Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 2/2011

Open Access 01-04-2011

Cardiovascular Applications of Hyperpolarized MRI

Author: Damian J. Tyler

Published in: Current Cardiovascular Imaging Reports | Issue 2/2011

Login to get access

Abstract

Many applications of MRI are limited by an inherently low sensitivity. Previous attempts to overcome this insensitivity have focused on the use of MRI systems with stronger magnetic fields. However, the gains that can be achieved in this way are relatively small and increasing the magnetic field invariably leads to greater technical challenges. More recently, the development of a range of techniques, which can be gathered under the umbrella term of “hyperpolarization,” has offered potential solutions to the low sensitivity. Hyperpolarization techniques have been demonstrated to temporarily increase the signal available in an MRI experiment by as much as 100,000-fold. This article outlines the main hyperpolarization techniques that have been proposed and explains how they can increase MRI signals. With particular emphasis on the emerging technique of dynamic nuclear polarization, the existing preclinical cardiovascular applications are reviewed and the potential for clinical translation is discussed.
Literature
1.
go back to reference Mansson, S., E. Johansson, P. Magnusson, et al., 13C imaging-a new diagnostic platform. Eur Radiol, 2006. 16(1): p. 57–67.PubMedCrossRef Mansson, S., E. Johansson, P. Magnusson, et al., 13C imaging-a new diagnostic platform. Eur Radiol, 2006. 16(1): p. 57–67.PubMedCrossRef
2.
go back to reference Bhattacharya, P., B.D. Ross and R. Bunger, Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp Biol Med (Maywood), 2009. 234(12): p. 1395–416.CrossRef Bhattacharya, P., B.D. Ross and R. Bunger, Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp Biol Med (Maywood), 2009. 234(12): p. 1395–416.CrossRef
3.
go back to reference Comment, A., B. van den Brandt, K. Uffmann, et al., Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering, 2007. 31B(4): p. 255–269.CrossRef Comment, A., B. van den Brandt, K. Uffmann, et al., Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering, 2007. 31B(4): p. 255–269.CrossRef
4.
go back to reference Fain, S.B., F.R. Korosec, J.H. Holmes, et al., Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging, 2007. 25(5): p. 910–23.PubMedCrossRef Fain, S.B., F.R. Korosec, J.H. Holmes, et al., Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging, 2007. 25(5): p. 910–23.PubMedCrossRef
5.
go back to reference Viale, A., F. Reineri, D. Santelia, et al., Hyperpolarized agents for advanced MRI investigations. Q J Nucl Med Mol Imaging, 2009. 53(6): p. 604–17.PubMed Viale, A., F. Reineri, D. Santelia, et al., Hyperpolarized agents for advanced MRI investigations. Q J Nucl Med Mol Imaging, 2009. 53(6): p. 604–17.PubMed
6.
go back to reference Ardenkjaer-Larsen, J.H., B. Fridlund, A. Gram, et al., Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10158–63.PubMedCrossRef Ardenkjaer-Larsen, J.H., B. Fridlund, A. Gram, et al., Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10158–63.PubMedCrossRef
7.
go back to reference Day, S.E., M.I. Kettunen, F.A. Gallagher, et al., Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med, 2007. 13(11): p. 1382–7.PubMedCrossRef Day, S.E., M.I. Kettunen, F.A. Gallagher, et al., Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med, 2007. 13(11): p. 1382–7.PubMedCrossRef
8.
go back to reference Golman, K., R.I. Zandt, M. Lerche, et al., Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res, 2006. 66(22): p. 10855–60.PubMedCrossRef Golman, K., R.I. Zandt, M. Lerche, et al., Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res, 2006. 66(22): p. 10855–60.PubMedCrossRef
9.
go back to reference •• Golman, K., J.S. Petersson, P. Magnusson, et al., Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med, 2008. 59(5): p. 1005–13. This article demonstrates the potential for hyperpolarized MRI to image the regional distribution of different metabolic products in normal and post-ischemic hearts. PubMedCrossRef •• Golman, K., J.S. Petersson, P. Magnusson, et al., Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med, 2008. 59(5): p. 1005–13. This article demonstrates the potential for hyperpolarized MRI to image the regional distribution of different metabolic products in normal and post-ischemic hearts. PubMedCrossRef
