Skip to main content
Top
Published in: Discover Oncology 4/2016

01-08-2016 | Original Paper

Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk

Authors: Catha Fischer, Ramanaiah Mamillapalli, Teddy G. Goetz, Elisa Jorgenson, Ysabel Ilagan, Hugh S. Taylor

Published in: Discover Oncology | Issue 4/2016

Login to get access

Abstract

Bisphenol-A (BPA) is a ubiquitous estrogen-like endocrine disrupting compound (EDC). BPA exposure in utero has been linked to breast cancer and abnormal mammary gland development in mice. The recent rise in incidence of human breast cancer and decreased age of first detection suggests a possible environmental etiology. We hypothesized that developmental programming of carcinogenesis may involve an aberrant immune response. Both innate and adaptive immunity play a role in tumor suppression through cytolytic CD8, NK, and Th1 T-cells. We hypothesized that BPA exposure in utero would lead to dysregulation of both innate and adaptive immunity in the mammary gland. CD1 mice were exposed to BPA in utero during gestation (days 9–21) via osmotic minipump. At 6 weeks, the female offspring were ovariectomized and estradiol was given at 8 weeks. RNA and protein were extracted from the posterior mammary glands, and the mRNA and protein levels were measured by PCR array, qRT-PCR, and western blot. In mouse mammary tissue, BPA exposure in utero significantly decreased the expression of members of the chemokine CXC family (Cxcl2, Cxcl4, Cxcl14, and Ccl20), interleukin 1 (Il1) gene family (Il1β and Il1rn), interleukin 2 gene family (Il7 receptor), and interferon gene family (interferon regulatory factor 9 (Irf9), as well as immune response gene 1 (Irg1). Additionally, BPA exposure in utero decreased Esr1 receptor gene expression and increased Esr2 receptor gene expression. In utero exposure of BPA resulted in significant changes to inflammatory modulators within mammary tissue. We suggest that dysregulation of inflammatory cytokines, both pro-inflammatory and anti-inflammatory, leads to a microenvironment that may promote disordered cell growth through inhibition of the immune response that targets cancer cells.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127:27–34PubMedCrossRef Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127:27–34PubMedCrossRef
3.
go back to reference Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070PubMedPubMedCentralCrossRef Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G (2010) Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070PubMedPubMedCentralCrossRef
4.
go back to reference Richter CA, Taylor JA, Ruhlen RL, Welshons WV, Vom Saal FS (2007) Estradiol and Bisphenol A stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. Environ Health Perspect 115:902–908PubMedPubMedCentralCrossRef Richter CA, Taylor JA, Ruhlen RL, Welshons WV, Vom Saal FS (2007) Estradiol and Bisphenol A stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. Environ Health Perspect 115:902–908PubMedPubMedCentralCrossRef
5.
go back to reference Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45:9372–9379PubMedCrossRef Liao C, Kannan K (2011) Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure. Environ Sci Technol 45:9372–9379PubMedCrossRef
6.
go back to reference Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44PubMedCrossRef Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44PubMedCrossRef
7.
go back to reference Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155PubMedCrossRef Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155PubMedCrossRef
8.
9.
go back to reference Gerona RR, Woodruff TJ, Dickenson CA, Pan J, Schwartz JM, Sen S, Friesen MW, Fujimoto VY, Hunt PA (2013) Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in mid gestation umbilical cord serum in a northern and central California population. Environ Sci Technol 47:12477–12485PubMedCrossRef Gerona RR, Woodruff TJ, Dickenson CA, Pan J, Schwartz JM, Sen S, Friesen MW, Fujimoto VY, Hunt PA (2013) Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in mid gestation umbilical cord serum in a northern and central California population. Environ Sci Technol 47:12477–12485PubMedCrossRef
10.
go back to reference Corbel T, Gayrard V, Viguie C, Puel S, Lacroix MZ, Toutain PL, Picard-Hagen N (2013) Bisphenol A disposition in the sheep maternal-placental-fetal unit: mechanisms determining fetal internal exposure. Biol Reprod 89:11PubMedCrossRef Corbel T, Gayrard V, Viguie C, Puel S, Lacroix MZ, Toutain PL, Picard-Hagen N (2013) Bisphenol A disposition in the sheep maternal-placental-fetal unit: mechanisms determining fetal internal exposure. Biol Reprod 89:11PubMedCrossRef
11.
go back to reference Nishikawa M, Iwano H, Yanagisawa R, Koike N, Inoue H, Yokota H (2010) Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect 118:1196–1203PubMedPubMedCentralCrossRef Nishikawa M, Iwano H, Yanagisawa R, Koike N, Inoue H, Yokota H (2010) Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect 118:1196–1203PubMedPubMedCentralCrossRef
12.
go back to reference Calhoun KC, Padilla-Banks E, Jefferson WN, Liu L, Gerrish KE, Young SL, Wood CE, Hunt PA, Vandevoort CA, Williams CJ (2014) Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus. PLoS One 9, e85894PubMedPubMedCentralCrossRef Calhoun KC, Padilla-Banks E, Jefferson WN, Liu L, Gerrish KE, Young SL, Wood CE, Hunt PA, Vandevoort CA, Williams CJ (2014) Bisphenol A exposure alters developmental gene expression in the fetal rhesus macaque uterus. PLoS One 9, e85894PubMedPubMedCentralCrossRef
13.
go back to reference Horstman KA, Naciff JM, Overmann GJ, Foertsch LM, Richardson BD, Daston GP (2012) Effects of transplacental 17-alpha-ethynyl estradiol or bisphenol A on the developmental profile of steroidogenic acute regulatory protein in the rat testis. Birth Defects Res B Dev Reprod Toxicol 95:318–325PubMedCrossRef Horstman KA, Naciff JM, Overmann GJ, Foertsch LM, Richardson BD, Daston GP (2012) Effects of transplacental 17-alpha-ethynyl estradiol or bisphenol A on the developmental profile of steroidogenic acute regulatory protein in the rat testis. Birth Defects Res B Dev Reprod Toxicol 95:318–325PubMedCrossRef
14.
go back to reference Elsworth JD, Jentsch JD, Vandevoort CA, Roth RH, Jr DE, Leranth C (2013) Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology 35:113–120PubMedPubMedCentralCrossRef Elsworth JD, Jentsch JD, Vandevoort CA, Roth RH, Jr DE, Leranth C (2013) Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology 35:113–120PubMedPubMedCentralCrossRef
15.
go back to reference Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ (2012) Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology 153:3828–3838PubMedPubMedCentralCrossRef Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, Connelly JJ (2012) Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology 153:3828–3838PubMedPubMedCentralCrossRef
16.
go back to reference Chapalamadugu KC, Vandevoort CA, Settles ML, Robison BD, Murdoch GK (2014) Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 9:e89096PubMedPubMedCentralCrossRef Chapalamadugu KC, Vandevoort CA, Settles ML, Robison BD, Murdoch GK (2014) Maternal bisphenol a exposure impacts the fetal heart transcriptome. PLoS One 9:e89096PubMedPubMedCentralCrossRef
18.
go back to reference Hijazi A, Guan H, Cernea M, Yang K (2015) Prenatal exposure to bisphenol A disrupts mouse fetal lung development. FASEB J 12:4968–4977CrossRef Hijazi A, Guan H, Cernea M, Yang K (2015) Prenatal exposure to bisphenol A disrupts mouse fetal lung development. FASEB J 12:4968–4977CrossRef
19.
go back to reference Tharp AP, Maffini MV, Hunt PA, VandeVoort CA, Sonnenschein C, Soto AM (2012) Bisphenol A alters the development of the rhesus monkey mammary gland. Proc Natl Acad Sci U S A 109:8190–8195PubMedPubMedCentralCrossRef Tharp AP, Maffini MV, Hunt PA, VandeVoort CA, Sonnenschein C, Soto AM (2012) Bisphenol A alters the development of the rhesus monkey mammary gland. Proc Natl Acad Sci U S A 109:8190–8195PubMedPubMedCentralCrossRef
20.
