In search of underlying mechanisms and potential drugs of melphalan-induced vascular toxicity through retinal endothelial cells using bioinformatics approach
Authors
Yang Yang
Yiqiao Xing
Chaoqun Liang
Liya Hu
Fei Xu
Qi Mei
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4444-5

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine