Skip to main content
Top
Published in: Tumor Biology 10/2014

01-10-2014 | Review

Therapeutic potential of siRNA and DNAzymes in cancer

Authors: Hanuma Kumar Karnati, Ravi Shekar Yalagala, Rambabu Undi, Satya Ratan Pasupuleti, Ravi Kumar Gutti

Published in: Tumor Biology | Issue 10/2014

Login to get access

Abstract

Cancer is characterized by uncontrolled cell growth, invasion, and metastasis and possess threat to humans worldwide. The scientific community is facing numerous challenges despite several efforts to cure cancer. Though a number of studies were done earlier, the molecular mechanism of cancer progression is not completely understood. Currently available treatments like surgery resection, adjuvant chemotherapy, and radiotherapy are not completely effective in curing all the cancers. Recent advances in the antisense technology provide a powerful tool to investigate various cancer pathways and target them. Small interfering RNAs (siRNAs) could be effective in downregulating the cancer-associated genes, but their in vivo delivery is the main obstacle. DNA enzymes (DNAzymes) have great potential in the treatment of cancer due to high selectivity and significant catalytic efficiency. In this review, we are focusing on antisense molecules such as siRNA and DNAzymes in cancer therapeutics development. This review also describes the challenges and approaches to overcome obstacles involved in using siRNA and DNAzymes in the treatment of cancers.
Literature
1.
go back to reference Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63:1515–9.PubMed Wu H, Hait WN, Yang JM. Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63:1515–9.PubMed
2.
go back to reference Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–50.PubMedCrossRef Nieth C, Priebsch A, Stege A, Lage H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–50.PubMedCrossRef
3.
go back to reference Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRef Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRef
4.
go back to reference Bernstein E, Caudy A, Hammond S, Hannon G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.PubMedCrossRef Bernstein E, Caudy A, Hammond S, Hannon G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6.PubMedCrossRef
5.
6.
go back to reference Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.PubMedCrossRef Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25–33.PubMedCrossRef
7.
go back to reference Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11:674–82.PubMedCentralPubMedCrossRef Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11:674–82.PubMedCentralPubMedCrossRef
8.
go back to reference Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci U S A. 1985;82:1810–4.PubMedCentralPubMedCrossRef Konopka JB, Watanabe SM, Singer JW, Collins SJ, Witte ON. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc Natl Acad Sci U S A. 1985;82:1810–4.PubMedCentralPubMedCrossRef
9.
go back to reference Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985;229:1390–3.PubMedCrossRef Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science. 1985;229:1390–3.PubMedCrossRef
10.
go back to reference Finger LR, Harvey RC, Moore RCA, Showe LC, Croce CM. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science. 1986;234:982–5.PubMedCrossRef Finger LR, Harvey RC, Moore RCA, Showe LC, Croce CM. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science. 1986;234:982–5.PubMedCrossRef
12.
go back to reference Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.PubMedCrossRef Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310:644–8.PubMedCrossRef
13.
go back to reference Nakamura E, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell. 2002;10:1119–28.PubMedCrossRef Nakamura E, Mori T, Tada S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell. 2002;10:1119–28.PubMedCrossRef
14.
go back to reference Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist. 2002;7:31–9.PubMedCrossRef Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist. 2002;7:31–9.PubMedCrossRef
15.
go back to reference Kim DY, Kim MJ, Kim HB, Lee JW, Bae JH, Kim DW, et al. Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc. Biochim Biophys Acta. 1812;2011:796–805. Kim DY, Kim MJ, Kim HB, Lee JW, Bae JH, Kim DW, et al. Suppression of multidrug resistance by treatment with TRAIL in human ovarian and breast cancer cells with high level of c-Myc. Biochim Biophys Acta. 1812;2011:796–805.
16.
18.
go back to reference Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297:474–8.PubMedCrossRef Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297:474–8.PubMedCrossRef
19.
go back to reference Gambke C, Signer E, Moroni C. Activation of N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia. Nature. 1984;307:476–8.PubMedCrossRef Gambke C, Signer E, Moroni C. Activation of N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia. Nature. 1984;307:476–8.PubMedCrossRef
20.
go back to reference Xue-mei S, Graham JL. Abnormal protein tyrosine kinases associated with human haematological malignancies. Chin J Cancer Res. 2002;14:79–83.CrossRef Xue-mei S, Graham JL. Abnormal protein tyrosine kinases associated with human haematological malignancies. Chin J Cancer Res. 2002;14:79–83.CrossRef
21.
go back to reference Blume JP, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.CrossRef Blume JP, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.CrossRef
22.
go back to reference Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.PubMedCrossRef Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.PubMedCrossRef
23.
go back to reference Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.PubMedCrossRef Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.PubMedCrossRef
24.
go back to reference Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Bäsecke J, et al. Contributions of the Raf/MEK/ERK, P13K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia. 2008;22:686–707.PubMedCrossRef Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Bäsecke J, et al. Contributions of the Raf/MEK/ERK, P13K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia. 2008;22:686–707.PubMedCrossRef
25.
go back to reference Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.PubMedCrossRef Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.PubMedCrossRef
26.
go back to reference Alumbres M. Barbacid M RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.CrossRef Alumbres M. Barbacid M RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.CrossRef
27.
go back to reference Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.PubMedCrossRef Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.PubMedCrossRef
28.
go back to reference Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedCrossRef Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.PubMedCrossRef
29.
30.
go back to reference Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene. 2003;22:9007–21.PubMedCrossRef Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene. 2003;22:9007–21.PubMedCrossRef
31.
go back to reference Macauley VM, Sohail M. Molecular targeting of the IGF-1 receptor. 2005; US20040996951. Macauley VM, Sohail M. Molecular targeting of the IGF-1 receptor. 2005; US20040996951.
32.
go back to reference Khvorova A, Reynolds A, Leake D, et al. siRNA targeting insulin-like growth factor 1 receptor (IGF-1R). 2007; US20070732457. Khvorova A, Reynolds A, Leake D, et al. siRNA targeting insulin-like growth factor 1 receptor (IGF-1R). 2007; US20070732457.
33.
go back to reference Evers BM, Rychahou P. SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy. 2005; US20050085962. Evers BM, Rychahou P. SiRNA targeting PI3K signal transduction pathway and siRNA-based therapy. 2005; US20050085962.
34.
35.
go back to reference Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86.PubMedCrossRef Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6:273–86.PubMedCrossRef
36.
go back to reference Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27:85–94.PubMedCrossRef Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27:85–94.PubMedCrossRef
37.
go back to reference Shinomiya N, Woude GFV. c-met siRNA adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity. 2007; US20050599327. Shinomiya N, Woude GFV. c-met siRNA adenovirus vectors inhibit cancer cell growth, invasion and tumorigenicity. 2007; US20050599327.
38.
go back to reference Khvorova A, Reynolds A, Leake D, et al. siRNA targeting proto-oncogene MET. 2008; US20070980263. Khvorova A, Reynolds A, Leake D, et al. siRNA targeting proto-oncogene MET. 2008; US20070980263.
39.
go back to reference Kraus MH, Pierce JH, Fleming TP, Robbins KC, Di Fiore PP, Aaronson SA. Mechanisms by which genes encoding growth factors and growth factor receptors contribute to malignant transformation. Ann N Y Acad Sci. 1988;551:320–35.PubMedCrossRef Kraus MH, Pierce JH, Fleming TP, Robbins KC, Di Fiore PP, Aaronson SA. Mechanisms by which genes encoding growth factors and growth factor receptors contribute to malignant transformation. Ann N Y Acad Sci. 1988;551:320–35.PubMedCrossRef
40.
go back to reference Khvorova A, Reynolds A, Leake D, et al. siRNA targeting platelet-derived growth factor receptor beta polypeptide (PDGFR). 2008; US20070731890. Khvorova A, Reynolds A, Leake D, et al. siRNA targeting platelet-derived growth factor receptor beta polypeptide (PDGFR). 2008; US20070731890.
41.
go back to reference Mc Swiggen J, Beigelman L, Chowrira BM. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid. 2003;WO 2003072704 A2 Mc Swiggen J, Beigelman L, Chowrira BM. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid. 2003;WO 2003072704 A2
42.
go back to reference Reich SJ, Tolentino MJ. Compositions and methods for siRNA inhibition of angiopoietin 1 and 2 and their receptor Tie2. 2004; US20040827759. Reich SJ, Tolentino MJ. Compositions and methods for siRNA inhibition of angiopoietin 1 and 2 and their receptor Tie2. 2004; US20040827759.
43.
go back to reference Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006;13:225–34.PubMedCrossRef Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006;13:225–34.PubMedCrossRef
44.
go back to reference Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis. 2003;9:210–6.PubMed Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis. 2003;9:210–6.PubMed
45.
go back to reference Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med. 2005;11:104–13.PubMedCrossRef Lu PY, Xie FY, Woodle MC. Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med. 2005;11:104–13.PubMedCrossRef
46.
go back to reference Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006;13:559–62.PubMedCrossRef Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 2006;13:559–62.PubMedCrossRef
47.
go back to reference Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, et al. Inhibition of cathepsin B and MMP 9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.PubMedCrossRef Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, et al. Inhibition of cathepsin B and MMP 9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.PubMedCrossRef
48.
go back to reference Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Auguri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.PubMedCrossRef Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Auguri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–81.PubMedCrossRef
49.
go back to reference Khvorova A, Reynolds A, Leake D, et al. Functional and hyperfunctional siRNA directed against Bcl-2. 2008; US20070974878. Khvorova A, Reynolds A, Leake D, et al. Functional and hyperfunctional siRNA directed against Bcl-2. 2008; US20070974878.
50.
go back to reference McSwiggen J, Beigelman L. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA). 2005; US20040923516 McSwiggen J, Beigelman L. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA). 2005; US20040923516
51.
go back to reference Wang K, Chen X, Yan F, Xing Y, Yang X, Tu J, et al. 5′-Triphosphate-siRNA against surviving gene induces interferon production and inhibits proliferation of lung cancer cells in vitro. J Immunother. 2013;36:294–304.PubMedCrossRef Wang K, Chen X, Yan F, Xing Y, Yang X, Tu J, et al. 5′-Triphosphate-siRNA against surviving gene induces interferon production and inhibits proliferation of lung cancer cells in vitro. J Immunother. 2013;36:294–304.PubMedCrossRef
52.
go back to reference Adhim Z, Otsuki N, Kitamoto J, Morishita N, Kawabata M, Shirakawa T, et al. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention against head and neck cancer-containing HPV16 cell lines. Acta Otolaryngol. 2013;3:761–71. doi:10.3109/00016489.2013.773405.CrossRef Adhim Z, Otsuki N, Kitamoto J, Morishita N, Kawabata M, Shirakawa T, et al. Gene silencing with siRNA targeting E6/E7 as a therapeutic intervention against head and neck cancer-containing HPV16 cell lines. Acta Otolaryngol. 2013;3:761–71. doi:10.​3109/​00016489.​2013.​773405.CrossRef
54.
go back to reference Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R, et al. Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther. 2006;17:117–24.PubMedCrossRef Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R, et al. Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther. 2006;17:117–24.PubMedCrossRef
56.
go back to reference Todorovic V, Sersa G, Cemazar M. siRNAs against CD146 inhibits migration and invasion of human malignant melanoma cells SK-MEL28. Cancer Gene Ther. 2013;20:208–10.PubMedCrossRef Todorovic V, Sersa G, Cemazar M. siRNAs against CD146 inhibits migration and invasion of human malignant melanoma cells SK-MEL28. Cancer Gene Ther. 2013;20:208–10.PubMedCrossRef
57.
go back to reference Wiktorska M, Sacewicz-Hofman I, Stasikowska-Kanicka O, Danilewicz M, Niewiarowska J. Distinct inhibitory efficiency of siRNAs and DNAzymes to β1 integrin subunit in blocking tumor growth. Acta Biochim Pol. 2013;60:77–82.PubMed Wiktorska M, Sacewicz-Hofman I, Stasikowska-Kanicka O, Danilewicz M, Niewiarowska J. Distinct inhibitory efficiency of siRNAs and DNAzymes to β1 integrin subunit in blocking tumor growth. Acta Biochim Pol. 2013;60:77–82.PubMed
58.
go back to reference Bisanz K, Yu J, Edlund M, Spohn B, Hung MC, Chung LW, et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther. 2005;12:634–43.PubMedCrossRef Bisanz K, Yu J, Edlund M, Spohn B, Hung MC, Chung LW, et al. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther. 2005;12:634–43.PubMedCrossRef
59.
go back to reference Santel A, Aleku M, Keil O, Endruschat J, Esche V, Durieux B, et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA–lipoplexes for cancer therapy. Gene Ther. 2006;13:1360–70.PubMedCrossRef Santel A, Aleku M, Keil O, Endruschat J, Esche V, Durieux B, et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA–lipoplexes for cancer therapy. Gene Ther. 2006;13:1360–70.PubMedCrossRef
60.
go back to reference Kristina W, Thiel L, Hernandez I, Dassie JP, Thiel WH, Xiuying L, et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012;40:6319–37.CrossRef Kristina W, Thiel L, Hernandez I, Dassie JP, Thiel WH, Xiuying L, et al. Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012;40:6319–37.CrossRef
61.
go back to reference Pillé JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, et al. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther. 2006;17:1019–26.PubMedCrossRef Pillé JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, et al. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther. 2006;17:1019–26.PubMedCrossRef
62.
go back to reference Hu K, Law JH, Fotovati A, Dunn SE. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14:R22.PubMedCentralPubMedCrossRef Hu K, Law JH, Fotovati A, Dunn SE. Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells. Breast Cancer Res. 2012;14:R22.PubMedCentralPubMedCrossRef
63.
go back to reference Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T, et al. Therapeutic efficacy of bifunctional siRNA combining TGF-β1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 2013;73:1709–20.PubMedCrossRef Ellermeier J, Wei J, Duewell P, Hoves S, Stieg MR, Adunka T, et al. Therapeutic efficacy of bifunctional siRNA combining TGF-β1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 2013;73:1709–20.PubMedCrossRef
64.
go back to reference Yin R, Hiu WC, Geoffrey VM, Amit A, Glenn SC, Barbara AW, et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Cancer. 2012;4:147ra112. Yin R, Hiu WC, Geoffrey VM, Amit A, Glenn SC, Barbara AW, et al. Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Cancer. 2012;4:147ra112.
65.
go back to reference Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res. 2004;10:7721–6.PubMedCrossRef Yano J, Hirabayashi K, Nakagawa S, Yamaguchi T, Nogawa M, Kashimori I, et al. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin Cancer Res. 2004;10:7721–6.PubMedCrossRef
67.
go back to reference He W, Liu T, Chen YX, Cheng DJ, Li XR, Xiao Y, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther. 2008;15:193–202.PubMedCrossRef He W, Liu T, Chen YX, Cheng DJ, Li XR, Xiao Y, et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther. 2008;15:193–202.PubMedCrossRef
68.
go back to reference Liu K, Chen H, You Q, Shi H, Wang Z. The siRNA cocktail targeting VEGF and HER2 inhibition on the proliferation and induced apoptosis of gastric cancer cell. Mol Cell Biochem. 2014;386:117–24.PubMedCentralPubMedCrossRef Liu K, Chen H, You Q, Shi H, Wang Z. The siRNA cocktail targeting VEGF and HER2 inhibition on the proliferation and induced apoptosis of gastric cancer cell. Mol Cell Biochem. 2014;386:117–24.PubMedCentralPubMedCrossRef
69.
70.
go back to reference Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Höbel SF, et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther. 2006;17:751–66.PubMedCrossRef Grzelinski M, Urban-Klein B, Martens T, Lamszus K, Bakowsky U, Höbel SF, et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gene Ther. 2006;17:751–66.PubMedCrossRef
71.
go back to reference Chetty C, Lakka SS, Bhoopathi P, Gondi CS, Veeravalli KK, Fassett D, et al. Urokinase plasminogen activator receptor and/or matrix metalloproteinase-9 inhibition induces apoptosis signaling through lipid rafts in glioblastoma xenograft cells. Mol Cancer Ther. 2010;9:2605–17.PubMedCentralPubMedCrossRef Chetty C, Lakka SS, Bhoopathi P, Gondi CS, Veeravalli KK, Fassett D, et al. Urokinase plasminogen activator receptor and/or matrix metalloproteinase-9 inhibition induces apoptosis signaling through lipid rafts in glioblastoma xenograft cells. Mol Cancer Ther. 2010;9:2605–17.PubMedCentralPubMedCrossRef
72.
go back to reference Yang L, Lu Z, Ma X, Cao Y, Sun LQ. A therapeutic approach to nasopharyngeal carcinomas by DNAzymes targeting EBV LMP-1 gene. Molecules. 2010;15:6127–39.PubMedCrossRef Yang L, Lu Z, Ma X, Cao Y, Sun LQ. A therapeutic approach to nasopharyngeal carcinomas by DNAzymes targeting EBV LMP-1 gene. Molecules. 2010;15:6127–39.PubMedCrossRef
73.
go back to reference Lu ZX, Ma XQ, Yang LF, Wang ZL, Zeng L, Li ZJ, et al. DNAzymes targeted to EBV-encoded latent membrane protein-1 induce apoptosis and enhance radiosensitivity in nasopharyngeal carcinoma. Cancer Lett. 2008;265:226–38.PubMedCrossRef Lu ZX, Ma XQ, Yang LF, Wang ZL, Zeng L, Li ZJ, et al. DNAzymes targeted to EBV-encoded latent membrane protein-1 induce apoptosis and enhance radiosensitivity in nasopharyngeal carcinoma. Cancer Lett. 2008;265:226–38.PubMedCrossRef
75.
go back to reference Yang L, Xu Z, Liu L, Luo X, Lu J, Sun L, et al. Targeting EBV-LMP1 DNAzyme enhances radiosensitivity of nasopharyngeal carcinoma cells by inhibiting telomerase activity. Cancer Biol Ther. 2014;15:61–8.PubMedCentralPubMedCrossRef Yang L, Xu Z, Liu L, Luo X, Lu J, Sun L, et al. Targeting EBV-LMP1 DNAzyme enhances radiosensitivity of nasopharyngeal carcinoma cells by inhibiting telomerase activity. Cancer Biol Ther. 2014;15:61–8.PubMedCentralPubMedCrossRef
76.
go back to reference Shen L, Zhou Q, Wang Y, Liao W, Chen Y, Xu Z, et al. Antiangiogenic and antitumoral effects mediated by a vascular endothelial growth factor receptor 1 (VEGFR-1)-targeted DNAzyme. Mol Med. 2013;19:377–86.PubMedCentralPubMedCrossRef Shen L, Zhou Q, Wang Y, Liao W, Chen Y, Xu Z, et al. Antiangiogenic and antitumoral effects mediated by a vascular endothelial growth factor receptor 1 (VEGFR-1)-targeted DNAzyme. Mol Med. 2013;19:377–86.PubMedCentralPubMedCrossRef
77.
go back to reference Mitchell A, Dass CR, Sun LQ, Khachigian LM. Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumor growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acids Res. 2004;32:3065–9.PubMedCentralPubMedCrossRef Mitchell A, Dass CR, Sun LQ, Khachigian LM. Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumor growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acids Res. 2004;32:3065–9.PubMedCentralPubMedCrossRef
78.
go back to reference Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9:1026–32.PubMedCrossRef Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003;9:1026–32.PubMedCrossRef
79.
go back to reference Zhang L, Gasper WJ, Stass SA, Ioffe OB, Davis MA, Mixson AJ. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res. 2002;62:5463–9.PubMed Zhang L, Gasper WJ, Stass SA, Ioffe OB, Davis MA, Mixson AJ. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res. 2002;62:5463–9.PubMed
80.
go back to reference Hallet MA, Teng B, Hasegawa H, Schwab LP, Seagroves TN, Pourmotabbed T. Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res. 2013;15:R12.CrossRef Hallet MA, Teng B, Hasegawa H, Schwab LP, Seagroves TN, Pourmotabbed T. Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res. 2013;15:R12.CrossRef
81.
go back to reference Zeng W, Deng L, Zhou R. Experimental study of targeting MMP-9 deoxyribozyme role of adhesion and migration in human lung adenocarcinoma cancer cell (in Chinese). Chin J Lung Cancer. 2008;11:765–8. Zeng W, Deng L, Zhou R. Experimental study of targeting MMP-9 deoxyribozyme role of adhesion and migration in human lung adenocarcinoma cancer cell (in Chinese). Chin J Lung Cancer. 2008;11:765–8.
82.
go back to reference Yang L, Zeng W, Li D, Zhou R. Inhibition of cell proliferation, migration and invasion by DNAzyme targeting MMP-9 in A549 cells. Oncol Rep. 2009;22:121–6.PubMedCrossRef Yang L, Zeng W, Li D, Zhou R. Inhibition of cell proliferation, migration and invasion by DNAzyme targeting MMP-9 in A549 cells. Oncol Rep. 2009;22:121–6.PubMedCrossRef
83.
go back to reference Min Z, Zhao H, Luo FY, Luo S, Shi W. IGF-II inhibitory DNAzymes inhibit the invasion and migration of hepatocarcinoma cells. Biotechnol Lett. 2011;33:911–7.PubMedCrossRef Min Z, Zhao H, Luo FY, Luo S, Shi W. IGF-II inhibitory DNAzymes inhibit the invasion and migration of hepatocarcinoma cells. Biotechnol Lett. 2011;33:911–7.PubMedCrossRef
84.
go back to reference Liang ZY, Wei SZ, Guan J, Luo Y, Gao J, Zhu H, et al. DNAzyme-mediated cleavage of survivin mRNA and inhibition of the growth of PANC-1 cells. J Gastroenterol Hepatol. 2005;20:1595–602.PubMedCrossRef Liang ZY, Wei SZ, Guan J, Luo Y, Gao J, Zhu H, et al. DNAzyme-mediated cleavage of survivin mRNA and inhibition of the growth of PANC-1 cells. J Gastroenterol Hepatol. 2005;20:1595–602.PubMedCrossRef
85.
go back to reference Wiktorska M, Papiewska-Pajak L, Okruszek A, Sacewicz-Hofman I, Neiwiarowska J. DNAzyme as an efficient tool to modulate invasiveness of human carcinoma cells. Acta Biochim Pol. 2010;57:269–75.PubMed Wiktorska M, Papiewska-Pajak L, Okruszek A, Sacewicz-Hofman I, Neiwiarowska J. DNAzyme as an efficient tool to modulate invasiveness of human carcinoma cells. Acta Biochim Pol. 2010;57:269–75.PubMed
86.
go back to reference Choi BR, Gwak J, Kwon HM, Oh S, Kim KP, Choi WHH, et al. Oligodeoxyribozymes that cleave β catenin messenger RNA inhibit growth of colon cells via reduction of β-catenin response transcription. Mol Cancer Ther. 2010;9:1894–902.PubMedCrossRef Choi BR, Gwak J, Kwon HM, Oh S, Kim KP, Choi WHH, et al. Oligodeoxyribozymes that cleave β catenin messenger RNA inhibit growth of colon cells via reduction of β-catenin response transcription. Mol Cancer Ther. 2010;9:1894–902.PubMedCrossRef
87.
go back to reference Yu SH, Wang TH, Au LC. Specific repression of mutant K-RAS by 10–23 DNAzyme: sensitizing cancer cell to anti-cancer therapies. Biochem Biophys Res Commun. 2009;378:230–4.PubMedCrossRef Yu SH, Wang TH, Au LC. Specific repression of mutant K-RAS by 10–23 DNAzyme: sensitizing cancer cell to anti-cancer therapies. Biochem Biophys Res Commun. 2009;378:230–4.PubMedCrossRef
88.
go back to reference Qu Y, Zhang L, Mao M, Zhao F, Huang X, Yang C, et al. Effects of DNAzymes targeting aurora kinase A on the growth of human prostate cancer. Cancer Gene Ther. 2008;15:517–25.PubMedCrossRef Qu Y, Zhang L, Mao M, Zhao F, Huang X, Yang C, et al. Effects of DNAzymes targeting aurora kinase A on the growth of human prostate cancer. Cancer Gene Ther. 2008;15:517–25.PubMedCrossRef
89.
go back to reference Nna E, Madukwe J, Egbujo E, Obiorah C, Okolie C, Echejoh G, et al. Gene expression of Aurora kinases in prostate cancer and nodular hyperplasia tissues. Med Princ Pract. 2013;22:138–43.PubMedCrossRef Nna E, Madukwe J, Egbujo E, Obiorah C, Okolie C, Echejoh G, et al. Gene expression of Aurora kinases in prostate cancer and nodular hyperplasia tissues. Med Princ Pract. 2013;22:138–43.PubMedCrossRef
90.
go back to reference Zhang G, Luo X, Sumithran E, Pua VS, Barnetson RS, Halliday GM, et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene. 2006;25:7260–6.PubMedCrossRef Zhang G, Luo X, Sumithran E, Pua VS, Barnetson RS, Halliday GM, et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene. 2006;25:7260–6.PubMedCrossRef
91.
go back to reference Wu Y, Yu L, Mcmahon R, Rossi JJ, Forman SJ, Snyder DS. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther. 1999;10:2847–57.PubMedCrossRef Wu Y, Yu L, Mcmahon R, Rossi JJ, Forman SJ, Snyder DS. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther. 1999;10:2847–57.PubMedCrossRef
92.
go back to reference Kabuli M, Yin JL, Tobal K. Targeting PML/RARα transcript with DNAzymes results in reduction of proliferation and induction of apoptosis in APL cells. Hematol J. 2005;5:426–33.CrossRef Kabuli M, Yin JL, Tobal K. Targeting PML/RARα transcript with DNAzymes results in reduction of proliferation and induction of apoptosis in APL cells. Hematol J. 2005;5:426–33.CrossRef
93.
go back to reference Zhang G, Dass CR, Sumithran E, Di Girolamo N, Sun LQ, Khachigian LM. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst. 2004;96:683–96.PubMedCrossRef Zhang G, Dass CR, Sumithran E, Di Girolamo N, Sun LQ, Khachigian LM. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst. 2004;96:683–96.PubMedCrossRef
94.
go back to reference Dass CR, Galloway SJ, Clark JC, Khachigian LM, Choong PF. Involvement of c-jun in human liposarcoma growth: supporting data from clinical immunohistochemistry and DNAzyme efficacy. Cancer Biol Ther. 2008;7:1297–301.PubMedCrossRef Dass CR, Galloway SJ, Clark JC, Khachigian LM, Choong PF. Involvement of c-jun in human liposarcoma growth: supporting data from clinical immunohistochemistry and DNAzyme efficacy. Cancer Biol Ther. 2008;7:1297–301.PubMedCrossRef
95.
go back to reference De Bock CE, Lin Z, Itoh T, Morris D, Murrel G, Wang Y. Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cells. FEBS J. 2005;272:3572–82.PubMedCrossRef De Bock CE, Lin Z, Itoh T, Morris D, Murrel G, Wang Y. Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cells. FEBS J. 2005;272:3572–82.PubMedCrossRef
96.
go back to reference Cai H, Santiago FS, Prado-Lourenco L, Wang B, Patrikakis M, Davenport MP, et al. DNAzyme targeting c-jun suppresses skin cancer growth. Sci Transl Med. 2012;4:139ra82.PubMedCrossRef Cai H, Santiago FS, Prado-Lourenco L, Wang B, Patrikakis M, Davenport MP, et al. DNAzyme targeting c-jun suppresses skin cancer growth. Sci Transl Med. 2012;4:139ra82.PubMedCrossRef
97.
go back to reference Yang L, He JT, Guan H, Sun YD. AKT1 inhibitory DNAzymes inhibit cell proliferation and migration of thyroid cancer cells. Asian Pac J Cancer Prev. 2013;14:2571–5.PubMedCrossRef Yang L, He JT, Guan H, Sun YD. AKT1 inhibitory DNAzymes inhibit cell proliferation and migration of thyroid cancer cells. Asian Pac J Cancer Prev. 2013;14:2571–5.PubMedCrossRef
99.
go back to reference Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005;434:666–70.PubMedCrossRefPubMedCentral Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005;434:666–70.PubMedCrossRefPubMedCentral
100.
go back to reference Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–88.PubMedCentralPubMedCrossRef Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–88.PubMedCentralPubMedCrossRef
101.
102.
go back to reference Braasch DA, Jensen S, Liu YH, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.PubMedCrossRef Braasch DA, Jensen S, Liu YH, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.PubMedCrossRef
103.
go back to reference Hall AHS, Wan J, Shaughnessy EE, Shaw BR, Alexander KA. RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res. 2004;32:5991–6000.PubMedCentralPubMedCrossRef Hall AHS, Wan J, Shaughnessy EE, Shaw BR, Alexander KA. RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res. 2004;32:5991–6000.PubMedCentralPubMedCrossRef
104.
go back to reference Martinez J, Tuschl T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Cancer Dev. 2004;18:975–80. Martinez J, Tuschl T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Cancer Dev. 2004;18:975–80.
105.
go back to reference Parrish S, Fleenor J, Xu S, Mello C, Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000;6:1077–87.PubMedCrossRef Parrish S, Fleenor J, Xu S, Mello C, Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000;6:1077–87.PubMedCrossRef
106.
go back to reference Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48:4247–53.PubMedCrossRef Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem. 2005;48:4247–53.PubMedCrossRef
107.
108.
go back to reference Dowler T, Bergeron D, Tedeschi AL, Paquet L, Ferrari N, Damha MJ. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res. 2006;34:1669–75.PubMedCentralPubMedCrossRef Dowler T, Bergeron D, Tedeschi AL, Paquet L, Ferrari N, Damha MJ. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res. 2006;34:1669–75.PubMedCentralPubMedCrossRef
109.
go back to reference Shen L, Zhang C, Ambrus JL, Wang JH. Silencing of human c-myc oncogene expression by poly-DNP-RNA. Oligonucleotides. 2005;15:23–35.PubMedCrossRef Shen L, Zhang C, Ambrus JL, Wang JH. Silencing of human c-myc oncogene expression by poly-DNP-RNA. Oligonucleotides. 2005;15:23–35.PubMedCrossRef
110.
go back to reference Elmen J, Thonberg H, Ljungberg K, Frieden M. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33:439–47.PubMedCentralPubMedCrossRef Elmen J, Thonberg H, Ljungberg K, Frieden M. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33:439–47.PubMedCentralPubMedCrossRef
111.
go back to reference Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem. 2006;49:1624–34.PubMedCrossRef Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem. 2006;49:1624–34.PubMedCrossRef
112.
go back to reference Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene. 2003;22:5938–45.PubMedCrossRef Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene. 2003;22:5938–45.PubMedCrossRef
115.
go back to reference Tousignant JD, Gates AL, Ingram LA, Ohnson CL, Nietupski JB, Cheng SH, et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: plasmid DNA complexes in mice. Hum Gene Ther. 2000;11:2493–513.PubMedCrossRef Tousignant JD, Gates AL, Ingram LA, Ohnson CL, Nietupski JB, Cheng SH, et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: plasmid DNA complexes in mice. Hum Gene Ther. 2000;11:2493–513.PubMedCrossRef
116.
go back to reference Dass CR. Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in vivo. J Pharm Pharmacol. 2002;54:593–601.PubMedCrossRef Dass CR. Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in vivo. J Pharm Pharmacol. 2002;54:593–601.PubMedCrossRef
117.
go back to reference Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S, et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther. 2005;12:321–8.PubMedCrossRef Chien PY, Wang J, Carbonaro D, Lei S, Miller B, Sheikh S, et al. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther. 2005;12:321–8.PubMedCrossRef
118.
go back to reference Ahmad I, Zhang ZY, Zhang JA, et al. Lipid compositions and use thereof. 2005; CA20052559352. Ahmad I, Zhang ZY, Zhang JA, et al. Lipid compositions and use thereof. 2005; CA20052559352.
119.
go back to reference Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–7.PubMedCrossRef Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–7.PubMedCrossRef
120.
go back to reference Mc Swiggen J, Morrissey D, Guerciolini R, et al. RNA interference mediated inhibition of hepatitis C virus (HCV) gene expression using short interfering nucleic acid (siNA). 2009; WO2006US62252. Mc Swiggen J, Morrissey D, Guerciolini R, et al. RNA interference mediated inhibition of hepatitis C virus (HCV) gene expression using short interfering nucleic acid (siNA). 2009; WO2006US62252.
121.
go back to reference Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453:798–802.PubMedCentralPubMedCrossRef Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453:798–802.PubMedCentralPubMedCrossRef
122.
go back to reference Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.PubMedCrossRef Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12:461–6.PubMedCrossRef
123.
go back to reference Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release. 1998;53:183–93.PubMedCrossRef Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT, et al. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release. 1998;53:183–93.PubMedCrossRef
124.
go back to reference Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.PubMedCrossRef Gary DJ, Puri N, Won YY. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release. 2007;121:64–73.PubMedCrossRef
125.
go back to reference Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32:e149.PubMedCentralPubMedCrossRef Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32:e149.PubMedCentralPubMedCrossRef
126.
go back to reference Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem. 2004;15:831–40.PubMedCrossRef Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem. 2004;15:831–40.PubMedCrossRef
127.
go back to reference Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3:641–50.PubMedCrossRef Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3:641–50.PubMedCrossRef
128.
go back to reference Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem. 2004;11:179–97.PubMedCrossRef Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem. 2004;11:179–97.PubMedCrossRef
129.
go back to reference O’Mahony AM, Desgranges S, Ogier J, Quinlan A, Devocelle M, Darcy R, et al. In vitro investigations of the efficacy of cyclodextrin-siRNA complexes modified with lipid-PEG-Octaarginine: towards a formulation strategy for non-viral neuronal siRNA delivery. Pharm Res. 2013;30:1086–98.PubMedCrossRef O’Mahony AM, Desgranges S, Ogier J, Quinlan A, Devocelle M, Darcy R, et al. In vitro investigations of the efficacy of cyclodextrin-siRNA complexes modified with lipid-PEG-Octaarginine: towards a formulation strategy for non-viral neuronal siRNA delivery. Pharm Res. 2013;30:1086–98.PubMedCrossRef
130.
go back to reference Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.PubMedCrossRef Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther. 2006;14:476–84.PubMedCrossRef
131.
go back to reference Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17:162–8.PubMedCentralPubMedCrossRef Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther. 2009;17:162–8.PubMedCentralPubMedCrossRef
132.
go back to reference Hanai K, Takeshita F, Honma K, Nagahara S, Maeda M, Minakuchi Y, et al. Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann N Y Acad Sci. 2006;1082:9–17.PubMedCrossRef Hanai K, Takeshita F, Honma K, Nagahara S, Maeda M, Minakuchi Y, et al. Atelocollagen-mediated systemic DDS for nucleic acid medicines. Ann N Y Acad Sci. 2006;1082:9–17.PubMedCrossRef
133.
go back to reference Takeshita F, Minakuchi Y, Nagahara S, Honna K, Sasaki H, Hirai K, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A. 2005;102:12177–82.PubMedCentralPubMedCrossRef Takeshita F, Minakuchi Y, Nagahara S, Honna K, Sasaki H, Hirai K, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci U S A. 2005;102:12177–82.PubMedCentralPubMedCrossRef
134.
go back to reference Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004;32:e109.PubMedCentralPubMedCrossRef Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 2004;32:e109.PubMedCentralPubMedCrossRef
135.
go back to reference Inaba S, Nagahara S, Makita N, et al. Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals. Mol Ther. 2012;20:356–66.PubMedCentralPubMedCrossRef Inaba S, Nagahara S, Makita N, et al. Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals. Mol Ther. 2012;20:356–66.PubMedCentralPubMedCrossRef
136.
go back to reference Song E et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.PubMedCrossRef Song E et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.PubMedCrossRef
137.
138.
go back to reference Hu-lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, noviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.PubMedCrossRef Hu-lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, noviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.PubMedCrossRef
139.
go back to reference Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhães M, Del Amo DS, Pai S, et al. An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids. 2012;1(5):e21.PubMedCentralPubMedCrossRef Wilner SE, Wengerter B, Maier K, de Lourdes Borba Magalhães M, Del Amo DS, Pai S, et al. An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids. 2012;1(5):e21.PubMedCentralPubMedCrossRef
140.
go back to reference Chen CH, Dellamaggiore KR, Ouellette CP, Sedano CD, Lizadjohry M, Chernis GA, et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A. 2008;105:15908–13.PubMedCentralPubMedCrossRef Chen CH, Dellamaggiore KR, Ouellette CP, Sedano CD, Lizadjohry M, Chernis GA, et al. Aptamer-based endocytosis of a lysosomal enzyme. Proc Natl Acad Sci U S A. 2008;105:15908–13.PubMedCentralPubMedCrossRef
141.
go back to reference Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release. 2008;131:64–9.PubMedCentralPubMedCrossRef Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release. 2008;131:64–9.PubMedCentralPubMedCrossRef
142.
go back to reference Achenbach JC, Chiuman W, Cruz RP, Li Y. DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol. 2004;5:321–36.PubMedCrossRef Achenbach JC, Chiuman W, Cruz RP, Li Y. DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol. 2004;5:321–36.PubMedCrossRef
143.
go back to reference Wang Y, Xu Z, Guo S, et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol Ther. 2013;21:1919–29.PubMedCentralPubMedCrossRef Wang Y, Xu Z, Guo S, et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol Ther. 2013;21:1919–29.PubMedCentralPubMedCrossRef
144.
go back to reference Yang XZ, Dou S, Wang YC, et al. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano. 2012;6:4955–65.PubMedCrossRef Yang XZ, Dou S, Wang YC, et al. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano. 2012;6:4955–65.PubMedCrossRef
145.
go back to reference Schlegel A, Bigey P, Dhotel H, Scherman D, Escriou V. Reduced in vitro and in vivo toxicity of siRNA-lipoplexes with addition of polyglutamate. J Control Release. 2013;165:1–8.PubMedCrossRef Schlegel A, Bigey P, Dhotel H, Scherman D, Escriou V. Reduced in vitro and in vivo toxicity of siRNA-lipoplexes with addition of polyglutamate. J Control Release. 2013;165:1–8.PubMedCrossRef
146.
go back to reference Asai T, Matsushita S, Kenjo E, et al. Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA 145 delivery. Bioconjug Chem. 2011;22:429–35.PubMedCrossRef Asai T, Matsushita S, Kenjo E, et al. Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA 145 delivery. Bioconjug Chem. 2011;22:429–35.PubMedCrossRef
147.
go back to reference Schlegel A, Largeau C, Bigey P, et al. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J Control Release. 2011;152:393–401.PubMedCrossRef Schlegel A, Largeau C, Bigey P, et al. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J Control Release. 2011;152:393–401.PubMedCrossRef
148.
go back to reference Bartel DP, Szostak JW. Isolation of a new ribozymes from a large pool of random sequences. Science. 1993;261:1411–8.PubMedCrossRef Bartel DP, Szostak JW. Isolation of a new ribozymes from a large pool of random sequences. Science. 1993;261:1411–8.PubMedCrossRef
150.
go back to reference Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry. 1998;37:13330–42.PubMedCrossRef Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry. 1998;37:13330–42.PubMedCrossRef
151.
go back to reference Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990;344:467–8.PubMedCrossRef Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. 1990;344:467–8.PubMedCrossRef
152.
go back to reference Perreault JP, Wu T, Cousineau B, Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990;344:565–7.PubMedCrossRef Perreault JP, Wu T, Cousineau B, Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990;344:565–7.PubMedCrossRef
153.
go back to reference Yang JH, Usman N, Chartrand P, Robert C. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry. 1992;31:5005–9.PubMedCrossRef Yang JH, Usman N, Chartrand P, Robert C. Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry. 1992;31:5005–9.PubMedCrossRef
154.
go back to reference Paquette J, Nicoghosian K, Qi GR, Beauchemin N, Cedergren R. The conformation of single-stranded nucleic acids tDNA versus tRNA. Eur J Biochem. 1990;189:259–65.PubMedCrossRef Paquette J, Nicoghosian K, Qi GR, Beauchemin N, Cedergren R. The conformation of single-stranded nucleic acids tDNA versus tRNA. Eur J Biochem. 1990;189:259–65.PubMedCrossRef
155.
go back to reference Breaker RR, Joyce GF. DNA enzyme that cleaves RNA. J Chem Biol. 1994;1:223–9.CrossRef Breaker RR, Joyce GF. DNA enzyme that cleaves RNA. J Chem Biol. 1994;1:223–9.CrossRef
156.
go back to reference Geyer RC, Sen D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. J Chem Biol. 1997;4:579–93.CrossRef Geyer RC, Sen D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. J Chem Biol. 1997;4:579–93.CrossRef
157.
go back to reference Perrin DM, Garestier T, Helene CJ. A ligand-modulated padlock oligonucleotide for supercoiled plasmids. Am Chem Soc. 2001;123:1556–63.CrossRef Perrin DM, Garestier T, Helene CJ. A ligand-modulated padlock oligonucleotide for supercoiled plasmids. Am Chem Soc. 2001;123:1556–63.CrossRef
158.
go back to reference Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods. 1986;13:97–102.PubMedCrossRef Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods. 1986;13:97–102.PubMedCrossRef
159.
go back to reference Eder PS, Devine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev. 1991;1:141–51.PubMedCrossRef Eder PS, Devine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev. 1991;1:141–51.PubMedCrossRef
160.
go back to reference Sioud M, Leirdal M. Design of nuclease resistant protein kinase Ca DNA enzymes with potential therapeutic application. J Mol Biol. 2000;296:937–47.PubMedCrossRef Sioud M, Leirdal M. Design of nuclease resistant protein kinase Ca DNA enzymes with potential therapeutic application. J Mol Biol. 2000;296:937–47.PubMedCrossRef
161.
go back to reference Vaerman JL, Moureau P, Deldime F, Lewalle P, Lammineur C, Morschhauser F. Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood. 1997;90:331–9.PubMed Vaerman JL, Moureau P, Deldime F, Lewalle P, Lammineur C, Morschhauser F. Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood. 1997;90:331–9.PubMed
162.
go back to reference SunL Q, Cairns MJ, Gerlach WL, Witherington C, Wang L, King A. Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme. J Biol Chem. 1999;274:17236–41.CrossRef SunL Q, Cairns MJ, Gerlach WL, Witherington C, Wang L, King A. Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme. J Biol Chem. 1999;274:17236–41.CrossRef
163.
go back to reference Iversen PO, Nicolaysen G, Sioud M. DNA enzyme targeting TNFalpha mRNA improves hemodynamic performance in rats with post infarction heart failure. Am J Physiol Heart Circ Physiol. 2001;281:2211–7.CrossRef Iversen PO, Nicolaysen G, Sioud M. DNA enzyme targeting TNFalpha mRNA improves hemodynamic performance in rats with post infarction heart failure. Am J Physiol Heart Circ Physiol. 2001;281:2211–7.CrossRef
164.
go back to reference Iversen PO, Emanuel PD, Sioud M. Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood. 2002;99:4147–53.PubMedCrossRef Iversen PO, Emanuel PD, Sioud M. Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood. 2002;99:4147–53.PubMedCrossRef
165.
go back to reference Warashina M, Kuwabara T, Nakamatsu Y, Taira K. Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem Biol. 1999;6:237–50.PubMedCrossRef Warashina M, Kuwabara T, Nakamatsu Y, Taira K. Extremely high and specific activity of DNA enzymes in cells with a Philadelphia chromosome. Chem Biol. 1999;6:237–50.PubMedCrossRef
166.