go back to reference Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148:116–127PubMedCrossRef Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148:116–127PubMedCrossRef
21.
go back to reference Munoz de Toro MM, Markey CM, Wadia PR, Luque EH, Rubin BS et al (2005) Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice. Endocrinology 146:4138–4147PubMedCrossRef Munoz de Toro MM, Markey CM, Wadia PR, Luque EH, Rubin BS et al (2005) Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice. Endocrinology 146:4138–4147PubMedCrossRef
22.
go back to reference Markey CM, Luque EH, Munoz de Toro MM, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65:1215–1223PubMedCrossRef Markey CM, Luque EH, Munoz de Toro MM, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65:1215–1223PubMedCrossRef
23.
go back to reference Fenton SE (2006) Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology 147:S18–S24PubMedCrossRef Fenton SE (2006) Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology 147:S18–S24PubMedCrossRef
24.
go back to reference Ayyanan A, Laribi O, Schuepbach-Mallepell S, Schrick C, Gutierrez M et al (2011) Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number. Mol Endocrinol 25:1915–1923PubMedPubMedCentralCrossRef Ayyanan A, Laribi O, Schuepbach-Mallepell S, Schrick C, Gutierrez M et al (2011) Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number. Mol Endocrinol 25:1915–1923PubMedPubMedCentralCrossRef
25.
go back to reference Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R, Wu J, Geng S, Zhong C (2014) Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res 28:1553–1560PubMedCrossRef Li X, Xie W, Xie C, Huang C, Zhu J, Liang Z, Deng F, Zhu M, Zhu W, Wu R, Wu J, Geng S, Zhong C (2014) Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res 28:1553–1560PubMedCrossRef
26.
go back to reference Pupo M, Pisano A, Lappano R, Santolla MF, De Francesco EM, Abonante S, Rosano C, Maggiolini M (2012) Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect 120:1177–1182PubMedPubMedCentralCrossRef Pupo M, Pisano A, Lappano R, Santolla MF, De Francesco EM, Abonante S, Rosano C, Maggiolini M (2012) Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts. Environ Health Perspect 120:1177–1182PubMedPubMedCentralCrossRef
27.
go back to reference Wadia PR, Cabaton NJ, Borrero MD, Rubin BS, Sonnenschein C et al (2013) Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One 8, e63902PubMedPubMedCentralCrossRef Wadia PR, Cabaton NJ, Borrero MD, Rubin BS, Sonnenschein C et al (2013) Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One 8, e63902PubMedPubMedCentralCrossRef
28.
go back to reference Paulose T, Speroni L, Sonnenschein C, Soto AM (2015) Estrogens in the wrong place at the wrong time: fetal BPA exposure and mammary cancer. Reprod Toxicol 54:58–65PubMedCrossRef Paulose T, Speroni L, Sonnenschein C, Soto AM (2015) Estrogens in the wrong place at the wrong time: fetal BPA exposure and mammary cancer. Reprod Toxicol 54:58–65PubMedCrossRef
29.
go back to reference Vandenberg LN, Maffini MV, Schaeberle CM, Ucci AA, Sonnenschein C et al (2008) Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod Toxicol 26:210–219PubMedPubMedCentralCrossRef Vandenberg LN, Maffini MV, Schaeberle CM, Ucci AA, Sonnenschein C et al (2008) Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod Toxicol 26:210–219PubMedPubMedCentralCrossRef
30.
go back to reference Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal Bisphenol A exposure. Reprod Toxicol 23:383–390PubMedCrossRef Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM (2007) Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal Bisphenol A exposure. Reprod Toxicol 23:383–390PubMedCrossRef
31.
go back to reference Durando M, Kass L, Piva J, Sonnenschein C, Soto AM et al (2007) Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 115:80–86PubMedCrossRef Durando M, Kass L, Piva J, Sonnenschein C, Soto AM et al (2007) Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect 115:80–86PubMedCrossRef
32.
go back to reference Lamartiniere CA, Jenkins S, Betancourt AM, Wang J, Russo J (2011) Exposure to the endocrine disruptor Bisphenol A alters susceptibility for mammary cancer. Horm Mol Biol Clin Invest 5:45–52 Lamartiniere CA, Jenkins S, Betancourt AM, Wang J, Russo J (2011) Exposure to the endocrine disruptor Bisphenol A alters susceptibility for mammary cancer. Horm Mol Biol Clin Invest 5:45–52
33.
go back to reference Crain DA, Janssen SJ, Edwards TM et al (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90:911–940PubMedPubMedCentralCrossRef Crain DA, Janssen SJ, Edwards TM et al (2008) Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 90:911–940PubMedPubMedCentralCrossRef
34.
go back to reference Soto AM, Brisken C, Schaeberle C, Sonnenschein C (2013) Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia 18:199–208PubMedPubMedCentralCrossRef Soto AM, Brisken C, Schaeberle C, Sonnenschein C (2013) Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia 18:199–208PubMedPubMedCentralCrossRef
35.
go back to reference Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280PubMedPubMedCentralCrossRef Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280PubMedPubMedCentralCrossRef
36.
go back to reference Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382PubMedPubMedCentralCrossRef Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382PubMedPubMedCentralCrossRef
37.
go back to reference Lacobuzio-Donahue CA (2009) Epigenetic changes in cancer. Annu Rev Pathol 4:229–249CrossRef Lacobuzio-Donahue CA (2009) Epigenetic changes in cancer. Annu Rev Pathol 4:229–249CrossRef
38.
go back to reference Cipelli R, Harries L, Okuda K et al (2014) Bisphenol A modulates the metabolic regulator oestrogen-related receptor-α in T-cells. Reproduction 147:419–426PubMedCrossRef Cipelli R, Harries L, Okuda K et al (2014) Bisphenol A modulates the metabolic regulator oestrogen-related receptor-α in T-cells. Reproduction 147:419–426PubMedCrossRef
39.
go back to reference Barr A, Manning D (1999) G Proteins Techniques of Analysis, Manning DR, ed. Boca Raton, FL: CRC Press, Inc. 227–245. 48. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD Barr A, Manning D (1999) G Proteins Techniques of Analysis, Manning DR, ed. Boca Raton, FL: CRC Press, Inc. 227–245. 48. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD
40.
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed
41.
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRef Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRef
42.
go back to reference Markey CM, Wadia PR, Rubin BS et al (2005) Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biol Reprod 72:1344–1351PubMedCrossRef Markey CM, Wadia PR, Rubin BS et al (2005) Long-term effects of fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mouse genital tract. Biol Reprod 72:1344–1351PubMedCrossRef
43.
go back to reference Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J (2008) Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol 196:101–112PubMedCrossRef Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J (2008) Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol 196:101–112PubMedCrossRef
44.
go back to reference Owen JL, Criscitiello MF, Libreros S et al (2011) Expression of the inflammatory chemokines CCL2, CCL5 and CXCL2 and the receptors CCR1-3 and CXCR2 in T lymphocytes from mammary tumor-bearing mice. Cell Immunol 270:172–182PubMedPubMedCentralCrossRef Owen JL, Criscitiello MF, Libreros S et al (2011) Expression of the inflammatory chemokines CCL2, CCL5 and CXCL2 and the receptors CCR1-3 and CXCR2 in T lymphocytes from mammary tumor-bearing mice. Cell Immunol 270:172–182PubMedPubMedCentralCrossRef
45.
go back to reference Biondo C, Mancuso G, Midiri A (2014) The IL-1beta/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun 82:4508–4517PubMedPubMedCentralCrossRef Biondo C, Mancuso G, Midiri A (2014) The IL-1beta/CXCL1/2/neutrophil axis mediates host protection against group B streptococcal infection. Infect Immun 82:4508–4517PubMedPubMedCentralCrossRef
46.
go back to reference Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B (2001) Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 194:855–861PubMedPubMedCentralCrossRef Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B (2001) Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 194:855–861PubMedPubMedCentralCrossRef
47.
