Skip to main content
Top
Published in: Tumor Biology 4/2016

01-04-2016 | Original Article

RETRACTED ARTICLE: miR-198 targets SHMT1 to inhibit cell proliferation and enhance cell apoptosis in lung adenocarcinoma

Authors: Shujun Wu, Guojun Zhang, Ping Li, Shanshan Chen, Furui Zhang, Juan Li, Chenyang Jiang, Xiaonan Chen, Yuanyuan Wang, Yuwen Du, Qianqian Sun, Guoqiang Zhao

Published in: Tumor Biology | Issue 4/2016

Login to get access

Abstract

MiR-198 is involved in tumorigenesis, migration, invasion, and metastasis of various malignant cancers. However, the exact expression levels of miR-198 and the molecular mechanism underlying its role in lung adenocarcinoma require further exploration. In this study, quantitative real-time PCR was applied to study miR-198 and serine hydroxymethyltransferase 1 (SHMT1) expression in 47 paired lung adenocarcinoma tissues and adjacent nontumor lung tissues. Clinicopathological characters were analyzed. Pearson’s correlation analysis was used to detect the relationship between miR-198 and SHMT1 expression. The function of miR-198 was explored by measuring cell proliferation, cell apoptosis, and the cell-cycle in vitro and in vivo. The target gene of miR-198 was certified using dual luciferase report assay. We found that in lung adenocarcinoma, miR-198 was significantly downregulated and SHMT1 was inversely upregulated. A strong negative correlation was noticed between miR-198 and SHMT1 expression. Further analysis revealed that miR-198 expression was associated with TNM stage and lymph node metastasis. Upregulated miR-198 could inhibit cell proliferation, enhance cell apoptosis, and lead to cell-cycle arrest in lung adenocarcinoma, which showed a more effective alteration than SHMT1 siRNA. Moreover, we identified SHMT1 as a target gene of miR-198. In conclusion, miR-198 suppressed proliferation of lung adenocarcinoma cells both in vitro and in vivo by directly targeting SHMT1. miR-198 may be a potential therapeutic target for lung adenocarcinoma in the near future.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics: 2015. CA Cancer J Clin. 2015;65:5–29.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics: 2015. CA Cancer J Clin. 2015;65:5–29.CrossRef
2.
go back to reference Jemal A, Bray F, Center MM. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRef Jemal A, Bray F, Center MM. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRef
3.
4.
go back to reference Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.CrossRef Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.CrossRef
5.
go back to reference Al-Farsi A, Ellis PM. Treatment paradigms for patients with metastatic non-small cell lung cancer, squamous lung cancer: first, second, and third-line. Front Oncol. 2014;4:157.CrossRef Al-Farsi A, Ellis PM. Treatment paradigms for patients with metastatic non-small cell lung cancer, squamous lung cancer: first, second, and third-line. Front Oncol. 2014;4:157.CrossRef
6.
go back to reference Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet. 2014;5:54.CrossRef Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet. 2014;5:54.CrossRef
7.
go back to reference Senthil K, Venugopa Joy J, Tae-Hun K, Yong L, Si-Si W, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol. 2010;298:G101–6.CrossRef Senthil K, Venugopa Joy J, Tae-Hun K, Yong L, Si-Si W, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol. 2010;298:G101–6.CrossRef
8.
9.
go back to reference Farazi TA, Spitzer JI, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223:102–15.CrossRef Farazi TA, Spitzer JI, Tuschl T. miRNAs in human cancer. J Pathol. 2011;223:102–15.CrossRef
10.
go back to reference Tan S, Li R, Ding K, Lobie PE, Zhu T. miR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Lett. 2011;585:2229–34.CrossRef Tan S, Li R, Ding K, Lobie PE, Zhu T. miR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Lett. 2011;585:2229–34.CrossRef
11.
go back to reference Wang M, Wang J, Kong X, Chen H, Wang Y, Qin M, et al. MiR-198 represses tumor growth and metastasis in colorectal cancer by targeting fucosyl transferase 8. Sci Rep. 2014;4:6145.CrossRef Wang M, Wang J, Kong X, Chen H, Wang Y, Qin M, et al. MiR-198 represses tumor growth and metastasis in colorectal cancer by targeting fucosyl transferase 8. Sci Rep. 2014;4:6145.CrossRef
12.
go back to reference Ye L, Li S, Ye D, Yang D, Yue F, Guo Y, et al. Livin expression may be regulated by miR-198 in human prostate cancer cell lines. Eur J Cancer. 2013;49:734–40.CrossRef Ye L, Li S, Ye D, Yang D, Yue F, Guo Y, et al. Livin expression may be regulated by miR-198 in human prostate cancer cell lines. Eur J Cancer. 2013;49:734–40.CrossRef
13.
go back to reference Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.CrossRef Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.CrossRef
14.
go back to reference Yang J, Zhao H, Yu X, Fan L. MicroRNA-198 inhibits proliferation and induces apoptosis of lung cancer cells via targeting FGFR1. J Cell Biochem. 2014;115:987–95.CrossRef Yang J, Zhao H, Yu X, Fan L. MicroRNA-198 inhibits proliferation and induces apoptosis of lung cancer cells via targeting FGFR1. J Cell Biochem. 2014;115:987–95.CrossRef
15.
go back to reference Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem. 2012;287:7051–62.CrossRef Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem. 2012;287:7051–62.CrossRef
16.
go back to reference Paone A, Marani M, Fiascarelli A, Rinaldo S, Giardina G, Contestabile R, et al. SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death Dis. 2014;5, e1525.CrossRef Paone A, Marani M, Fiascarelli A, Rinaldo S, Giardina G, Contestabile R, et al. SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death Dis. 2014;5, e1525.CrossRef
17.
go back to reference Xing RC, Zheng J, Zheng WH, Qin ZP, Liu W, Yao RC. Relevance of E-cadherin expression to EGFR-TKI molecular targeted therapy sensitivity/resistance and its clinical significance. Genet Mol Res. 2015;14:5785–92.CrossRef Xing RC, Zheng J, Zheng WH, Qin ZP, Liu W, Yao RC. Relevance of E-cadherin expression to EGFR-TKI molecular targeted therapy sensitivity/resistance and its clinical significance. Genet Mol Res. 2015;14:5785–92.CrossRef
18.
go back to reference Maemondo M, Inoue A, Kobayashi K. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. New Engl J Med. 2010;362:2380–88.CrossRef Maemondo M, Inoue A, Kobayashi K. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. New Engl J Med. 2010;362:2380–88.CrossRef
19.
go back to reference Steuer CE, Khuri FR, Ramalingam SS. The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer. Cancer. 2015;121:E1–6.CrossRef Steuer CE, Khuri FR, Ramalingam SS. The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer. Cancer. 2015;121:E1–6.CrossRef
20.
go back to reference Chen Z, Liu X, Zhao J, Yang H, Teng X. Correlation of EGFR mutation and histological subtype according to the IASLC/ATS/ERS classification of lung adenocarcinoma. Int J Clin Exp Pathol. 2014;7:8039–45.PubMedPubMedCentral Chen Z, Liu X, Zhao J, Yang H, Teng X. Correlation of EGFR mutation and histological subtype according to the IASLC/ATS/ERS classification of lung adenocarcinoma. Int J Clin Exp Pathol. 2014;7:8039–45.PubMedPubMedCentral
21.
go back to reference Takeuchi S, Yano S. Clinical significance of epidermal growth factor receptor tyrosine kinase inhibitors: sensitivity and resistance. Respir Investig. 2014;52:348–56.CrossRef Takeuchi S, Yano S. Clinical significance of epidermal growth factor receptor tyrosine kinase inhibitors: sensitivity and resistance. Respir Investig. 2014;52:348–56.CrossRef
22.
go back to reference Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol. 2015;22:e183–215.CrossRef Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol. 2015;22:e183–215.CrossRef
23.
go back to reference Paiardini A, Fiascarelli A, Rinaldo S, Daidone F, Giardina G, Koes DR, et al. Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase. ChemMedChem. 2015;10:490–7.CrossRef Paiardini A, Fiascarelli A, Rinaldo S, Daidone F, Giardina G, Koes DR, et al. Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase. ChemMedChem. 2015;10:490–7.CrossRef
24.
go back to reference Kim HM, Jung WH, Koo JS. Site-specific metabolic phenotypes in metastatic breast cancer. J Transl Med. 2014;12:354.CrossRef Kim HM, Jung WH, Koo JS. Site-specific metabolic phenotypes in metastatic breast cancer. J Transl Med. 2014;12:354.CrossRef
25.
go back to reference Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.CrossRef Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012;148:259–72.CrossRef
26.
go back to reference Vychytilova-Faltejskova P, Kiss I, Klusova S, Hlavsa J, Prochazka V, Kala Z, et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagn Pathol. 2015;10:38.CrossRef Vychytilova-Faltejskova P, Kiss I, Klusova S, Hlavsa J, Prochazka V, Kala Z, et al. MiR-21, miR-34a, miR-198 and miR-217 as diagnostic and prognostic biomarkers for chronic pancreatitis and pancreatic ductal adenocarcinoma. Diagn Pathol. 2015;10:38.CrossRef
27.
go back to reference Andrea V, Tyler J. miRNAs and cancer: a little RNA goes a long way. Cell. 2009;136:586–91.CrossRef Andrea V, Tyler J. miRNAs and cancer: a little RNA goes a long way. Cell. 2009;136:586–91.CrossRef
28.
go back to reference Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18:215–22.CrossRef Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18:215–22.CrossRef
Metadata
Title
RETRACTED ARTICLE: miR-198 targets SHMT1 to inhibit cell proliferation and enhance cell apoptosis in lung adenocarcinoma
Authors
Shujun Wu
Guojun Zhang
Ping Li
Shanshan Chen
Furui Zhang
Juan Li
Chenyang Jiang
Xiaonan Chen
Yuanyuan Wang
Yuwen Du
Qianqian Sun
Guoqiang Zhao
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4369-z

Other articles of this Issue 4/2016

Tumor Biology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine