Skip to main content
Top
Published in: Advances in Therapy 4/2021

01-04-2021 | Thalassemia | Review

Luspatercept: A Gigantic Step in the Treatment of Transfusion-Dependent β-Thalassemia Patients—a Quick Review

Authors: Hadi Darvishi-Khezri, Hossein Karami

Published in: Advances in Therapy | Issue 4/2021

Login to get access

Abstract

Introduction

Some studies have indicated that the use of luspatercept may be a novel and efficient treatment for β-thalassemia patients. In this article, we aimed to review the current evidence related to luspatercept prescription and its clinical effectiveness in patients with β-thalassemia.

Methods

PubMed, Web of Science, Scopus, Trip and CENTRAL were searched up to June 2020. The inclusion criteria were English-language articles that studied the effects of luspatercept on improving anemia severity in patients with β-thalassemia in a clinical setting.

Results

The search strategy yielded 273 potentially relevant articles. After searching the databases, scanning of titles, abstracts and full texts for relevancy was performed to identify suitable articles. A total of 77 articles were confirmed for full text analysis. The estimated number of patients needed to treat (NNT) for luspatercept treatment, using data derived from conducted clinical trials, according to a reduction in transfusion need of ≥ 33% or ≥ 50 from baseline, during week 13–24/week 37–48/any 12- and 24-week intervals as outcomes, was 3–5 in patients with β-thalassemia.

Conclusion

Based on the conducted studies, the effectiveness of luspatercept on transfusion burden and hemoglobin levels was outstanding in β-thalassemia patients. Further large and well-designed clinical studies are needed to identify any unforeseen complications subsequent to use of luspatercept, particularly when used with other treatments with potentially serious adverse effects such as anti-osteoporotic and iron chelator agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Keber B, Lam L, Mumford J, et al. Hematologic conditions: common hemoglobinopathies. FP essentials. 2019;485:24–31.PubMed Keber B, Lam L, Mumford J, et al. Hematologic conditions: common hemoglobinopathies. FP essentials. 2019;485:24–31.PubMed
2.
go back to reference De Sanctis V, Kattamis C, Canatan D, et al. β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 2017;9(1):e2017018.PubMedPubMedCentralCrossRef De Sanctis V, Kattamis C, Canatan D, et al. β-thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 2017;9(1):e2017018.PubMedPubMedCentralCrossRef
3.
go back to reference Origa R, Baldan A, Marsella M, et al. A complicated disease: what can be done to manage thalassemia major more effectively? Expert Rev Hematol. 2015;8(6):851–62.PubMedCrossRef Origa R, Baldan A, Marsella M, et al. A complicated disease: what can be done to manage thalassemia major more effectively? Expert Rev Hematol. 2015;8(6):851–62.PubMedCrossRef
5.
go back to reference Cappellini M-D, Cohen A, Porter J, et al. Guidelines for the management of transfusion dependent thalassaemia (TDT): Thalassaemia International Federation Nicosia, Cyprus; 2014. Cappellini M-D, Cohen A, Porter J, et al. Guidelines for the management of transfusion dependent thalassaemia (TDT): Thalassaemia International Federation Nicosia, Cyprus; 2014.
6.
go back to reference Ramazani T, Safarizadeh M, Alimirzaei R, et al. Relationship between quality of life and psychological disorders of patients with thalassemia. Sci J Iran Blood Transfus Organ. 2015;11(4):362–72. Ramazani T, Safarizadeh M, Alimirzaei R, et al. Relationship between quality of life and psychological disorders of patients with thalassemia. Sci J Iran Blood Transfus Organ. 2015;11(4):362–72.
7.
go back to reference Franchini M, Forni GL, Marano G, et al. Red blood cell alloimmunisation in transfusion-dependent thalassaemia: a systematic review. Blood Transfus. 2019;17(1):4.PubMedPubMedCentral Franchini M, Forni GL, Marano G, et al. Red blood cell alloimmunisation in transfusion-dependent thalassaemia: a systematic review. Blood Transfus. 2019;17(1):4.PubMedPubMedCentral
8.
go back to reference Gharaibeh H, Barqawi MA, Al-Awamreh K, et al. Clinical burdens of β-thalassemia major in affected children. J Pediatr Hematol Oncol. 2018;40(3):182–7.PubMedCrossRef Gharaibeh H, Barqawi MA, Al-Awamreh K, et al. Clinical burdens of β-thalassemia major in affected children. J Pediatr Hematol Oncol. 2018;40(3):182–7.PubMedCrossRef
9.
go back to reference Daar S, Al Khabori M, Al Rahbi S, et al. Cardiac T2* MR in patients with thalassemia major: a 10-year long-term follow-up. Ann Hematol. 2020;99(9):2009–17.PubMedCrossRef Daar S, Al Khabori M, Al Rahbi S, et al. Cardiac T2* MR in patients with thalassemia major: a 10-year long-term follow-up. Ann Hematol. 2020;99(9):2009–17.PubMedCrossRef
10.
go back to reference Kosaryan M, Karami H, Darvishi-Khezri H, et al. treatment status of patients with B-thalassemia major in Northern Iran: Thalassemia registry system. Iran J Public Health. 2019;48(7):1335.PubMedPubMedCentral Kosaryan M, Karami H, Darvishi-Khezri H, et al. treatment status of patients with B-thalassemia major in Northern Iran: Thalassemia registry system. Iran J Public Health. 2019;48(7):1335.PubMedPubMedCentral
11.
go back to reference Auger D, Pennell DJ. Cardiac complications in thalassemia major. Ann NY Acad Sci. 2016;1368(1):56–64.PubMedCrossRef Auger D, Pennell DJ. Cardiac complications in thalassemia major. Ann NY Acad Sci. 2016;1368(1):56–64.PubMedCrossRef
12.
go back to reference Bhardwaj A, Swe KMM, Sinha NK, et al. Treatment for osteoporosis in people with ß-thalassaemia. Cochrane Database Syst Rev. 2016;3:CD010429.PubMed Bhardwaj A, Swe KMM, Sinha NK, et al. Treatment for osteoporosis in people with ß-thalassaemia. Cochrane Database Syst Rev. 2016;3:CD010429.PubMed
13.
go back to reference Crisponi G, Nurchi VM, Lachowicz JI. Iron chelation for iron overload in thalassemia. Essen Metals Med. 2019;19:49–86. Crisponi G, Nurchi VM, Lachowicz JI. Iron chelation for iron overload in thalassemia. Essen Metals Med. 2019;19:49–86.
17.
go back to reference Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood J Am Soc Hematol. 2019;133(12):1279–89. Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood J Am Soc Hematol. 2019;133(12):1279–89.
18.
go back to reference Cappellini MD, Viprakasit V, Taher AT, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2020;382(13):1219–31.PubMedCrossRef Cappellini MD, Viprakasit V, Taher AT, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2020;382(13):1219–31.PubMedCrossRef
19.
go back to reference Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47.PubMedCrossRef Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–47.PubMedCrossRef
20.
go back to reference Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382(2):140–51.PubMedCrossRef Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382(2):140–51.PubMedCrossRef
21.
go back to reference Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood. 2019;133(12):1279–89.PubMedPubMedCentralCrossRef Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood. 2019;133(12):1279–89.PubMedPubMedCentralCrossRef
22.
go back to reference Porter J, Cappellini MD, Coates T, et al. Effects of luspatercept on iron overload and impact on responders to luspatercept: results from the BELIEVE trial. Blood. 2019;134(Supplement_1):2245.CrossRef Porter J, Cappellini MD, Coates T, et al. Effects of luspatercept on iron overload and impact on responders to luspatercept: results from the BELIEVE trial. Blood. 2019;134(Supplement_1):2245.CrossRef
23.
go back to reference Floris F, Comitini F, Leoni G, et al. Quality of life in Sardinian patients with transfusion-dependent Thalassemia: a cross-sectional study. Qual Life Res. 2018;27(10):2533–9.PubMedCrossRef Floris F, Comitini F, Leoni G, et al. Quality of life in Sardinian patients with transfusion-dependent Thalassemia: a cross-sectional study. Qual Life Res. 2018;27(10):2533–9.PubMedCrossRef
24.
go back to reference Betts M, Flight PA, Paramore LC, et al. Systematic literature review of the burden of disease and treatment for transfusion-dependent β-thalassemia. Clin Therap. 2020;42(2):322–37 (e2).CrossRef Betts M, Flight PA, Paramore LC, et al. Systematic literature review of the burden of disease and treatment for transfusion-dependent β-thalassemia. Clin Therap. 2020;42(2):322–37 (e2).CrossRef
25.
go back to reference Ghanavat M, Haybar H, Pezeshki SMS, et al. Cardiomyopathy in thalassemia: quick review from cellular aspects to diagnosis and current treatments. Lab Med. 2020;51(2):143–50.PubMed Ghanavat M, Haybar H, Pezeshki SMS, et al. Cardiomyopathy in thalassemia: quick review from cellular aspects to diagnosis and current treatments. Lab Med. 2020;51(2):143–50.PubMed
26.
go back to reference Sadaf A, Hasan B, Das JK, et al. Calcium channel blockers for preventing cardiomyopathy due to iron overload in people with transfusion-dependent beta thalassaemia. Cochrane Database Syst Rev. 2018;7(7):CD0111626. Sadaf A, Hasan B, Das JK, et al. Calcium channel blockers for preventing cardiomyopathy due to iron overload in people with transfusion-dependent beta thalassaemia. Cochrane Database Syst Rev. 2018;7(7):CD0111626.
27.
go back to reference Vela D. Balance of cardiac and systemic hepcidin and its role in heart physiology and pathology. Lab Invest. 2018;98(3):315–26.PubMedCrossRef Vela D. Balance of cardiac and systemic hepcidin and its role in heart physiology and pathology. Lab Invest. 2018;98(3):315–26.PubMedCrossRef
28.
go back to reference Alkholy UM, Mohamed SA, Elhady M, et al. Vascular endothelial growth factor and pulmonary hypertension in children with beta thalassemia major. J Pediatr. 2019;95(5):593–9.CrossRef Alkholy UM, Mohamed SA, Elhady M, et al. Vascular endothelial growth factor and pulmonary hypertension in children with beta thalassemia major. J Pediatr. 2019;95(5):593–9.CrossRef