go back to reference Shurin GV, Ferris R, Tourkova IL, Perez L, Lokshin A, Balkir L, Collins B, Chatta GS, Shurin MR (2005) Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J Immun 174:5490–5498PubMedCrossRef Shurin GV, Ferris R, Tourkova IL, Perez L, Lokshin A, Balkir L, Collins B, Chatta GS, Shurin MR (2005) Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J Immun 174:5490–5498PubMedCrossRef
48.
go back to reference Kozai TD, Li X, Bodily LM et al (2014) Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials 35:9620–9634PubMedPubMedCentralCrossRef Kozai TD, Li X, Bodily LM et al (2014) Effects of caspase-1 knockout on chronic neural recording quality and longevity: insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials 35:9620–9634PubMedPubMedCentralCrossRef
49.
go back to reference Ubertini V, Norelli G, D’Arcangelo D et al (2014) Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene 34:2493–2504PubMedCrossRef Ubertini V, Norelli G, D’Arcangelo D et al (2014) Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene 34:2493–2504PubMedCrossRef
50.
go back to reference Normanton M, Alvarenga H, Hamerschlak N et al (2014) Interleukin 7 plays a role in T Lymphocyte apoptosis inhibition driven by mesenchymal stem cell without favoring proliferation and cytokines secretion. PLoS One 9:e106673PubMedPubMedCentralCrossRef Normanton M, Alvarenga H, Hamerschlak N et al (2014) Interleukin 7 plays a role in T Lymphocyte apoptosis inhibition driven by mesenchymal stem cell without favoring proliferation and cytokines secretion. PLoS One 9:e106673PubMedPubMedCentralCrossRef
51.
go back to reference Ribeiro D, Melao A, Barata JT (2013) IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 53:211–222PubMedCrossRef Ribeiro D, Melao A, Barata JT (2013) IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 53:211–222PubMedCrossRef
52.
53.
go back to reference Michelucci A, Cordes T, Ghelfi J et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110:7820–7825PubMedPubMedCentralCrossRef Michelucci A, Cordes T, Ghelfi J et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110:7820–7825PubMedPubMedCentralCrossRef
54.
go back to reference Wang PX, Zhang R, Huang L (2014) Interferon regulatory factor 9 is a key mediator of hepatic ischemia/reperfusion injury. J Hepat 62:111–120CrossRef Wang PX, Zhang R, Huang L (2014) Interferon regulatory factor 9 is a key mediator of hepatic ischemia/reperfusion injury. J Hepat 62:111–120CrossRef
55.
go back to reference Hall CJ, Boyle RH, Astin JW et al (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab 18:265–278PubMedCrossRef Hall CJ, Boyle RH, Astin JW et al (2013) Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation-dependent mitochondrial ROS production. Cell Metab 18:265–278PubMedCrossRef
56.
go back to reference Asztalos S, Gann PH, Hayes MK et al (2010) Gene expression patterns in the human breast after pregnancy. Cancer Prev Res (Phila) 3:301–311CrossRef Asztalos S, Gann PH, Hayes MK et al (2010) Gene expression patterns in the human breast after pregnancy. Cancer Prev Res (Phila) 3:301–311CrossRef
57.
go back to reference Balfe P, McCann A, McGoldrick A et al (2004) Estrogen receptor alpha and beta profiling in human breast cancer. Eur J Surg Oncol 30:469–474PubMedCrossRef Balfe P, McCann A, McGoldrick A et al (2004) Estrogen receptor alpha and beta profiling in human breast cancer. Eur J Surg Oncol 30:469–474PubMedCrossRef
58.
go back to reference Baek JM, Chae BJ, Song BJ (2015) The potential role of estrogen receptor β2 in breast cancer. Int J Surg 14:17–22PubMedCrossRef Baek JM, Chae BJ, Song BJ (2015) The potential role of estrogen receptor β2 in breast cancer. Int J Surg 14:17–22PubMedCrossRef
59.
go back to reference Hu YF, Lau KM, Ho SM et al (1998) Increased expression of estrogen receptor beta in chemically transformed human breast epithelial cells. Int J Oncol 12:1225–1228PubMed Hu YF, Lau KM, Ho SM et al (1998) Increased expression of estrogen receptor beta in chemically transformed human breast epithelial cells. Int J Oncol 12:1225–1228PubMed
60.
go back to reference Chen Y, Chen L, Li JY et al (2011) ERbeta and PEA3 co-activate IL-8 expression and promote the invasion of breast cancer cells. Cancer Biol Ther 11:497–511PubMedCrossRef Chen Y, Chen L, Li JY et al (2011) ERbeta and PEA3 co-activate IL-8 expression and promote the invasion of breast cancer cells. Cancer Biol Ther 11:497–511PubMedCrossRef
61.
go back to reference Williams C, Edvardsson K, Lewandowski SA et al (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27:1019–1032PubMedCrossRef Williams C, Edvardsson K, Lewandowski SA et al (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27:1019–1032PubMedCrossRef
62.
go back to reference Polanczyk M, Yellayi S, Zamora A et al (2004) Estrogen receptor-1 (Esr1) and -2 (Esr2) regulate the severity of clinical experimental allergic encephalomyelitis in male mice. Am J Pathol 164:1915–1924PubMedPubMedCentralCrossRef Polanczyk M, Yellayi S, Zamora A et al (2004) Estrogen receptor-1 (Esr1) and -2 (Esr2) regulate the severity of clinical experimental allergic encephalomyelitis in male mice. Am J Pathol 164:1915–1924PubMedPubMedCentralCrossRef
63.
go back to reference Yakimchuk K, Jondal M, Okret S (2013) Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol Cell Endocrinol 375:121–129PubMedCrossRef Yakimchuk K, Jondal M, Okret S (2013) Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol Cell Endocrinol 375:121–129PubMedCrossRef
64.
go back to reference Melzer D, Harries L, Cipelli R et al (2011) Bisphenol A exposure is associated with in vivo estrogenic gene expression in adults. Environ Health Perspect 119:1788–1793PubMedPubMedCentralCrossRef Melzer D, Harries L, Cipelli R et al (2011) Bisphenol A exposure is associated with in vivo estrogenic gene expression in adults. Environ Health Perspect 119:1788–1793PubMedPubMedCentralCrossRef
65.
go back to reference Armstrong CM, Billimek AR, Allred KF et al (2013) Allred CDA novel shift in estrogen receptor expression occurs as estradiol suppresses inflammation-associated colon tumor formation. Endocr Relat Cancer 20:515–525PubMedCrossRef Armstrong CM, Billimek AR, Allred KF et al (2013) Allred CDA novel shift in estrogen receptor expression occurs as estradiol suppresses inflammation-associated colon tumor formation. Endocr Relat Cancer 20:515–525PubMedCrossRef
66.
go back to reference Ashworth JJ, Smyth JV, Pendleton N et al (2008) Polymorphisms spanning the 0N exon and promoter of the estrogen receptor-beta (ERbeta) gene ESR2 are associated with venous ulceration. Clin Genet 73:55–61PubMedCrossRef Ashworth JJ, Smyth JV, Pendleton N et al (2008) Polymorphisms spanning the 0N exon and promoter of the estrogen receptor-beta (ERbeta) gene ESR2 are associated with venous ulceration. Clin Genet 73:55–61PubMedCrossRef
67.
go back to reference Moore JT, McKee DD, Slentz-Kesler K et al (1998) Cloning and characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun 247:75–78PubMedCrossRef Moore JT, McKee DD, Slentz-Kesler K et al (1998) Cloning and characterization of human estrogen receptor beta isoforms. Biochem Biophys Res Commun 247:75–78PubMedCrossRef
68.
