Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 4/2010

01-08-2010

Emerging Molecular Targets for Intravascular Imaging of High-Risk Plaques

Authors: Jin Won Kim, Farouc A. Jaffer

Published in: Current Cardiovascular Imaging Reports | Issue 4/2010

Login to get access

Abstract

Accumulating evidence links catastrophic cardiovascular events to the inflammatory, angiogenic, and apoptotic biological profiles underlying high-risk atherosclerotic plaques. While biological detail is opaque to traditional anatomical imaging readouts, emerging molecular imaging approaches are now yielding significant clinical insights into the biological diagnosis, characterization, and treatment of atherosclerotic vascular disease. Yet, while clinical molecular imaging approaches are available for larger arterial beds such as the carotid arteries or aorta, molecular imaging pathways for human coronary arterial plaques are lacking. Excitingly, the recent advent of intravascular near-infrared fluorescence technology now offers new potential for in vivo molecular imaging of key molecular and cellular targets in coronary-sized vasculature. Here we provide a framework for coronary artery–targeted molecular imaging using intravascular imaging technology, and present key molecular imaging targets relevant to the detection of high-risk, vulnerable coronary plaques.
Literature
1.
go back to reference Nissen SE: The vulnerable plaque “hypothesis”: promise, but little progress. JACC Cardiovasc Imaging 2009, 2:483–485.CrossRefPubMed Nissen SE: The vulnerable plaque “hypothesis”: promise, but little progress. JACC Cardiovasc Imaging 2009, 2:483–485.CrossRefPubMed
2.
go back to reference Choi SH, Chae A, Chen CH, et al.: Emerging approaches for imaging vulnerable plaques in patients. Curr Opin Biotechnol 2007, 18:73–82.CrossRefPubMed Choi SH, Chae A, Chen CH, et al.: Emerging approaches for imaging vulnerable plaques in patients. Curr Opin Biotechnol 2007, 18:73–82.CrossRefPubMed
4.
go back to reference Jaffer FA, Libby P, Weissleder R: Molecular imaging of cardiovascular disease. Circulation 2007, 116:1052–1061.CrossRefPubMed Jaffer FA, Libby P, Weissleder R: Molecular imaging of cardiovascular disease. Circulation 2007, 116:1052–1061.CrossRefPubMed
5.
6.
go back to reference Calfon MA, Vinegoni C, Ntziachristos V, et al.: Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques. J Biomed Optics 2010, 15:011107.CrossRef Calfon MA, Vinegoni C, Ntziachristos V, et al.: Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques. J Biomed Optics 2010, 15:011107.CrossRef
7.
go back to reference Weissleder R, Ntziachristos V: Shedding light onto live molecular targets. Nat Med 2003, 9:123–128.CrossRefPubMed Weissleder R, Ntziachristos V: Shedding light onto live molecular targets. Nat Med 2003, 9:123–128.CrossRefPubMed
8.
go back to reference Ntziachristos V, Ripoll J, Wang LV, et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005, 23:313–320.CrossRefPubMed Ntziachristos V, Ripoll J, Wang LV, et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005, 23:313–320.CrossRefPubMed
9.
go back to reference Jaffer FA, Libby P, Weissleder R: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1017–1024.CrossRefPubMed Jaffer FA, Libby P, Weissleder R: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1017–1024.CrossRefPubMed
10.
go back to reference Ntziachristos V, Tung CH, Bremer C, et al.: Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002, 8:757–760.CrossRefPubMed Ntziachristos V, Tung CH, Bremer C, et al.: Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002, 8:757–760.CrossRefPubMed
11.
go back to reference Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387.CrossRefPubMed Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387.CrossRefPubMed
12.
go back to reference •• Jaffer FA, Vinegoni C, John MC, et al.: Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 2008, 118:1802–1809. This is the first in vivo study of catheter-based intravascular NIRF molecular imaging in human coronary–sized vessels.CrossRefPubMed •• Jaffer FA, Vinegoni C, John MC, et al.: Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 2008, 118:1802–1809. This is the first in vivo study of catheter-based intravascular NIRF molecular imaging in human coronary–sized vessels.CrossRefPubMed
13.
go back to reference Lindner JR: Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res 2009, 84:182–189.CrossRefPubMed Lindner JR: Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res 2009, 84:182–189.CrossRefPubMed
14.
go back to reference Hamilton AJ, Huang SL, Warnick D, et al.: Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004, 43:453–460.CrossRefPubMed Hamilton AJ, Huang SL, Warnick D, et al.: Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004, 43:453–460.CrossRefPubMed
15.
go back to reference Kornmann LM, Reesink KD, Reneman RS, et al.: Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound Med Biol 2010, 36:181–191.CrossRefPubMed Kornmann LM, Reesink KD, Reneman RS, et al.: Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries. Ultrasound Med Biol 2010, 36:181–191.CrossRefPubMed
16.
go back to reference Tang TY, Muller KH, Graves MJ, et al.: Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 2009, 29:1001–1008.CrossRefPubMed Tang TY, Muller KH, Graves MJ, et al.: Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 2009, 29:1001–1008.CrossRefPubMed
17.
go back to reference Wilensky RL, Song HK, Ferrari VA: Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol 2006, 47(8 Suppl):C48–C56.CrossRefPubMed Wilensky RL, Song HK, Ferrari VA: Role of magnetic resonance and intravascular magnetic resonance in the detection of vulnerable plaques. J Am Coll Cardiol 2006, 47(8 Suppl):C48–C56.CrossRefPubMed
18.
go back to reference Regar E, Hennen B, Grube E, et al.: First-in-man application of a miniature self-contained intracoronary magnetic resonance probe. A multi-centre safety and feasibility trial. EuroIntervention 2006, 2:77–83.PubMed Regar E, Hennen B, Grube E, et al.: First-in-man application of a miniature self-contained intracoronary magnetic resonance probe. A multi-centre safety and feasibility trial. EuroIntervention 2006, 2:77–83.PubMed
19.
go back to reference Khadim G, Nanjundappa A, Dieter R.: Intravascular MRI. Curr Cardiovasc Imaging Rep 2009, 2:293–299.CrossRef Khadim G, Nanjundappa A, Dieter R.: Intravascular MRI. Curr Cardiovasc Imaging Rep 2009, 2:293–299.CrossRef
20.
go back to reference Strauss HW, Mari C, Patt BE, et al.: Intravascular radiation detectors for the detection of vulnerable atheroma. J Am Coll Cardiol 2006, 47(8 Suppl):C97–C100.CrossRefPubMed Strauss HW, Mari C, Patt BE, et al.: Intravascular radiation detectors for the detection of vulnerable atheroma. J Am Coll Cardiol 2006, 47(8 Suppl):C97–C100.CrossRefPubMed
21.
go back to reference Jaffer FA, Libby P, Weissleder R: Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 2006, 47:1328–1338.CrossRefPubMed Jaffer FA, Libby P, Weissleder R: Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 2006, 47:1328–1338.CrossRefPubMed
22.
go back to reference Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105:2766–2771.CrossRefPubMed Chen J, Tung CH, Mahmood U, et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002, 105:2766–2771.CrossRefPubMed
23.
go back to reference Kim DE, Kim JY, Schellingerhout D, et al.: Protease imaging of human atheromata captures molecular information of atherosclerosis, complementing anatomic imaging. Arterioscler Thromb Vasc Biol 2010, 30:449–456.CrossRefPubMed Kim DE, Kim JY, Schellingerhout D, et al.: Protease imaging of human atheromata captures molecular information of atherosclerosis, complementing anatomic imaging. Arterioscler Thromb Vasc Biol 2010, 30:449–456.CrossRefPubMed
24.
go back to reference Deguchi JO, Aikawa M, Tung CH, et al.: Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006, 114:55–62.CrossRefPubMed Deguchi JO, Aikawa M, Tung CH, et al.: Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006, 114:55–62.CrossRefPubMed
25.
go back to reference Lutgens SP, Cleutjens KB, Daemen MJ, et al.: Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007, 21:3029–3041.CrossRefPubMed Lutgens SP, Cleutjens KB, Daemen MJ, et al.: Cathepsin cysteine proteases in cardiovascular disease. FASEB J 2007, 21:3029–3041.CrossRefPubMed
26.
go back to reference • Jaffer FA, Kim DE, Quinti L, et al.: Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007, 115:2292–2298. This article discusses the usefulness of lesion-specific proteinase-activatable NIRF imaging for detection of plaque CatK activity.CrossRefPubMed • Jaffer FA, Kim DE, Quinti L, et al.: Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007, 115:2292–2298. This article discusses the usefulness of lesion-specific proteinase-activatable NIRF imaging for detection of plaque CatK activity.CrossRefPubMed
27.
go back to reference Blum G, von Degenfeld G, Merchant MJ, et al.: Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 2007, 3:668–677.CrossRefPubMed Blum G, von Degenfeld G, Merchant MJ, et al.: Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 2007, 3:668–677.CrossRefPubMed
28.
go back to reference Jaffer FA, Nahrendorf M, Sosnovik D, et al.: Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006, 5:85–92.PubMed Jaffer FA, Nahrendorf M, Sosnovik D, et al.: Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 2006, 5:85–92.PubMed
29.
go back to reference Nahrendorf M, Jaffer FA, Kelly KA, et al.: Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006, 114:1504–1511.CrossRefPubMed Nahrendorf M, Jaffer FA, Kelly KA, et al.: Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006, 114:1504–1511.CrossRefPubMed
30.
go back to reference Kaufmann BA, Sanders JM, Davis C, et al.: Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007, 116:276–284.CrossRefPubMed Kaufmann BA, Sanders JM, Davis C, et al.: Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007, 116:276–284.CrossRefPubMed
31.
go back to reference Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al.: Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004, 350:1472–1473.CrossRefPubMed Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al.: Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004, 350:1472–1473.CrossRefPubMed
32.
go back to reference Sosnovik DE, Caravan P: Molecular MRI of atherosclerotic plaque with targeted contrast agents. Curr Cardiovasc Imaging Rep 2009, 2:87–94.CrossRefPubMed Sosnovik DE, Caravan P: Molecular MRI of atherosclerotic plaque with targeted contrast agents. Curr Cardiovasc Imaging Rep 2009, 2:87–94.CrossRefPubMed
33.
go back to reference • Edgington LE, Berger AB, Blum G, et al.: Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 2009, 15:967–973. This study demonstrates the potential of a caspase-specifc activity-based probe for imaging of apopotosis.CrossRefPubMed • Edgington LE, Berger AB, Blum G, et al.: Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 2009, 15:967–973. This study demonstrates the potential of a caspase-specifc activity-based probe for imaging of apopotosis.CrossRefPubMed
34.
go back to reference Matter CM, Schuler PK, Alessi P, et al.: Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004, 95:1225–1233.CrossRefPubMed Matter CM, Schuler PK, Alessi P, et al.: Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004, 95:1225–1233.CrossRefPubMed
35.
go back to reference Waldeck J, Hager F, Holtke C, et al.: Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an alpha v beta3 integrin-targeted fluorochrome. J Nucl Med 2008, 49:1845–1851.CrossRefPubMed Waldeck J, Hager F, Holtke C, et al.: Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an alpha v beta3 integrin-targeted fluorochrome. J Nucl Med 2008, 49:1845–1851.CrossRefPubMed
36.
go back to reference Winter PM, Morawski AM, Caruthers SD, et al.: Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-integrin-targeted nanoparticles. Circulation 2003, 108:2270–2274.CrossRefPubMed Winter PM, Morawski AM, Caruthers SD, et al.: Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-integrin-targeted nanoparticles. Circulation 2003, 108:2270–2274.CrossRefPubMed