10.
go back to reference • Merritt, M.E., C. Harrison, C. Storey, et al., Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci U S A, 2007. 104(50): p. 19773–7. This article demonstrates the utility of hyperpolarized pyruvate in the perfused heart and shows that altered PDH flux can be assessed with high temporal resolution. PubMedCrossRef • Merritt, M.E., C. Harrison, C. Storey, et al., Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci U S A, 2007. 104(50): p. 19773–7. This article demonstrates the utility of hyperpolarized pyruvate in the perfused heart and shows that altered PDH flux can be assessed with high temporal resolution. PubMedCrossRef
11.
go back to reference •• Schroeder, M.A., L.E. Cochlin, L.C. Heather, et al., In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci U S A, 2008. 105(33): p. 12051–6. This is the first manuscript to use hyperpolarized pyruvate to assess the in vivo rat heart and to demonstrate the alterations to in vivo PDH flux caused by overnight fasting and type 1 diabetes. PubMedCrossRef •• Schroeder, M.A., L.E. Cochlin, L.C. Heather, et al., In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci U S A, 2008. 105(33): p. 12051–6. This is the first manuscript to use hyperpolarized pyruvate to assess the in vivo rat heart and to demonstrate the alterations to in vivo PDH flux caused by overnight fasting and type 1 diabetes. PubMedCrossRef
12.
go back to reference • Golman, K. and J.S. Petersson, Metabolic imaging and other applications of hyperpolarized 13C1. Acad Radiol, 2006. 13(8): p. 932–42. This is an excellent review of the preliminary work exploring the potential applications of hyperpolarized MRI. PubMedCrossRef • Golman, K. and J.S. Petersson, Metabolic imaging and other applications of hyperpolarized 13C1. Acad Radiol, 2006. 13(8): p. 932–42. This is an excellent review of the preliminary work exploring the potential applications of hyperpolarized MRI. PubMedCrossRef
13.
go back to reference Ross, B.D., P. Bhattacharya, S. Wagner, et al., Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. AJNR Am J Neuroradiol, 2010. 31(1): p. 24–33.PubMedCrossRef Ross, B.D., P. Bhattacharya, S. Wagner, et al., Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. AJNR Am J Neuroradiol, 2010. 31(1): p. 24–33.PubMedCrossRef
14.
go back to reference Golman, K., J.H. Ardenkjaer-Larsen, J.S. Petersson, et al., Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10435–9.PubMedCrossRef Golman, K., J.H. Ardenkjaer-Larsen, J.S. Petersson, et al., Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10435–9.PubMedCrossRef
15.
go back to reference Golman, K., O. Axelsson, H. Johannesson, et al., Parahydrogen-induced polarization in imaging: subsecond (13)C angiography. Magn Reson Med, 2001. 46(1): p. 1–5.PubMedCrossRef Golman, K., O. Axelsson, H. Johannesson, et al., Parahydrogen-induced polarization in imaging: subsecond (13)C angiography. Magn Reson Med, 2001. 46(1): p. 1–5.PubMedCrossRef
16.
go back to reference Svensson, J., S. Mansson, E. Johansson, et al., Hyperpolarized 13C MR angiography using trueFISP. Magn Reson Med, 2003. 50(2): p. 256–62.PubMedCrossRef Svensson, J., S. Mansson, E. Johansson, et al., Hyperpolarized 13C MR angiography using trueFISP. Magn Reson Med, 2003. 50(2): p. 256–62.PubMedCrossRef
17.
go back to reference Olsson, L.E., C.M. Chai, O. Axelsson, et al., MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med, 2006. 55(4): p. 731–7.PubMedCrossRef Olsson, L.E., C.M. Chai, O. Axelsson, et al., MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med, 2006. 55(4): p. 731–7.PubMedCrossRef
18.
go back to reference Ishii, M., K. Emami, S. Kadlecek, et al., Hyperpolarized 13C MRI of the pulmonary vasculature and parenchyma. Magn Reson Med, 2007. 57(3): p. 459–63.PubMedCrossRef Ishii, M., K. Emami, S. Kadlecek, et al., Hyperpolarized 13C MRI of the pulmonary vasculature and parenchyma. Magn Reson Med, 2007. 57(3): p. 459–63.PubMedCrossRef
19.
go back to reference Schwitter, J., Myocardial perfusion imaging by cardiac magnetic resonance. J Nucl Cardiol, 2006. 13(6): p. 841–54.PubMedCrossRef Schwitter, J., Myocardial perfusion imaging by cardiac magnetic resonance. J Nucl Cardiol, 2006. 13(6): p. 841–54.PubMedCrossRef
20.
go back to reference Johansson, E., L.E. Olsson, S. Mansson, et al., Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn Reson Med, 2004. 52(5): p. 1043–51.PubMedCrossRef Johansson, E., L.E. Olsson, S. Mansson, et al., Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn Reson Med, 2004. 52(5): p. 1043–51.PubMedCrossRef
21.
go back to reference Johansson, E., S. Mansson, R. Wirestam, et al., Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med, 2004. 51(3): p. 464–72.PubMedCrossRef Johansson, E., S. Mansson, R. Wirestam, et al., Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med, 2004. 51(3): p. 464–72.PubMedCrossRef
22.
go back to reference Magnusson, P., E. Johansson, S. Mansson, et al., Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn Reson Med, 2007. 57(6): p. 1140–7.PubMedCrossRef Magnusson, P., E. Johansson, S. Mansson, et al., Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn Reson Med, 2007. 57(6): p. 1140–7.PubMedCrossRef
23.
go back to reference Horowitz, J.D. and J.A. Kennedy, Time to address the cardiac metabolic “triple whammy” ischemic heart failure in diabetic patients. J Am Coll Cardiol, 2006. 48(11): p. 2232–4.PubMedCrossRef Horowitz, J.D. and J.A. Kennedy, Time to address the cardiac metabolic “triple whammy” ischemic heart failure in diabetic patients. J Am Coll Cardiol, 2006. 48(11): p. 2232–4.PubMedCrossRef
24.
go back to reference Neubauer, S., The failing heart—an engine out of fuel. N Engl J Med, 2007. 356(11): p. 1140–51.PubMedCrossRef Neubauer, S., The failing heart—an engine out of fuel. N Engl J Med, 2007. 356(11): p. 1140–51.PubMedCrossRef
25.
go back to reference Stanley, W.C., F.A. Recchia and G.D. Lopaschuk, Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005. 85(3): p. 1093–129.PubMedCrossRef Stanley, W.C., F.A. Recchia and G.D. Lopaschuk, Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005. 85(3): p. 1093–129.PubMedCrossRef
26.
go back to reference Bailey, I.A., D.G. Gadian, P.M. Matthews, et al., Studies of metabolism in the isolated, perfused rat heart using 13C NMR. FEBS Lett, 1981. 123(2): p. 315–8.PubMedCrossRef Bailey, I.A., D.G. Gadian, P.M. Matthews, et al., Studies of metabolism in the isolated, perfused rat heart using 13C NMR. FEBS Lett, 1981. 123(2): p. 315–8.PubMedCrossRef
27.
go back to reference Lloyd, S., C. Brocks and J.C. Chatham, Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol, 2003. 285(1): p. H163–72.PubMed Lloyd, S., C. Brocks and J.C. Chatham, Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol, 2003. 285(1): p. H163–72.PubMed
28.
go back to reference Sherry, A.D., C.R. Malloy, P. Zhao, et al., Alterations in substrate utilization in the reperfused myocardium: a direct analysis by 13C NMR. Biochemistry, 1992. 31(20): p. 4833–7.PubMedCrossRef Sherry, A.D., C.R. Malloy, P. Zhao, et al., Alterations in substrate utilization in the reperfused myocardium: a direct analysis by 13C NMR. Biochemistry, 1992. 31(20): p. 4833–7.PubMedCrossRef
29.
go back to reference Chatham, J.C. and A.M. Seymour, Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res, 2002. 55(1): p. 104–12.PubMedCrossRef Chatham, J.C. and A.M. Seymour, Cardiac carbohydrate metabolism in Zucker diabetic fatty rats. Cardiovasc Res, 2002. 55(1): p. 104–12.PubMedCrossRef
30.
go back to reference Malloy, C.R., A.D. Sherry and F.M. Jeffrey, Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett, 1987. 212(1): p. 58–62.PubMedCrossRef Malloy, C.R., A.D. Sherry and F.M. Jeffrey, Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett, 1987. 212(1): p. 58–62.PubMedCrossRef
31.
go back to reference Ziegler, A., C.E. Zaugg, P.T. Buser, et al., Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy. NMR Biomed, 2002. 15(3): p. 222–34.PubMedCrossRef Ziegler, A., C.E. Zaugg, P.T. Buser, et al., Non-invasive measurements of myocardial carbon metabolism using in vivo 13C NMR spectroscopy. NMR Biomed, 2002. 15(3): p. 222–34.PubMedCrossRef
32.
go back to reference Malloy, C.R., J.R. Thompson, F.M. Jeffrey, et al., Contribution of exogenous substrates to acetyl coenzyme A: measurement by 13C NMR under non-steady-state conditions. Biochemistry, 1990. 29(29): p. 6756–61.PubMedCrossRef Malloy, C.R., J.R. Thompson, F.M. Jeffrey, et al., Contribution of exogenous substrates to acetyl coenzyme A: measurement by 13C NMR under non-steady-state conditions. Biochemistry, 1990. 29(29): p. 6756–61.PubMedCrossRef
33.
go back to reference Kettunen, M.I., D.E. Hu, T.H. Witney, et al., Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn Reson Med, 2010. 63(4): p. 872–80.PubMedCrossRef Kettunen, M.I., D.E. Hu, T.H. Witney, et al., Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn Reson Med, 2010. 63(4): p. 872–80.PubMedCrossRef
34.
go back to reference Randle, P.J., Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev, 1998. 14(4): p. 263–83.PubMedCrossRef Randle, P.J., Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev, 1998. 14(4): p. 263–83.PubMedCrossRef
35.
go back to reference Tyler, D.J., M.A. Schroeder, L.E. Cochlin, et al., Application of hyperpolarized magnetic resonance in the study of cardiac metabolism. Applied Magnetic Resonance, 2008. 34(3–4): p. 523–531.CrossRef Tyler, D.J., M.A. Schroeder, L.E. Cochlin, et al., Application of hyperpolarized magnetic resonance in the study of cardiac metabolism. Applied Magnetic Resonance, 2008. 34(3–4): p. 523–531.CrossRef
36.
go back to reference Atherton, H.J., M.A. Schroeder, M.S. Dodd, et al., Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised (13)C MRS. NMR Biomed, 2010. Atherton, H.J., M.A. Schroeder, M.S. Dodd, et al., Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised (13)C MRS. NMR Biomed, 2010.
37.
go back to reference Merritt, M.E., C. Harrison, C. Storey, et al., Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3. Magn Reson Med, 2008. 60(5): p. 1029–36.PubMedCrossRef Merritt, M.E., C. Harrison, C. Storey, et al., Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3. Magn Reson Med, 2008. 60(5): p. 1029–36.PubMedCrossRef
38.
go back to reference •• Schroeder, M.A., H.J. Atherton, D.R. Ball, et al., Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J, 2009. 23(8): p. 2529–38. This article demonstrates the first application of [2- 13 C]pyruvate for the assessment of real-time flux through the TCA cycle and the alterations to this flux that are seen following global ischemia in the perfused heart. PubMedCrossRef •• Schroeder, M.A., H.J. Atherton, D.R. Ball, et al., Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J, 2009. 23(8): p. 2529–38. This article demonstrates the first application of [2- 13 C]pyruvate for the assessment of real-time flux through the TCA cycle and the alterations to this flux that are seen following global ischemia in the perfused heart. PubMedCrossRef
39.
go back to reference • Schroeder, M.A., P. Swietach, H.J. Atherton, et al., Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. Cardiovasc Res, 2010. 86(1): p. 82–91. This article details the in vivo utilization of [1- 13 C]pyruvate for the assessment of intracellular pH in the heart with high temporal resolution. PubMed • Schroeder, M.A., P. Swietach, H.J. Atherton, et al., Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. Cardiovasc Res, 2010. 86(1): p. 82–91. This article details the in vivo utilization of [1- 13 C]pyruvate for the assessment of intracellular pH in the heart with high temporal resolution. PubMed
40.
go back to reference Moreno, K.X., S.M. Sabelhaus, M.E. Merritt, et al., Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am J Physiol Heart Circ Physiol, 2010. 298(5): p. H1556–64.PubMedCrossRef Moreno, K.X., S.M. Sabelhaus, M.E. Merritt, et al., Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am J Physiol Heart Circ Physiol, 2010. 298(5): p. H1556–64.PubMedCrossRef
41.
go back to reference Schroeder, M.A., H.J. Atherton, L.E. Cochlin, et al., The effect of hyperpolarized tracer concentration on myocardial uptake and metabolism. Magn Reson Med, 2009. 61(5): p. 1007–14.PubMedCrossRef Schroeder, M.A., H.J. Atherton, L.E. Cochlin, et al., The effect of hyperpolarized tracer concentration on myocardial uptake and metabolism. Magn Reson Med, 2009. 61(5): p. 1007–14.PubMedCrossRef
42.
go back to reference •• Lau, A.Z., A.P. Chen, N.R. Ghugre, et al., Rapid multislice imaging of hyperpolarized (13)C pyruvate and bicarbonate in the heart. Magn Reson Med, 2010. A new acquisition scheme is presented which allows for rapid, cardiac-gated acquisition of metabolic images with high spatial and temporal resolution. •• Lau, A.Z., A.P. Chen, N.R. Ghugre, et al., Rapid multislice imaging of hyperpolarized (13)C pyruvate and bicarbonate in the heart. Magn Reson Med, 2010. A new acquisition scheme is presented which allows for rapid, cardiac-gated acquisition of metabolic images with high spatial and temporal resolution.
43.
go back to reference Comment, A., J. Rentsch, F. Kurdzesau, et al., Producing over 100 ml of highly concentrated hyperpolarized solution by means of dissolution DNP. J Magn Reson, 2008. 194(1): p. 152–5.PubMedCrossRef Comment, A., J. Rentsch, F. Kurdzesau, et al., Producing over 100 ml of highly concentrated hyperpolarized solution by means of dissolution DNP. J Magn Reson, 2008. 194(1): p. 152–5.PubMedCrossRef
44.
go back to reference Jannin, S., A. Comment, F. Kurdzesau, et al., A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. J Chem Phys, 2008. 128(24): p. 241102.PubMedCrossRef Jannin, S., A. Comment, F. Kurdzesau, et al., A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. J Chem Phys, 2008. 128(24): p. 241102.PubMedCrossRef
45.
go back to reference Johannesson, H., S. Macholl and J.H. Ardenkjaer-Larsen, Dynamic Nuclear Polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson, 2009. 197(2): p. 167–75.PubMedCrossRef Johannesson, H., S. Macholl and J.H. Ardenkjaer-Larsen, Dynamic Nuclear Polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson, 2009. 197(2): p. 167–75.PubMedCrossRef
46.
go back to reference Cunningham, C.H., A.P. Chen, M.J. Albers, et al., Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C. J Magn Reson, 2007. 187(2): p. 357–62.PubMedCrossRef Cunningham, C.H., A.P. Chen, M.J. Albers, et al., Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C. J Magn Reson, 2007. 187(2): p. 357–62.PubMedCrossRef
47.
go back to reference Cunningham, C.H., A.P. Chen, M. Lustig, et al., Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products. J Magn Reson, 2008. 193(1): p. 139–46.PubMedCrossRef Cunningham, C.H., A.P. Chen, M. Lustig, et al., Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products. J Magn Reson, 2008. 193(1): p. 139–46.PubMedCrossRef
48.
go back to reference Gallagher, F.A., M.I. Kettunen, S.E. Day, et al., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature, 2008. 453(7197): p. 940–3.PubMedCrossRef Gallagher, F.A., M.I. Kettunen, S.E. Day, et al., Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature, 2008. 453(7197): p. 940–3.PubMedCrossRef
49.
go back to reference Gallagher, F.A., M.I. Kettunen, S.E. Day, et al., 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med, 2008. 60(2): p. 253–7.PubMedCrossRef Gallagher, F.A., M.I. Kettunen, S.E. Day, et al., 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med, 2008. 60(2): p. 253–7.PubMedCrossRef
50.
go back to reference Gallagher, F.A., M.I. Kettunen, D.E. Hu, et al., Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A, 2009. 106(47): p. 19801–6.PubMed Gallagher, F.A., M.I. Kettunen, D.E. Hu, et al., Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A, 2009. 106(47): p. 19801–6.PubMed
Metadata
Title
Cardiovascular Applications of Hyperpolarized MRI
Author
Damian J. Tyler
Publication date
01-04-2011
Publisher
Current Science Inc.
Published in
Current Cardiovascular Imaging Reports / Issue 2/2011
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-011-9066-8

Other articles of this Issue 2/2011

Current Cardiovascular Imaging Reports 2/2011 Go to the issue