go back to reference Poola I, Fuqua SA, Witty RL et al (2005) Estrogen receptor alpha-negative breast cancer tissues express significant levels of estrogen-independent transcription factors, ERbeta1 and ERbeta5: potential molecular targets for chemoprevention. Clin Cancer Res 11:7579–7585PubMedCrossRef Poola I, Fuqua SA, Witty RL et al (2005) Estrogen receptor alpha-negative breast cancer tissues express significant levels of estrogen-independent transcription factors, ERbeta1 and ERbeta5: potential molecular targets for chemoprevention. Clin Cancer Res 11:7579–7585PubMedCrossRef
69.
go back to reference Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147 S:56–69CrossRef Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147 S:56–69CrossRef
70.
go back to reference Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155PubMedPubMedCentralCrossRef Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1:146–155PubMedPubMedCentralCrossRef
71.
go back to reference Peretz J, Vrooman L, Ricke WA et al (2014) Bisphenol a and reproductive health: update of experimental and human evidence 2007-2013. Environ Health Perspect 122:775–786PubMedPubMedCentralCrossRef Peretz J, Vrooman L, Ricke WA et al (2014) Bisphenol a and reproductive health: update of experimental and human evidence 2007-2013. Environ Health Perspect 122:775–786PubMedPubMedCentralCrossRef
72.
go back to reference Aldad TS, Rahmani N, Leranth C, Taylor HS (2011) Bisphenol-A exposure alters endometrial progesterone receptor expression in the nonhuman primate. Fertil Steril 96:175–179PubMedPubMedCentralCrossRef Aldad TS, Rahmani N, Leranth C, Taylor HS (2011) Bisphenol-A exposure alters endometrial progesterone receptor expression in the nonhuman primate. Fertil Steril 96:175–179PubMedPubMedCentralCrossRef
73.
go back to reference Smith CC, Taylor HS (2007) Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development. FASEB J 21:239–246PubMedCrossRef Smith CC, Taylor HS (2007) Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development. FASEB J 21:239–246PubMedCrossRef
74.
go back to reference Akbas GE, Song J, Taylor HS (2004) A HOXA10 estrogen response element (ERE) is differentially regulated by 17 beta-estradiol and diethylstilbestrol (DES). J Mol Biol 340:1013–1023PubMedCrossRef Akbas GE, Song J, Taylor HS (2004) A HOXA10 estrogen response element (ERE) is differentially regulated by 17 beta-estradiol and diethylstilbestrol (DES). J Mol Biol 340:1013–1023PubMedCrossRef
75.
go back to reference Block K, Kardana A, Igarashi P, Taylor HS (2000) In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing müllerian system. FASEB J 200014:1101–1108CrossRef Block K, Kardana A, Igarashi P, Taylor HS (2000) In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing müllerian system. FASEB J 200014:1101–1108CrossRef
76.
77.
go back to reference Nahar MS, Kim JH, Sartor MA, Dolinoy DC (2014) Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environ Mol Mutagen 55:184–195PubMedCrossRef Nahar MS, Kim JH, Sartor MA, Dolinoy DC (2014) Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver. Environ Mol Mutagen 55:184–195PubMedCrossRef
78.
go back to reference Ko KP, Kim SW, Ma SH et al (2013) Dietary intake and breast cancer among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study. Am J Clin Nutr 98:1493–1501PubMedCrossRef Ko KP, Kim SW, Ma SH et al (2013) Dietary intake and breast cancer among carriers and noncarriers of BRCA mutations in the Korean Hereditary Breast Cancer Study. Am J Clin Nutr 98:1493–1501PubMedCrossRef
79.
go back to reference Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS (2014) Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J Mol Biol 426:3426–3441PubMedCrossRef Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS (2014) Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J Mol Biol 426:3426–3441PubMedCrossRef
Metadata
Title
Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk
Authors
Catha Fischer
Ramanaiah Mamillapalli
Teddy G. Goetz
Elisa Jorgenson
Ysabel Ilagan
Hugh S. Taylor
Publication date
01-08-2016
Publisher
Springer US
Published in
Discover Oncology / Issue 4/2016
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-016-0254-5

Other articles of this Issue 4/2016

Discover Oncology 4/2016 Go to the issue