go back to reference Cieslak M, Niewiarowska J, Nawrot M, Koziolkiewicz M, Stec WJ, Cierniewski C. DNAzymes to β1 and β3 mRNA down-regulate expression of the targeted integrins and inhibit endothelial cell capillary tube formation in fibrin and Matrigel. J Biol Chem. 2002;277:6779–87.PubMedCrossRef Cieslak M, Niewiarowska J, Nawrot M, Koziolkiewicz M, Stec WJ, Cierniewski C. DNAzymes to β1 and β3 mRNA down-regulate expression of the targeted integrins and inhibit endothelial cell capillary tube formation in fibrin and Matrigel. J Biol Chem. 2002;277:6779–87.PubMedCrossRef
167.
go back to reference Takahashi H, Hamazaki H, Habu Y, Hayashi M, Abe T, Miyano-Kurosaki N, et al. A new modified DNA enzyme that targets influenza virus A. FEBS Lett. 2004;560:69–74.PubMedCrossRef Takahashi H, Hamazaki H, Habu Y, Hayashi M, Abe T, Miyano-Kurosaki N, et al. A new modified DNA enzyme that targets influenza virus A. FEBS Lett. 2004;560:69–74.PubMedCrossRef
168.
go back to reference Pun SH, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, Davis ME, et al. Biodistribution of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Can Biol Ther. 2004;3:641–50.CrossRef Pun SH, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, Davis ME, et al. Biodistribution of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Can Biol Ther. 2004;3:641–50.CrossRef
169.
go back to reference Levin A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta. 1999;1489:69–84.PubMedCrossRef Levin A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta. 1999;1489:69–84.PubMedCrossRef
170.
go back to reference Wengel J, Petersen M, Nielsen KE, Jensen GA, Hakansson AE, Kumar R. LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleotides Nucleic Acids. 2001;20:389–96.CrossRef Wengel J, Petersen M, Nielsen KE, Jensen GA, Hakansson AE, Kumar R. LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleotides Nucleic Acids. 2001;20:389–96.CrossRef
171.
go back to reference Petersen M, Wengel J. LNA a versatile tool for therapeutics and genomics. Trends Biotechnol. 2003;21:74–81.PubMedCrossRef Petersen M, Wengel J. LNA a versatile tool for therapeutics and genomics. Trends Biotechnol. 2003;21:74–81.PubMedCrossRef
172.
go back to reference Crinelli R, Bianchi M, Gentilini L, Palma L, Magnani M. Locked nucleic acids (LNA) versatile tools for designing oligonucleotide decoys with high stability and affinity. Curr Drug Targets. 2004;5:745–52.PubMedCrossRef Crinelli R, Bianchi M, Gentilini L, Palma L, Magnani M. Locked nucleic acids (LNA) versatile tools for designing oligonucleotide decoys with high stability and affinity. Curr Drug Targets. 2004;5:745–52.PubMedCrossRef
173.
go back to reference Jakobsen M, Haasnoot R, Wengel J, Berkhout J, Kjems B. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. J Retrovirol. 2007;4:1–13.CrossRef Jakobsen M, Haasnoot R, Wengel J, Berkhout J, Kjems B. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. J Retrovirol. 2007;4:1–13.CrossRef
174.
go back to reference Schubert S, Fürste JP, Werk D, Grunert HP, Zeichhardt H, Erdmann VA, et al. Gaining target access for deoxyribozymes. J Mol Biol. 2004;339:355–63.PubMedCrossRef Schubert S, Fürste JP, Werk D, Grunert HP, Zeichhardt H, Erdmann VA, et al. Gaining target access for deoxyribozymes. J Mol Biol. 2004;339:355–63.PubMedCrossRef
175.
go back to reference Doran G, Sohail M. Systemic analysis of the role of target site accessibility in the activity of DNA enzymes. J RNAi Gene Silenc. 2006;2:205–14. Doran G, Sohail M. Systemic analysis of the role of target site accessibility in the activity of DNA enzymes. J RNAi Gene Silenc. 2006;2:205–14.
176.
177.
go back to reference Beale G, Hollins AJ, Benboubetra M, Sohail M, Fox SP, Benter I, et al. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J Drug Target. 2003;11:449–56.PubMedCrossRef Beale G, Hollins AJ, Benboubetra M, Sohail M, Fox SP, Benter I, et al. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J Drug Target. 2003;11:449–56.PubMedCrossRef
179.
go back to reference Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Roman CE, et al. Modified poly(propelene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). Drug Target. 2006;14:69–86.CrossRef Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Roman CE, et al. Modified poly(propelene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). Drug Target. 2006;14:69–86.CrossRef
180.
go back to reference Tack F, Noppe M, Van DA, Dekeyzer N, Leede BJ, Bakker A, et al. Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach. Pharmazie. 2008;63:221–5.PubMed Tack F, Noppe M, Van DA, Dekeyzer N, Leede BJ, Bakker A, et al. Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach. Pharmazie. 2008;63:221–5.PubMed
181.
go back to reference Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol. 2004;22:321–5.PubMedCrossRef Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol. 2004;22:321–5.PubMedCrossRef
182.
go back to reference Jackson AL, Burchard J, Reynolds A, Schelter J, Guo J, Johnson JM, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12:1179–87.PubMedCentralPubMedCrossRef Jackson AL, Burchard J, Reynolds A, Schelter J, Guo J, Johnson JM, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12:1179–87.PubMedCentralPubMedCrossRef
183.
go back to reference Anderson EM, Birmingham A, Baskerville S, Baskerville S, Reynolds A, Maksimova E, et al. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA. 2008;14:853–61.PubMedCentralPubMedCrossRef Anderson EM, Birmingham A, Baskerville S, Baskerville S, Reynolds A, Maksimova E, et al. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA. 2008;14:853–61.PubMedCentralPubMedCrossRef
184.
go back to reference Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3′ UTR seed matches, but not over all identity, are associated with RNAi target. Nat Methods. 2006;3:199–204.PubMedCrossRef Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al. 3′ UTR seed matches, but not over all identity, are associated with RNAi target. Nat Methods. 2006;3:199–204.PubMedCrossRef
185.
go back to reference Baum DA, Silverman SK. Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci. 2008;65:2156–74.PubMedCrossRef Baum DA, Silverman SK. Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci. 2008;65:2156–74.PubMedCrossRef
Metadata
Title
Therapeutic potential of siRNA and DNAzymes in cancer
Authors
Hanuma Kumar Karnati
Ravi Shekar Yalagala
Rambabu Undi
Satya Ratan Pasupuleti
Ravi Kumar Gutti
Publication date
01-10-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 10/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2477-9

Other articles of this Issue 10/2014

Tumor Biology 10/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine