Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 2/2019

Open Access 01-02-2019 | Magnetic Resonance Imaging | Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)

Advances in Real-Time MRI–Guided Electrophysiology

Authors: Rahul K. Mukherjee, Henry Chubb, Sébastien Roujol, Reza Razavi, Mark D. O’Neill

Published in: Current Cardiovascular Imaging Reports | Issue 2/2019

Login to get access

Abstract

Purpose of Review

Theoretical benefits of real-time MRI guidance over conventional electrophysiology include contemporaneous 3D substrate assessment and accurate intra-procedural guidance and evaluation of ablation lesions. We review the unique challenges inherent to MRI-guided electrophysiology and how to translate the potential benefits in the treatment of cardiac arrhythmias.

Recent Findings

Over the last 5 years, there has been substantial progress, initially in animal models and more recently in clinical studies, to establish methods and develop workflows within the MR environment that resemble those of conventional electrophysiology laboratories. Real-time MRI-guided systems have been used to perform electroanatomic mapping and ablation in patients with atrial flutter, and there is interest in developing the technology to tackle more complex arrhythmias including atrial fibrillation and ventricular tachycardia.

Summary

Mainstream adoption of real-time MRI-guided electrophysiology will require demonstration of clinical benefit and will be aided by increased availability of devices suitable for use in the MRI environment.
Literature
1.
go back to reference Knackstedt C, Schauerte P, Kirchhof P. Electroanatomic mapping systems in arrhythmias. Europace. 2008;10 Suppl 3:iii28–34.PubMed Knackstedt C, Schauerte P, Kirchhof P. Electroanatomic mapping systems in arrhythmias. Europace. 2008;10 Suppl 3:iii28–34.PubMed
2.
go back to reference Muser D, Santangeli P, Castro SA, Pathak RK, Liang JJ, Hayashi T, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with non-ischaemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9:e004328.PubMed Muser D, Santangeli P, Castro SA, Pathak RK, Liang JJ, Hayashi T, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with non-ischaemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2016;9:e004328.PubMed
3.
go back to reference Scherr D, Khairy P, Miyazaki S, Aurillac-Lavignolle V, Pascale P, Wilton SB, et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ Arrhythm Electrophysiol. 2015;8:18–24.CrossRef Scherr D, Khairy P, Miyazaki S, Aurillac-Lavignolle V, Pascale P, Wilton SB, et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ Arrhythm Electrophysiol. 2015;8:18–24.CrossRef
4.
go back to reference Andreu D, Ortiz-Perez JT, Fernandez-Armenta J, Guiu E, Acosta J, Prat-Gonzalez S, et al. 3D delayed-enhanced magnetic resonance sequences improve conducting channel delineation prior to ventricular tachycardia ablation. Europace. 2015;17:938–45.CrossRef Andreu D, Ortiz-Perez JT, Fernandez-Armenta J, Guiu E, Acosta J, Prat-Gonzalez S, et al. 3D delayed-enhanced magnetic resonance sequences improve conducting channel delineation prior to ventricular tachycardia ablation. Europace. 2015;17:938–45.CrossRef
5.
go back to reference Josephson ME, Anter E. Substrate mapping for ventricular tachycardia: assumptions and misconceptions. J Am Coll Cardiol. 2015;5:341–52. Josephson ME, Anter E. Substrate mapping for ventricular tachycardia: assumptions and misconceptions. J Am Coll Cardiol. 2015;5:341–52.
6.
go back to reference Anter E, Tschabrunn CM, Buxton AE, Josephson ME. High-resolution mapping of postinfarction re-entrant ventricular tachycardia: electrophysiological characterisation of the circuit. Circulation. 2016;134:314–27.CrossRef Anter E, Tschabrunn CM, Buxton AE, Josephson ME. High-resolution mapping of postinfarction re-entrant ventricular tachycardia: electrophysiological characterisation of the circuit. Circulation. 2016;134:314–27.CrossRef
7.
go back to reference Wright M, Harks E, Deladi S, Fokkenrood S, Brink R, Belt H, et al. Characteristics of radiofrequency catheter ablation lesion formation in real time in vivo using near-field ultrasound imaging. JACC Clin Electrophysiol. 2018;4:1062–72.CrossRef Wright M, Harks E, Deladi S, Fokkenrood S, Brink R, Belt H, et al. Characteristics of radiofrequency catheter ablation lesion formation in real time in vivo using near-field ultrasound imaging. JACC Clin Electrophysiol. 2018;4:1062–72.CrossRef
8.
go back to reference Chubb H, Williams SE, Whitaker J, Harrison JL, Razavi R, O’Neill M. Cardiac electrophysiology under MRI guidance: an emerging technology. Arrhythmia Electrophysiol Rev. 2017;6:85–93.CrossRef Chubb H, Williams SE, Whitaker J, Harrison JL, Razavi R, O’Neill M. Cardiac electrophysiology under MRI guidance: an emerging technology. Arrhythmia Electrophysiol Rev. 2017;6:85–93.CrossRef
9.
go back to reference • Andreu D, Penela D, Acosta J, Fernandez-Armenta J, Perea RJ, Soto-Iglesias D, et al. Cardiac magnetic resonance-aided scar dechanneling: influence on acute and long-term outcomes. Heart Rhythm. 2017;14:1121–8 Non-randomised study to demonstrate an improvement in clinical outcome through the use of cardiac MRI to guide VT ablation.CrossRef • Andreu D, Penela D, Acosta J, Fernandez-Armenta J, Perea RJ, Soto-Iglesias D, et al. Cardiac magnetic resonance-aided scar dechanneling: influence on acute and long-term outcomes. Heart Rhythm. 2017;14:1121–8 Non-randomised study to demonstrate an improvement in clinical outcome through the use of cardiac MRI to guide VT ablation.CrossRef
10.
go back to reference Zghaib T, Ipek EG, Hansford R, Ashikaga H, Berger RD, Marine JE, et al. Standard ablation versus magnetic resonance imaging-guided ablation in the treatment of ventricular tachycardia. Circ Arrhythm Electrophysiol. 2018;11:e005973.PubMedPubMedCentral Zghaib T, Ipek EG, Hansford R, Ashikaga H, Berger RD, Marine JE, et al. Standard ablation versus magnetic resonance imaging-guided ablation in the treatment of ventricular tachycardia. Circ Arrhythm Electrophysiol. 2018;11:e005973.PubMedPubMedCentral
11.
go back to reference Roujol S, Basha TA, Tan A, Khanna V, Chan RH, Moghari MH, et al. Improved multimodality data fusion of late gadolinium enhancement MRI to left ventricular voltage maps in ventricular tachycardia ablation. IEEE Trans Biomed Eng. 2013;60:1308–17.CrossRef Roujol S, Basha TA, Tan A, Khanna V, Chan RH, Moghari MH, et al. Improved multimodality data fusion of late gadolinium enhancement MRI to left ventricular voltage maps in ventricular tachycardia ablation. IEEE Trans Biomed Eng. 2013;60:1308–17.CrossRef
12.
go back to reference Mukherjee RK, Whitaker J, Williams SE, Razavi R, O’Neill MD. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace. 2018;20:1721–32.CrossRef Mukherjee RK, Whitaker J, Williams SE, Razavi R, O’Neill MD. Magnetic resonance imaging guidance for the optimization of ventricular tachycardia ablation. Europace. 2018;20:1721–32.CrossRef
13.
go back to reference Roujol S, Anter E, Josephson ME, Nezafat R. Characterisation of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms. PLoS One. 2013;8:e78852.CrossRef Roujol S, Anter E, Josephson ME, Nezafat R. Characterisation of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms. PLoS One. 2013;8:e78852.CrossRef
14.
go back to reference Shah D, Haissaguerre M, Takahashi A, Jais P, Hocini M, Clementy J. Differential pacing for distinguishing block from persistent conduction through an ablation line. Circulation. 2000;102:1517–22.CrossRef Shah D, Haissaguerre M, Takahashi A, Jais P, Hocini M, Clementy J. Differential pacing for distinguishing block from persistent conduction through an ablation line. Circulation. 2000;102:1517–22.CrossRef
15.
go back to reference Oster J, Pietquin O, Kraemer M, Felblinger J. Nonlinear Bayesian filtering for deionising of electrograms acquired in a magnetic resonance environment. IEEE Trans Biomed Eng. 2010;57:1628–38.CrossRef Oster J, Pietquin O, Kraemer M, Felblinger J. Nonlinear Bayesian filtering for deionising of electrograms acquired in a magnetic resonance environment. IEEE Trans Biomed Eng. 2010;57:1628–38.CrossRef
16.
