Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2019

01-08-2019 | Editorial

Chemokine receptors: Key for molecular imaging of inflammation in atherosclerosis

Authors: Yongjian Liu, PhD, Pamela K. Woodard, MD

Published in: Journal of Nuclear Cardiology | Issue 4/2019

Login to get access

Excerpt

Atherosclerosis, the leading cause of morbidity and mortality worldwide, is a progressive inflammatory disease characterized by the development of lipid-rich plaque lesions within arterial walls that extend into the vascular lumen. It is the underlying basis of cardiovascular diseases (CVD) including myocardial infarction, stroke, and peripheral arterial disease.1 Despite major advances in risk factor modification, sophisticated anatomic and functional imaging tools, new therapeutics and state of the art revascularization techniques, by 2030 the prevalence of atherosclerotic heart disease and its complications are projected to increase by 12% causing significant financial burden.2,3 In the clinical PET imaging of atherosclerosis, 18F-fluorodeoxyglucose (18F FDG) is the most often used radiotracer, although it provides little information about plaque status, vulnerability, likelihood of clinical event, or variation of inflammatory profile post treatment. Thus, investigative radiochemistry teams are putting their efforts toward developing molecular imaging agents that target biomarkers overexpressed during the initiation, progression, and potentially impending rupture of atherosclerotic lesions. Targets include vascular cell adhesion molecules, metalloproteinases, natriuretic peptide clearance receptors, and, most recently, chemokine receptors.412 Some of these targeted radiotracers have been translated for human atherosclerosis imaging.13,14
Literature
4.
go back to reference Gallino A, Stuber M, Crea F, Falk E, Corti R, Lekakis J, et al. In vivo imaging of atherosclerosis. Atherosclerosis. 2012;224:25-36.CrossRefPubMed Gallino A, Stuber M, Crea F, Falk E, Corti R, Lekakis J, et al. In vivo imaging of atherosclerosis. Atherosclerosis. 2012;224:25-36.CrossRefPubMed
5.
go back to reference Davies JR, Rudd JH, Weissberg PL. Molecular and metabolic imaging of Atheroscler. J Nucl. 2004;45:1898-907. Davies JR, Rudd JH, Weissberg PL. Molecular and metabolic imaging of Atheroscler. J Nucl. 2004;45:1898-907.
6.
go back to reference Rudd JH, Davies JR, Weissberg PL. Imaging of atherosclerosis—can we predict plaque rupture? Trends Cardiovasc Med. 2005;15:17-24.CrossRefPubMed Rudd JH, Davies JR, Weissberg PL. Imaging of atherosclerosis—can we predict plaque rupture? Trends Cardiovasc Med. 2005;15:17-24.CrossRefPubMed
7.
go back to reference Tarkin JM, Dweck MR, Evans NR, Takx RA, Brown AJ, Tawakol A, et al. Imaging atherosclerosis. Circul Res. 2016;118:750-69.CrossRef Tarkin JM, Dweck MR, Evans NR, Takx RA, Brown AJ, Tawakol A, et al. Imaging atherosclerosis. Circul Res. 2016;118:750-69.CrossRef
8.
go back to reference Kazuma SM, Sultan D, Zhao Y, Detering L, You M, Luehmann HP, et al. Recent advances of radionuclide-based molecular imaging of atherosclerosis. Curr Pharm Des. 2015;21:5267-76.CrossRefPubMedPubMedCentral Kazuma SM, Sultan D, Zhao Y, Detering L, You M, Luehmann HP, et al. Recent advances of radionuclide-based molecular imaging of atherosclerosis. Curr Pharm Des. 2015;21:5267-76.CrossRefPubMedPubMedCentral
9.
go back to reference Woodard PK, Liu Y, Pressly ED, Luehmann HP, Detering L, Sultan DE, et al. Design and modular construction of a polymeric nanoparticle for targeted atherosclerosis positron emission tomography imaging: a story of 25% (64)Cu-CANF-Comb. Pharm Res. 2016;33:2400-10.CrossRefPubMedPubMedCentral Woodard PK, Liu Y, Pressly ED, Luehmann HP, Detering L, Sultan DE, et al. Design and modular construction of a polymeric nanoparticle for targeted atherosclerosis positron emission tomography imaging: a story of 25% (64)Cu-CANF-Comb. Pharm Res. 2016;33:2400-10.CrossRefPubMedPubMedCentral
10.
go back to reference Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK, et al. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med. 2014;55:629-34.CrossRefPubMed Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK, et al. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med. 2014;55:629-34.CrossRefPubMed
11.
go back to reference Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med. 2016;57:1124-9.CrossRefPubMed Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, et al. PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med. 2016;57:1124-9.CrossRefPubMed
12.
go back to reference Liu Y, Abendschein D, Woodard GE, Rossin R, McCommis K, Zheng J, et al. Molecular imaging of atherosclerotic plaque with (64)Cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51:85-91.CrossRefPubMed Liu Y, Abendschein D, Woodard GE, Rossin R, McCommis K, Zheng J, et al. Molecular imaging of atherosclerotic plaque with (64)Cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51:85-91.CrossRefPubMed
13.
go back to reference Weiberg D, Thackeray JT, Daum G, Sohns JM, Kropf S, Wester HJ, et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using (68)Ga-Pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med. 2017;59:266-72.CrossRefPubMed Weiberg D, Thackeray JT, Daum G, Sohns JM, Kropf S, Wester HJ, et al. Clinical molecular imaging of chemokine receptor CXCR4 expression in atherosclerotic plaque using (68)Ga-Pentixafor PET: correlation with cardiovascular risk factors and calcified plaque burden. J Nucl Med. 2017;59:266-72.CrossRefPubMed
16.
go back to reference van der Vorst EP, Doring Y, Weber C. Chemokines and their receptors in Atherosclerosis. J Mol Med. 2015;93:963-71.CrossRefPubMed van der Vorst EP, Doring Y, Weber C. Chemokines and their receptors in Atherosclerosis. J Mol Med. 2015;93:963-71.CrossRefPubMed
18.
go back to reference Quinones MP, Martinez HG, Jimenez F, Estrada CA, Dudley M, Willmon O, et al. CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis. 2007;195:e92-103.CrossRefPubMed Quinones MP, Martinez HG, Jimenez F, Estrada CA, Dudley M, Willmon O, et al. CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis. 2007;195:e92-103.CrossRefPubMed
19.
go back to reference Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, Shagdarsuren E, et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2007;27:373-9.CrossRefPubMed Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, Shagdarsuren E, et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2007;27:373-9.CrossRefPubMed
20.
go back to reference Williams JW, Elvington A, Ivanov S, Kessler S, Luehmann H, Baba O, et al. Thermoneutrality but Not UCP1 deficiency suppresses monocyte mobilization into blood. Circ Res. 2017;121:662-76.CrossRefPubMedPubMedCentral Williams JW, Elvington A, Ivanov S, Kessler S, Luehmann H, Baba O, et al. Thermoneutrality but Not UCP1 deficiency suppresses monocyte mobilization into blood. Circ Res. 2017;121:662-76.CrossRefPubMedPubMedCentral
Metadata
Title
Chemokine receptors: Key for molecular imaging of inflammation in atherosclerosis
Authors
Yongjian Liu, PhD
Pamela K. Woodard, MD
Publication date
01-08-2019
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2019
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-018-1248-1

Other articles of this Issue 4/2019

Journal of Nuclear Cardiology 4/2019 Go to the issue