37.
go back to reference Vavuranakis M, Kakadiaris IA, O’Malley SM, et al.: A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol 2008, 130:23–29.CrossRefPubMed Vavuranakis M, Kakadiaris IA, O’Malley SM, et al.: A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol 2008, 130:23–29.CrossRefPubMed
38.
go back to reference Vengrenyuk Y, Carlier S, Xanthos S, et al.: A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 2006, 103:14678–14683.CrossRefPubMed Vengrenyuk Y, Carlier S, Xanthos S, et al.: A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 2006, 103:14678–14683.CrossRefPubMed
39.
go back to reference Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol 2006, 47(8 Suppl):C13–C18.CrossRefPubMed Virmani R, Burke AP, Farb A, Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol 2006, 47(8 Suppl):C13–C18.CrossRefPubMed
40.
go back to reference •• Aikawa E, Nahrendorf M, Figueiredo JL, et al.: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007, 116:2841–2850. By simultaneous mapping of NIRF signals with CLIO-VT 680 and OsteoSense, sequential intravital fluorescence microscopy showed plaque inflammation preceded arterial microcalcification.CrossRefPubMed •• Aikawa E, Nahrendorf M, Figueiredo JL, et al.: Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007, 116:2841–2850. By simultaneous mapping of NIRF signals with CLIO-VT 680 and OsteoSense, sequential intravital fluorescence microscopy showed plaque inflammation preceded arterial microcalcification.CrossRefPubMed
41.
go back to reference Briley-Saebo KC, Shaw PX, Mulder WJ, et al.: Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 2008, 117:3206–3215.CrossRefPubMed Briley-Saebo KC, Shaw PX, Mulder WJ, et al.: Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 2008, 117:3206–3215.CrossRefPubMed
42.
go back to reference Schwartz RS, Burke A, Farb A, et al.: Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 2009, 54:2167–2173.CrossRefPubMed Schwartz RS, Burke A, Farb A, et al.: Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 2009, 54:2167–2173.CrossRefPubMed
43.
go back to reference Rittersma SZ, van der Wal AC, Koch KT, et al.: Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation 2005, 111:1160–1165.CrossRefPubMed Rittersma SZ, van der Wal AC, Koch KT, et al.: Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation 2005, 111:1160–1165.CrossRefPubMed
44.
go back to reference Jaffer FA, Tung CH, Gerszten RE, et al.: In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 2002, 22:1929–1935.CrossRefPubMed Jaffer FA, Tung CH, Gerszten RE, et al.: In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler Thromb Vasc Biol 2002, 22:1929–1935.CrossRefPubMed
45.
go back to reference Jaffer FA, Tung CH, Wykrzykowska JJ, et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004, 110:170–176.CrossRefPubMed Jaffer FA, Tung CH, Wykrzykowska JJ, et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004, 110:170–176.CrossRefPubMed
46.
go back to reference Flaumenhaft R, Tanaka E, Graham GJ, et al. Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 2007, 115:84–93.CrossRefPubMed Flaumenhaft R, Tanaka E, Graham GJ, et al. Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 2007, 115:84–93.CrossRefPubMed
47.
go back to reference McCarthy JR, Patel P, Botnaru I, et al.: Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009, 20:1251–1255.CrossRefPubMed McCarthy JR, Patel P, Botnaru I, et al.: Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009, 20:1251–1255.CrossRefPubMed
Metadata
Title
Emerging Molecular Targets for Intravascular Imaging of High-Risk Plaques
Authors
Jin Won Kim
Farouc A. Jaffer
Publication date
01-08-2010
Publisher
Current Science Inc.
Published in
Current Cardiovascular Imaging Reports / Issue 4/2010
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-010-9028-6

Other articles of this Issue 4/2010

Current Cardiovascular Imaging Reports 4/2010 Go to the issue