Skip to main content
Top
Published in: Netherlands Heart Journal 12/2013

Open Access 01-12-2013 | Review Article

Basic concepts of fluid responsiveness

Authors: T. G. V. Cherpanath, B. F. Geerts, W. K. Lagrand, M. J. Schultz, A. B. J. Groeneveld

Published in: Netherlands Heart Journal | Issue 12/2013

Login to get access

Abstract

Predicting fluid responsiveness, the response of stroke volume to fluid loading, is a relatively novel concept that aims to optimise circulation, and as such organ perfusion, while avoiding futile and potentially deleterious fluid administrations in critically ill patients. Dynamic parameters have shown to be superior in predicting the response to fluid loading compared with static cardiac filling pressures. However, in routine clinical practice the conditions necessary for dynamic parameters to predict fluid responsiveness are frequently not met. Passive leg raising as a means to alter biventricular preload in combination with subsequent measurement of the change in stroke volume can provide a fast and accurate way to guide fluid management in a broad population of critically ill patients.
Literature
1.
go back to reference Marik PE, Cavalazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.PubMedCrossRef Marik PE, Cavalazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.PubMedCrossRef
2.
go back to reference Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.PubMedCrossRef Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.PubMedCrossRef
3.
go back to reference Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedCrossRef Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedCrossRef
4.
go back to reference Holte K, Kehlet H. Fluid therapy and surgical outcomes in elective surgery: a need for reassessment in fast-track surgery. J Am Coll Surg. 2006;202:971–89.PubMedCrossRef Holte K, Kehlet H. Fluid therapy and surgical outcomes in elective surgery: a need for reassessment in fast-track surgery. J Am Coll Surg. 2006;202:971–89.PubMedCrossRef
5.
go back to reference Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.PubMedCrossRef Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.PubMedCrossRef
6.
go back to reference Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.PubMedCrossRef Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.PubMedCrossRef
7.
go back to reference Guyton AC, Lindsey AW, Abernathy B, et al. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Physiol. 1958;192:126–30.PubMed Guyton AC, Lindsey AW, Abernathy B, et al. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Physiol. 1958;192:126–30.PubMed
8.
go back to reference Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35:123–9.PubMed Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35:123–9.PubMed
9.
go back to reference Cherpanath TG, Lagrand WK, Schultz MJ, et al. Cardiopulmonary interactions during mechanical ventilation in critically ill patient. Neth Heart J. 2013;21:166–72.PubMedCrossRef Cherpanath TG, Lagrand WK, Schultz MJ, et al. Cardiopulmonary interactions during mechanical ventilation in critically ill patient. Neth Heart J. 2013;21:166–72.PubMedCrossRef
10.
go back to reference Hayes MA, Timmins AC, Yau EH, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.PubMedCrossRef Hayes MA, Timmins AC, Yau EH, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.PubMedCrossRef
11.
go back to reference Sakr Y, Vincent JL, Reinhart K, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128:3098–108.PubMedCrossRef Sakr Y, Vincent JL, Reinhart K, et al. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest. 2005;128:3098–108.PubMedCrossRef
12.
go back to reference Murakawa K, Kobayashi A. Effects of vasopressors on renal tissue gas tensions during hemorrhagic shock in dogs. Crit Care Med. 1988;16:789–92.PubMedCrossRef Murakawa K, Kobayashi A. Effects of vasopressors on renal tissue gas tensions during hemorrhagic shock in dogs. Crit Care Med. 1988;16:789–92.PubMedCrossRef
13.
go back to reference Geerts BF, Maas JJ, de Wilde RBP, et al. Hemodynamic assessment in the Dutch intensive care unit. Neth J Crit Care. 2009;13:178–84.CrossRef Geerts BF, Maas JJ, de Wilde RBP, et al. Hemodynamic assessment in the Dutch intensive care unit. Neth J Crit Care. 2009;13:178–84.CrossRef
14.
go back to reference Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.PubMedCrossRef Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.PubMedCrossRef
15.
16.
go back to reference Braunwald E, Sonnenblick EH, Ross J. Mechanisms of cardiac contraction and relaxation. In: Braunwald E, editor. Heart disease. Philadelphia: Saunders; 1998. p. 389–425. Braunwald E, Sonnenblick EH, Ross J. Mechanisms of cardiac contraction and relaxation. In: Braunwald E, editor. Heart disease. Philadelphia: Saunders; 1998. p. 389–425.
17.
go back to reference Feissel M, Michard F, Mangin I, et al. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73.PubMedCrossRef Feissel M, Michard F, Mangin I, et al. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73.PubMedCrossRef
18.
go back to reference Marx G, Cope T, McCrossan L, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.PubMed Marx G, Cope T, McCrossan L, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.PubMed
19.
go back to reference Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variations to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.PubMedCrossRef Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variations to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.PubMedCrossRef
20.
go back to reference Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28.PubMedCrossRef Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28.PubMedCrossRef
21.
go back to reference Lopes MR, Oliveira MA, Pereira VO, et al. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.PubMedCrossRef Lopes MR, Oliveira MA, Pereira VO, et al. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.PubMedCrossRef
22.
go back to reference Sakka SG, Becher L, Kozieras J, et al. Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness. Eur J Anaesthesiol. 2009;26:322–7.PubMedCrossRef Sakka SG, Becher L, Kozieras J, et al. Effects of changes in blood pressure and airway pressures on parameters of fluid responsiveness. Eur J Anaesthesiol. 2009;26:322–7.PubMedCrossRef
23.
go back to reference Jhanji S, Vivian-Smith A, Lucena-Amaro S, et al. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care. 2010;14:R151.PubMedCrossRef Jhanji S, Vivian-Smith A, Lucena-Amaro S, et al. Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care. 2010;14:R151.PubMedCrossRef
24.
go back to reference Desebbe O, Cannesson M. Using ventilation-induced plethysmographic variations to optimize patient fluid status. Curr Opin Anaesthesiol. 2008;21:772–8.PubMedCrossRef Desebbe O, Cannesson M. Using ventilation-induced plethysmographic variations to optimize patient fluid status. Curr Opin Anaesthesiol. 2008;21:772–8.PubMedCrossRef
25.
go back to reference Feissel M, Teboul JL, Merlani P, et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.PubMedCrossRef Feissel M, Teboul JL, Merlani P, et al. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.PubMedCrossRef
26.
go back to reference Monnet X, Rienzo M, Osman D, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31:1195–201.PubMedCrossRef Monnet X, Rienzo M, Osman D, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31:1195–201.PubMedCrossRef
27.
go back to reference Perner A, Faber T. Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation. Acta Anaesthesiol Scand. 2006;50:1068–73.PubMedCrossRef Perner A, Faber T. Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation. Acta Anaesthesiol Scand. 2006;50:1068–73.PubMedCrossRef
28.
go back to reference De Backer D, Heenen S, Piagnerelli M, et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.PubMedCrossRef De Backer D, Heenen S, Piagnerelli M, et al. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.PubMedCrossRef
29.
go back to reference Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80.PubMed Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med. 2003;29:476–80.PubMed
30.
go back to reference Wyler von Ballmoos M, Takala J, Roeck M, et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care. 2010;14:R111.PubMedCrossRef Wyler von Ballmoos M, Takala J, Roeck M, et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care. 2010;14:R111.PubMedCrossRef
31.
go back to reference Mahjoub Y, Pila C, Friggeri A, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–5.PubMedCrossRef Mahjoub Y, Pila C, Friggeri A, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–5.PubMedCrossRef
32.
go back to reference Feissel M, Michard F, Faller JP, et al. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.PubMedCrossRef Feissel M, Michard F, Faller JP, et al. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.PubMedCrossRef
33.
go back to reference Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.PubMed Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–9.PubMed
34.
go back to reference Monnet X, Osman D, Ridel C, et al. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6.PubMedCrossRef Monnet X, Osman D, Ridel C, et al. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6.PubMedCrossRef
35.
go back to reference Geerts BF, Maas J, de Wilde RB, et al. Arm occlusion pressure is a useful predictor of an increase in cardiac output after fluid loading following cardiac surgery. Eur J Anaesthesiol. 2011;28:802–6.PubMedCrossRef Geerts BF, Maas J, de Wilde RB, et al. Arm occlusion pressure is a useful predictor of an increase in cardiac output after fluid loading following cardiac surgery. Eur J Anaesthesiol. 2011;28:802–6.PubMedCrossRef
36.
go back to reference Geerts BF, Aarts LP, Groeneveld AB, et al. Predicting cardiac output responses to passive leg raising by a PEEP-induced increase in central venous pressure, in cardiac surgery patients. Br J Anaesth. 2011;107:150–6.PubMedCrossRef Geerts BF, Aarts LP, Groeneveld AB, et al. Predicting cardiac output responses to passive leg raising by a PEEP-induced increase in central venous pressure, in cardiac surgery patients. Br J Anaesth. 2011;107:150–6.PubMedCrossRef