go back to reference Tse ZT, Dumoulin CL, Clifford GD, Schweitzer J, Qin L, Oster J, et al. A 1.5T MRI-conditional 12-lead electrogram for MRI and intra-MR intervention. Magn Reson Med. 2014;71:1336–47.CrossRef Tse ZT, Dumoulin CL, Clifford GD, Schweitzer J, Qin L, Oster J, et al. A 1.5T MRI-conditional 12-lead electrogram for MRI and intra-MR intervention. Magn Reson Med. 2014;71:1336–47.CrossRef
17.
go back to reference Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med. 1999;41:715–21.CrossRef Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med. 1999;41:715–21.CrossRef
18.
go back to reference Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118:223–9.CrossRef Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, et al. Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation. 2008;118:223–9.CrossRef
19.
go back to reference •• Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, et al. Real-time magnetic resonance guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualisation in man: initial results from a consecutive patient series. Europace. 2016;18:572–7 Real-time MRI-guided catheter ablation of atrial flutter in patients—acute outcomes presented.CrossRef •• Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, et al. Real-time magnetic resonance guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualisation in man: initial results from a consecutive patient series. Europace. 2016;18:572–7 Real-time MRI-guided catheter ablation of atrial flutter in patients—acute outcomes presented.CrossRef
20.
go back to reference •• Chubb H, Harrison JL, Weiss S, Krueger S, Koken P, Bloch LO, et al. Development, preclinical validation and clinical translation of a cardiac magnetic resonance-electrophysiology system with active catheter tracking for ablation of cardiac arrhythmia. JACC Clin Electrophysiol. 2017;3:89–103 Real-time MRI-guided catheter ablation of atrial flutter in patients—longer-term outcomes presented.CrossRef •• Chubb H, Harrison JL, Weiss S, Krueger S, Koken P, Bloch LO, et al. Development, preclinical validation and clinical translation of a cardiac magnetic resonance-electrophysiology system with active catheter tracking for ablation of cardiac arrhythmia. JACC Clin Electrophysiol. 2017;3:89–103 Real-time MRI-guided catheter ablation of atrial flutter in patients—longer-term outcomes presented.CrossRef
21.
go back to reference • Elbes D, Magat J, Govari A, Ephrath Y, Vieillot D, Beeckler C, et al. Magnetic resonance imaging-compatible circular mapping catheter: an in vivo feasibility and safety study. Europace. 2017;19:458–64 Assessment of a new multi-electrode MR-compatible catheter to enable complex arrhythmia mapping and ablation.PubMed • Elbes D, Magat J, Govari A, Ephrath Y, Vieillot D, Beeckler C, et al. Magnetic resonance imaging-compatible circular mapping catheter: an in vivo feasibility and safety study. Europace. 2017;19:458–64 Assessment of a new multi-electrode MR-compatible catheter to enable complex arrhythmia mapping and ablation.PubMed
22.
go back to reference Oduneye SO, Pop M, Shurrab M, Biswas L, Ramanan V, Barry J, et al. Distribution of abnormal potentials in chronic myocardial infarction using a real time magnetic resonance guided electrophysiology system. J Cardiovasc Magn Reson. 2015;17:27.CrossRef Oduneye SO, Pop M, Shurrab M, Biswas L, Ramanan V, Barry J, et al. Distribution of abnormal potentials in chronic myocardial infarction using a real time magnetic resonance guided electrophysiology system. J Cardiovasc Magn Reson. 2015;17:27.CrossRef
23.
go back to reference Wu V, Barbash IM, Ratnayaka K, Saikus CE, Sonmez M, Kocaturk O, et al. Adaptive noise cancellation to suppress electrocardiograhy artifacts during real-time interventional MRI. J Magn Reson Imaging. 2011;33:1184–93.CrossRef Wu V, Barbash IM, Ratnayaka K, Saikus CE, Sonmez M, Kocaturk O, et al. Adaptive noise cancellation to suppress electrocardiograhy artifacts during real-time interventional MRI. J Magn Reson Imaging. 2011;33:1184–93.CrossRef
24.
go back to reference Grothoff M, Piorkowski C, Eitel C, Gaspar T, Lehmkuhl L, Lucke C, et al. MR imaging-guided electrophysiological ablation studies in humans with passive catheter tracking: initial results. Radiology. 2014;271:695–702.CrossRef Grothoff M, Piorkowski C, Eitel C, Gaspar T, Lehmkuhl L, Lucke C, et al. MR imaging-guided electrophysiological ablation studies in humans with passive catheter tracking: initial results. Radiology. 2014;271:695–702.CrossRef
25.
go back to reference Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, et al. Real-time MRI-guided right heart catheterisation in adults using passive catheters. Eur Heart J. 2013;34:380–9.CrossRef Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, et al. Real-time MRI-guided right heart catheterisation in adults using passive catheters. Eur Heart J. 2013;34:380–9.CrossRef
26.
go back to reference Nordbeck P, Quick HH, Ladd ME, Ritter O. Real-time magnetic resonance guidance of interventional electrophysiology procedures with passive catheter visualisation and tracking. Heart Rhythm. 2013;10:938–9.CrossRef Nordbeck P, Quick HH, Ladd ME, Ritter O. Real-time magnetic resonance guidance of interventional electrophysiology procedures with passive catheter visualisation and tracking. Heart Rhythm. 2013;10:938–9.CrossRef
27.
go back to reference Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, et al. Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol. 2000;11:1079–85.CrossRef Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, et al. Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol. 2000;11:1079–85.CrossRef
28.
go back to reference Velasco Forte MN, Pushparajah K, Schaeffter T, Valverde Perez I, Rhode K, Ruijsink B, et al. Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterisation using partial saturation (pSAT). J Cardiovasc Magn Reson. 2017;19:60.CrossRef Velasco Forte MN, Pushparajah K, Schaeffter T, Valverde Perez I, Rhode K, Ruijsink B, et al. Improved passive catheter tracking with positive contrast for CMR-guided cardiac catheterisation using partial saturation (pSAT). J Cardiovasc Magn Reson. 2017;19:60.CrossRef
29.
go back to reference Campbell-Washburn AE, Tavallaei MA, Pop M, Grant EK, Chubb H, Rhode K, et al. Real-time MRI guidance of cardiac interventions. J Magn Reson Imaging. 2017;46:935–50.CrossRef Campbell-Washburn AE, Tavallaei MA, Pop M, Grant EK, Chubb H, Rhode K, et al. Real-time MRI guidance of cardiac interventions. J Magn Reson Imaging. 2017;46:935–50.CrossRef
30.
go back to reference Daniels BR, Pratt R, Giaquinto R, Dumoulin C. Optimizing accuracy and precision of micro-coil localization in active-MR tracking. Magn Reson Imaging. 2016;34:289–97.CrossRef Daniels BR, Pratt R, Giaquinto R, Dumoulin C. Optimizing accuracy and precision of micro-coil localization in active-MR tracking. Magn Reson Imaging. 2016;34:289–97.CrossRef
31.
go back to reference Grothoff M, Gutberlet M, Hindricks G, Fleiter C, Schnackenburg B, Weiss S, et al. Magnetic resonance imaging guided transatrial electrophysiological studies in swine using active catheter tracking—experience with 14 cases. Eur Radiol. 2017;27:1954–62.CrossRef Grothoff M, Gutberlet M, Hindricks G, Fleiter C, Schnackenburg B, Weiss S, et al. Magnetic resonance imaging guided transatrial electrophysiological studies in swine using active catheter tracking—experience with 14 cases. Eur Radiol. 2017;27:1954–62.CrossRef
32.
go back to reference Mukherjee RK, Roujol S, Chubb H, Harrison J, Williams S, Whitaker J, et al. Epicardial electroanatomical mapping, radiofrequency ablation and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance—an in vivo feasibility study. Europace. 2018;20(FI2):f254–62. https://doi.org/10.1093/europace/eux341.CrossRefPubMed Mukherjee RK, Roujol S, Chubb H, Harrison J, Williams S, Whitaker J, et al. Epicardial electroanatomical mapping, radiofrequency ablation and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance—an in vivo feasibility study. Europace. 2018;20(FI2):f254–62. https://​doi.​org/​10.​1093/​europace/​eux341.CrossRefPubMed
33.
go back to reference Oduneye SO, Biswas L, Ghate S, Ramanan V, Barry J, Laish-FarKash A, et al. The feasibility of endocardial propagation mapping using magnetic resonance guidance in a swine model and comparison with standard electroanatomical mapping. IEEE Trans Med Imaging. 2012;31:977–83.CrossRef Oduneye SO, Biswas L, Ghate S, Ramanan V, Barry J, Laish-FarKash A, et al. The feasibility of endocardial propagation mapping using magnetic resonance guidance in a swine model and comparison with standard electroanatomical mapping. IEEE Trans Med Imaging. 2012;31:977–83.CrossRef
34.
go back to reference Wang W. Magnetic resonance-guided active catheter tracking. Magn Reson Imaging Clin N Am. 2015;23:579–89.CrossRef Wang W. Magnetic resonance-guided active catheter tracking. Magn Reson Imaging Clin N Am. 2015;23:579–89.CrossRef
35.
go back to reference Radau PE, Pintilie S, Flor R, Biswas L, Oduneye SO, Ramanan V, et al. VURTIGO: visualization platform for real-time MRI-guided cardiac electroanatomic mapping. In: Camara O, et al., editors. Lecture notes in computer science 7085. Toronto: STACOM; 2011. p. 244–53. Radau PE, Pintilie S, Flor R, Biswas L, Oduneye SO, Ramanan V, et al. VURTIGO: visualization platform for real-time MRI-guided cardiac electroanatomic mapping. In: Camara O, et al., editors. Lecture notes in computer science 7085. Toronto: STACOM; 2011. p. 244–53.
36.
go back to reference Arujuna A, Karim R, Zarinabad N, Gill J, Rhode K, Schaeffter T, et al. A randomized prospective mechanistic cardiac magnetic resonance study correlating catheter stability, late gadolinium enhancement and 3 year clinical outcomes in robotically assisted vs standard catheter ablation. Europace. 2015;17:1241–50.CrossRef Arujuna A, Karim R, Zarinabad N, Gill J, Rhode K, Schaeffter T, et al. A randomized prospective mechanistic cardiac magnetic resonance study correlating catheter stability, late gadolinium enhancement and 3 year clinical outcomes in robotically assisted vs standard catheter ablation. Europace. 2015;17:1241–50.CrossRef
37.
go back to reference Knowles BR, Caulfield D, Cooklin M, Rinaldi CA, Gill J, Bostock J, et al. 3D visualisation of acute RF ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans Biomed Eng. 2010;57:1467–75.CrossRef Knowles BR, Caulfield D, Cooklin M, Rinaldi CA, Gill J, Bostock J, et al. 3D visualisation of acute RF ablation lesions using MRI for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans Biomed Eng. 2010;57:1467–75.CrossRef
38.
go back to reference Kholmovski EG, Silvernagel J, Angel N, Vijayakumar S, Thomas S, Dosdall D, et al. Acute non-contrast T1-weighted MRI predicts chronic radiofrequency ablation lesions. J Cardiovasc Electrophysiol. 2018;29:1556–62.CrossRef Kholmovski EG, Silvernagel J, Angel N, Vijayakumar S, Thomas S, Dosdall D, et al. Acute non-contrast T1-weighted MRI predicts chronic radiofrequency ablation lesions. J Cardiovasc Electrophysiol. 2018;29:1556–62.CrossRef
39.
go back to reference Zghaib T, Malayeri AA, Ipek EG, Habibi M, Huang D, Balouch MA, et al. Visualization of acute edema in the left atrial myocardium after radiofrequency ablation: application of a novel high-resolution 3-dimensional magnetic resonance imaging sequence. Heart Rhythm. 2018;15:1189–97.CrossRef Zghaib T, Malayeri AA, Ipek EG, Habibi M, Huang D, Balouch MA, et al. Visualization of acute edema in the left atrial myocardium after radiofrequency ablation: application of a novel high-resolution 3-dimensional magnetic resonance imaging sequence. Heart Rhythm. 2018;15:1189–97.CrossRef
40.
go back to reference Ghafoori E, Kholmovski EG, Thomas S, Silvernagel J, Angel N, Hu N, et al. Characterisation of gadolinium contrast enhancement of radiofrequency ablation lesions in predicting edema and chronic lesion size. Circ Arrhythm Electrophysiol. 2017;10:e005599.CrossRef Ghafoori E, Kholmovski EG, Thomas S, Silvernagel J, Angel N, Hu N, et al. Characterisation of gadolinium contrast enhancement of radiofrequency ablation lesions in predicting edema and chronic lesion size. Circ Arrhythm Electrophysiol. 2017;10:e005599.CrossRef
41.
go back to reference Celik H, Ramanan V, Barry J, Ghate S, Leber V, Oduneye S, et al. Intrinsic contrast for characterisation of acute radiofrequency ablation lesions. Circ Arrhythm Electrophysiol. 2014;7:718–27.CrossRef Celik H, Ramanan V, Barry J, Ghate S, Leber V, Oduneye S, et al. Intrinsic contrast for characterisation of acute radiofrequency ablation lesions. Circ Arrhythm Electrophysiol. 2014;7:718–27.CrossRef
42.
go back to reference Guttman MA, Tao S, Fink S, Kolandaivelu A, Halperin HR, Herzka DA. Non-contrast enhanced T1-weighted MRI of myocardial radiofrequency ablation lesions. Magn Reson Med. 2018;79:879–89.CrossRef Guttman MA, Tao S, Fink S, Kolandaivelu A, Halperin HR, Herzka DA. Non-contrast enhanced T1-weighted MRI of myocardial radiofrequency ablation lesions. Magn Reson Med. 2018;79:879–89.CrossRef
43.
go back to reference Krahn PRP, Singh SM, Ramanan V, Biswas L, Yak N, Anderson KJT, et al. Cardiovascular magnetic resonance guided ablation and intra-procedural visualisation of evolving radiofrequency lesions in the left ventricle. J Cardiovasc Magn Reson. 2018;20:20.CrossRef Krahn PRP, Singh SM, Ramanan V, Biswas L, Yak N, Anderson KJT, et al. Cardiovascular magnetic resonance guided ablation and intra-procedural visualisation of evolving radiofrequency lesions in the left ventricle. J Cardiovasc Magn Reson. 2018;20:20.CrossRef
44.
go back to reference de Senneville BD, Roujol S, Jais P, Moonen CT, Herigault G, Quesson B. Feasibility of fast MR-thermometry during cardiac radiofrequency ablation. NMR Biomed. 2012;25:556–62.CrossRef de Senneville BD, Roujol S, Jais P, Moonen CT, Herigault G, Quesson B. Feasibility of fast MR-thermometry during cardiac radiofrequency ablation. NMR Biomed. 2012;25:556–62.CrossRef
45.
go back to reference Rieke V, Pauly Butts K. MR thermometry. J Magn Reson Imaging. 2008;27:376–90.CrossRef Rieke V, Pauly Butts K. MR thermometry. J Magn Reson Imaging. 2008;27:376–90.CrossRef
46.
go back to reference Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814–23.CrossRef Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814–23.CrossRef
47.
go back to reference Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.CrossRef Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10:787–800.CrossRef
48.
go back to reference Ozenne V, Toupin S, Bour P, de Senneville BD, Lepetit-Coiffe M, Boissenin M, et al. Improved cardiac magnetic resonance thermometry and dosimetry for monitoring lesion formation during catheter ablation. Magn Reson Med. 2017;77:673–83.CrossRef Ozenne V, Toupin S, Bour P, de Senneville BD, Lepetit-Coiffe M, Boissenin M, et al. Improved cardiac magnetic resonance thermometry and dosimetry for monitoring lesion formation during catheter ablation. Magn Reson Med. 2017;77:673–83.CrossRef
49.
go back to reference • Toupin S, Bour P, Lepetit-Coiffe M, Ozenne V, de Senneville BD, Schneider R, et al. Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo. J Cardiovasc Magn Reson. 2017;19:–14 Evaluation of MR-thermometry and dosimetry to enable real-time assessment of ablation injury during endocardial procedures in an ovine model. • Toupin S, Bour P, Lepetit-Coiffe M, Ozenne V, de Senneville BD, Schneider R, et al. Feasibility of real-time MR thermal dose mapping for predicting radiofrequency ablation outcome in the myocardium in vivo. J Cardiovasc Magn Reson. 2017;19:–14 Evaluation of MR-thermometry and dosimetry to enable real-time assessment of ablation injury during endocardial procedures in an ovine model.
50.
go back to reference de Senneville BD, Mougenot C, Moonen CT. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med. 2007;57:319–30.CrossRef de Senneville BD, Mougenot C, Moonen CT. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med. 2007;57:319–30.CrossRef
51.
go back to reference Roujol S, Ries M, Quesson B, Moonen C, de Senneville BD. Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med. 2010;63:1080–7.CrossRef Roujol S, Ries M, Quesson B, Moonen C, de Senneville BD. Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med. 2010;63:1080–7.CrossRef
52.
go back to reference Kolandaivelu A, Zviman MM, Castro V, Lardo AC, Berger RD, Halperin HR. Non-invasive assessment of tissue heating during cardiac radiofrequency ablation using MRI thermography. Circ Arrhythm Electrophysiol. 2010;3:521–9.CrossRef Kolandaivelu A, Zviman MM, Castro V, Lardo AC, Berger RD, Halperin HR. Non-invasive assessment of tissue heating during cardiac radiofrequency ablation using MRI thermography. Circ Arrhythm Electrophysiol. 2010;3:521–9.CrossRef
53.
go back to reference Nordbeck P, Bauer WR, Fidler F, Warmuth M, Hiller KH, Nahrendorf M, et al. Feasibility of real-time MRI with a novel carbon catheter for interventional electrophysiology. Circ Arrhythm Electrophysiol. 2009;2:258–67.CrossRef Nordbeck P, Bauer WR, Fidler F, Warmuth M, Hiller KH, Nahrendorf M, et al. Feasibility of real-time MRI with a novel carbon catheter for interventional electrophysiology. Circ Arrhythm Electrophysiol. 2009;2:258–67.CrossRef
54.
go back to reference Hoffmann BA, Koops A, Rostock T, Mullerleile K, Steven D, Karst R, et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur Heart J. 2010;31:450–6.CrossRef Hoffmann BA, Koops A, Rostock T, Mullerleile K, Steven D, Karst R, et al. Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model. Eur Heart J. 2010;31:450–6.CrossRef
55.
go back to reference Vergara GR, Vijayakumar S, Kholmovski EG, Blauer JJ, Guttman MA, Gloschat C, et al. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualisation of lesion formation at 3 tesla. Heart Rhythm. 2011;8:295–303.CrossRef Vergara GR, Vijayakumar S, Kholmovski EG, Blauer JJ, Guttman MA, Gloschat C, et al. Real-time magnetic resonance imaging-guided radiofrequency atrial ablation and visualisation of lesion formation at 3 tesla. Heart Rhythm. 2011;8:295–303.CrossRef
56.
go back to reference • Sommer P, Grothoff M, Eitel C, Gaspar T, Piorkowski C, Gutberlet M, et al. Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace. 2013;15:101–8 First description of MR-guided atrial flutter ablation in humans.CrossRef • Sommer P, Grothoff M, Eitel C, Gaspar T, Piorkowski C, Gutberlet M, et al. Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace. 2013;15:101–8 First description of MR-guided atrial flutter ablation in humans.CrossRef
57.
go back to reference Hosseini SM, Rozen G, Saleh A, Vaid J, Biton Y, Moazzami K, et al. Catheter ablation for cardiac arrhythmias: utilization and in-hospital complications, 2000 to 2013. JACC Clin Electrophysiol. 2017;3:1240–8.CrossRef Hosseini SM, Rozen G, Saleh A, Vaid J, Biton Y, Moazzami K, et al. Catheter ablation for cardiac arrhythmias: utilization and in-hospital complications, 2000 to 2013. JACC Clin Electrophysiol. 2017;3:1240–8.CrossRef
58.
go back to reference Schmidt EJ, Mallozzi RP, Thiagalingam A, Holmvang G, d’Avila A, Guhde R, et al. Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ Arrhythm Electrophysiol. 2009;2:695–704.CrossRef Schmidt EJ, Mallozzi RP, Thiagalingam A, Holmvang G, d’Avila A, Guhde R, et al. Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ Arrhythm Electrophysiol. 2009;2:695–704.CrossRef
59.
go back to reference • Kholmovski EG, Coulombe N, Silvernagel J, Angel N, Parker D, Macleod R, et al. Real-time MRI-guided cardiac cryo-ablation: a feasibility study. J Cardiovasc Electrophysiol. 2016;27:602–8 First description of real-time MRI-guided cryoablation.CrossRef • Kholmovski EG, Coulombe N, Silvernagel J, Angel N, Parker D, Macleod R, et al. Real-time MRI-guided cardiac cryo-ablation: a feasibility study. J Cardiovasc Electrophysiol. 2016;27:602–8 First description of real-time MRI-guided cryoablation.CrossRef
60.
go back to reference Lichter J, Kholmovski EG, Coulombe N, Ghafoori E, Kamali R, MacLeod R et al. Real-time magnetic resonance imaging-guided cryoablation of the pulmonary veins with acute freeze-zone and chronic lesion assessment. Europace 2019;21:154–62. Lichter J, Kholmovski EG, Coulombe N, Ghafoori E, Kamali R, MacLeod R et al. Real-time magnetic resonance imaging-guided cryoablation of the pulmonary veins with acute freeze-zone and chronic lesion assessment. Europace 2019;21:154–62.
61.
go back to reference Arepally A, Karmarkar PV, Weiss C, Rodriguez ER, Lederman RJ, Atalar E. Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging. 2005;21:463–7.CrossRef Arepally A, Karmarkar PV, Weiss C, Rodriguez ER, Lederman RJ, Atalar E. Magnetic resonance image-guided trans-septal puncture in a swine heart. J Magn Reson Imaging. 2005;21:463–7.CrossRef
62.
go back to reference Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hedge S, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362:1877–82.CrossRef Razavi R, Hill DL, Keevil SF, Miquel ME, Muthurangu V, Hedge S, et al. Cardiac catheterisation guided by MRI in children and adults with congenital heart disease. Lancet. 2003;362:1877–82.CrossRef
63.
go back to reference Santangeli P, Frankel DS, Tung R, Vaseghi M, Sauer WH, Tzou WS, et al. Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease. J Am Coll Cardiol. 2017;69:2105–15.CrossRef Santangeli P, Frankel DS, Tung R, Vaseghi M, Sauer WH, Tzou WS, et al. Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease. J Am Coll Cardiol. 2017;69:2105–15.CrossRef
64.
go back to reference • Schmidt EJ, Watkins RD, Zviman MM, Guttman MA, Wang W, Halperin HA. A magnetic resonance imaging-conditional external cardiac defibrillator for resuscitation within the magnetic resonance imaging scanner bore. Circ Cardiovasc Imaging. 2016;9:e005091 Pre-clinical development of a MR-compatible defibrillation system.CrossRef • Schmidt EJ, Watkins RD, Zviman MM, Guttman MA, Wang W, Halperin HA. A magnetic resonance imaging-conditional external cardiac defibrillator for resuscitation within the magnetic resonance imaging scanner bore. Circ Cardiovasc Imaging. 2016;9:e005091 Pre-clinical development of a MR-compatible defibrillation system.CrossRef
65.
go back to reference Tilz RR, Lenarczyk R, Scherr D, Haugaa KH, Iliodromitis K, Purerfellner H, et al. Management of ventricular tachycardia in the ablation era: results of the European Heart Rhythm Association survey. Europace. 2018;20:209–13.CrossRef Tilz RR, Lenarczyk R, Scherr D, Haugaa KH, Iliodromitis K, Purerfellner H, et al. Management of ventricular tachycardia in the ablation era: results of the European Heart Rhythm Association survey. Europace. 2018;20:209–13.CrossRef
66.
go back to reference Nazarian S, Hansford R, Rahsepar AA, Weltin V, McVeigh D, Gucuk Ipek E, et al. Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med. 2017;377:2555–64.CrossRef Nazarian S, Hansford R, Rahsepar AA, Weltin V, McVeigh D, Gucuk Ipek E, et al. Safety of magnetic resonance imaging in patients with cardiac devices. N Engl J Med. 2017;377:2555–64.CrossRef
67.
go back to reference Ranjan R, McGann CJ, Jeong EK, Hong K, Kholmovski EG, Blauer J, et al. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: a feasibility study at 3T. Europace. 2015;17:483–8.CrossRef Ranjan R, McGann CJ, Jeong EK, Hong K, Kholmovski EG, Blauer J, et al. Wideband late gadolinium enhanced magnetic resonance imaging for imaging myocardial scar without image artefacts induced by implantable cardioverter-defibrillator: a feasibility study at 3T. Europace. 2015;17:483–8.CrossRef
68.
go back to reference Do DH, Eyvazian V, Bayoneta AJ, Hu P, Finn JP, Bradfield JS, et al. Cardiac magnetic resonance imaging using wideband sequences in patients with non-conditional cardiac implanted electronic devices. Heart Rhythm. 2018;15:218–25.CrossRef Do DH, Eyvazian V, Bayoneta AJ, Hu P, Finn JP, Bradfield JS, et al. Cardiac magnetic resonance imaging using wideband sequences in patients with non-conditional cardiac implanted electronic devices. Heart Rhythm. 2018;15:218–25.CrossRef
69.
go back to reference Dukkipati SR, Mallozzi R, Schmidt EJ, Holmvang G, d’Avila A, Guhde R, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance-based catheter tracking. Circulation. 2008;118:853–62.CrossRef Dukkipati SR, Mallozzi R, Schmidt EJ, Holmvang G, d’Avila A, Guhde R, et al. Electroanatomic mapping of the left ventricle in a porcine model of chronic myocardial infarction with magnetic resonance-based catheter tracking. Circulation. 2008;118:853–62.CrossRef
Metadata
Title
Advances in Real-Time MRI–Guided Electrophysiology
Authors
Rahul K. Mukherjee
Henry Chubb
Sébastien Roujol
Reza Razavi
Mark D. O’Neill
Publication date
01-02-2019
Publisher
Springer US
Published in
Current Cardiovascular Imaging Reports / Issue 2/2019
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-019-9481-9