37.
go back to reference Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.PubMedCrossRef Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.PubMedCrossRef
38.
go back to reference Mahjoub Y, Touzeau J, Airapetian N, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38:1824–9.PubMedCrossRef Mahjoub Y, Touzeau J, Airapetian N, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38:1824–9.PubMedCrossRef
39.
go back to reference Cavallaro F, Sandroni C, Marano C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–83.PubMedCrossRef Cavallaro F, Sandroni C, Marano C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–83.PubMedCrossRef
41.
go back to reference Lamia B, Ochagavia A, Monnet X, et al. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32.PubMedCrossRef Lamia B, Ochagavia A, Monnet X, et al. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32.PubMedCrossRef
42.
go back to reference Thiel SW, Kollef MH, Isakow W. Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study. Crit Care. 2009;13:R111.PubMedCrossRef Thiel SW, Kollef MH, Isakow W. Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study. Crit Care. 2009;13:R111.PubMedCrossRef
43.
go back to reference Preau S, Saulnier F, Dewavrin F, et al. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38:819–25.PubMedCrossRef Preau S, Saulnier F, Dewavrin F, et al. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38:819–25.PubMedCrossRef
44.
go back to reference Lafanechere A, Pene F, Goulenok C, et al. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care. 2006;10:R132.PubMedCrossRef Lafanechere A, Pene F, Goulenok C, et al. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit Care. 2006;10:R132.PubMedCrossRef
45.
go back to reference Hofer CK, Senn A, Weibel I, et al. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care. 2008;12:R82.PubMedCrossRef Hofer CK, Senn A, Weibel I, et al. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care. 2008;12:R82.PubMedCrossRef
46.
go back to reference De Castro V, Goarin JP, Lhotel L, et al. Comparison of stroke volume (SV) and stroke volume respiratory variation (SVV) measured by the axillary artery pulse-contour method and by aortic Doppler echocardiography in patients undergoing aortic surgery. Br J Anaesth. 2006;97:605–10.PubMedCrossRef De Castro V, Goarin JP, Lhotel L, et al. Comparison of stroke volume (SV) and stroke volume respiratory variation (SVV) measured by the axillary artery pulse-contour method and by aortic Doppler echocardiography in patients undergoing aortic surgery. Br J Anaesth. 2006;97:605–10.PubMedCrossRef
47.
go back to reference De Wilde RB, Schreuder JJ, van den Berg PC, et al. An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia. 2007;62:760–8.PubMedCrossRef De Wilde RB, Schreuder JJ, van den Berg PC, et al. An evaluation of cardiac output by five arterial pulse contour techniques during cardiac surgery. Anaesthesia. 2007;62:760–8.PubMedCrossRef
48.
go back to reference Pinsky MR. Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg. 2003;96:1245–7.PubMedCrossRef Pinsky MR. Probing the limits of arterial pulse contour analysis to predict preload responsiveness. Anesth Analg. 2003;96:1245–7.PubMedCrossRef
49.
go back to reference Biais M, Vidil L, Sarrabay P, et al. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care. 2009;13:R195.PubMedCrossRef Biais M, Vidil L, Sarrabay P, et al. Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo/FloTrac device. Crit Care. 2009;13:R195.PubMedCrossRef
50.
go back to reference Boulain T, Achard JM, Teboul JL, et al. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121:1245–52.PubMedCrossRef Boulain T, Achard JM, Teboul JL, et al. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121:1245–52.PubMedCrossRef
51.
go back to reference Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15:R15.PubMedCrossRef Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15:R15.PubMedCrossRef
52.
go back to reference Keller G, Cassar E, Desebbe O, et al. Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care. 2008;12:R37.PubMedCrossRef Keller G, Cassar E, Desebbe O, et al. Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care. 2008;12:R37.PubMedCrossRef
53.
go back to reference Benomar B, Ouattara A, Estagnasie P, et al. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36:1875–81.PubMedCrossRef Benomar B, Ouattara A, Estagnasie P, et al. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36:1875–81.PubMedCrossRef
Metadata
Title
Basic concepts of fluid responsiveness
Authors
T. G. V. Cherpanath
B. F. Geerts
W. K. Lagrand
M. J. Schultz
A. B. J. Groeneveld
Publication date
01-12-2013
Publisher
Bohn Stafleu van Loghum
Published in
Netherlands Heart Journal / Issue 12/2013
Print ISSN: 1568-5888
Electronic ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-013-0487-7

Other articles of this Issue 12/2013

Netherlands Heart Journal 12/2013 Go to the issue

Imaging in Cardiology

Living with high output

Editor's comment

Let’s talk about sex