29.
go back to reference Morris CR, Vichinsky EP. Pulmonary hypertension in thalassemia. Ann N Y Acad Sci. 2010;1202(1):205–13.PubMedCrossRef Morris CR, Vichinsky EP. Pulmonary hypertension in thalassemia. Ann N Y Acad Sci. 2010;1202(1):205–13.PubMedCrossRef
30.
go back to reference Sasiprapha T, Pussadhamma B, Sibmooh N, et al. P3672 Effects of inhaled nitrite in addition to sildenafil in thalassemia patients with pulmonary hypertension. Eur Heart J. 2019;40(Supplement_1):ehz745 (0527).CrossRef Sasiprapha T, Pussadhamma B, Sibmooh N, et al. P3672 Effects of inhaled nitrite in addition to sildenafil in thalassemia patients with pulmonary hypertension. Eur Heart J. 2019;40(Supplement_1):ehz745 (0527).CrossRef
31.
go back to reference Karami H, Darvishi-Khezri H, Kosaryan M, et al. The improvement of pulmonary artery pressure after bosentan therapy in patients with β-thalassemia and Doppler-defined pulmonary arterial hypertension. Int Med Case Rep J. 2019;12:1–7.PubMed Karami H, Darvishi-Khezri H, Kosaryan M, et al. The improvement of pulmonary artery pressure after bosentan therapy in patients with β-thalassemia and Doppler-defined pulmonary arterial hypertension. Int Med Case Rep J. 2019;12:1–7.PubMed
32.
go back to reference Fraidenburg DR, Machado RF. Pulmonary hypertension associated with thalassemia syndromes. Ann NY Acad Sci. 2016;1368(1):127.PubMedCrossRef Fraidenburg DR, Machado RF. Pulmonary hypertension associated with thalassemia syndromes. Ann NY Acad Sci. 2016;1368(1):127.PubMedCrossRef
33.
go back to reference Slouma M, Athimni S, Dhahri R, et al. Presacral extramedullary hematopoiesis: a rare cause of back pain in a patient with thalassemia. Clin Rheumatol. 2020;39(12):3883–4.PubMedCrossRef Slouma M, Athimni S, Dhahri R, et al. Presacral extramedullary hematopoiesis: a rare cause of back pain in a patient with thalassemia. Clin Rheumatol. 2020;39(12):3883–4.PubMedCrossRef
34.
go back to reference Ben Ammar L, Ferjani H, Maatallah K, et al. Spinal cord compression by extramedullary hematopoiesis in beta-thalassemia major. Clin Case Rep. 2020;8(8):1433–6.PubMedPubMedCentralCrossRef Ben Ammar L, Ferjani H, Maatallah K, et al. Spinal cord compression by extramedullary hematopoiesis in beta-thalassemia major. Clin Case Rep. 2020;8(8):1433–6.PubMedPubMedCentralCrossRef
35.
go back to reference De Sanctis V, Soliman AT, Canatan D, et al. Thyroid disorders in homozygous β-thalassemia: current knowledge, emerging issues and open problems. Mediterr J Hematol Infect Dis. 2019;11(1):e2019064.CrossRef De Sanctis V, Soliman AT, Canatan D, et al. Thyroid disorders in homozygous β-thalassemia: current knowledge, emerging issues and open problems. Mediterr J Hematol Infect Dis. 2019;11(1):e2019064.CrossRef
37.
go back to reference Tangngam H, Mahachoklertwattana P, Poomthavorn P, et al. Under-recognized hypoparathyroidism in thalassemia. J Clin Res Pediatr Endocrinol. 2018;10(4):324.PubMedPubMedCentral Tangngam H, Mahachoklertwattana P, Poomthavorn P, et al. Under-recognized hypoparathyroidism in thalassemia. J Clin Res Pediatr Endocrinol. 2018;10(4):324.PubMedPubMedCentral
38.
go back to reference Srisukh S, Ongphiphadhanakul B, Bunnag P. Hypogonadism in thalassemia major patients. J Clin Transl Endocrinol. 2016;5:42–5.PubMedPubMedCentral Srisukh S, Ongphiphadhanakul B, Bunnag P. Hypogonadism in thalassemia major patients. J Clin Transl Endocrinol. 2016;5:42–5.PubMedPubMedCentral
39.
go back to reference Inati A, Noureldine MA, Mansour A, et al. Endocrine and bone complications in β-thalassemia intermedia: current understanding and treatment. Biomed Res Int. 2015;2015:813098.PubMedPubMedCentralCrossRef Inati A, Noureldine MA, Mansour A, et al. Endocrine and bone complications in β-thalassemia intermedia: current understanding and treatment. Biomed Res Int. 2015;2015:813098.PubMedPubMedCentralCrossRef
41.
go back to reference Matter RM, Elbarbary NS, Ismail EAR, et al. Zinc supplementation improves glucose homeostasis in patients with β-thalassemia major complicated with diabetes mellitus: A randomized controlled trial. Nutrition. 2020;73:110702.PubMedCrossRef Matter RM, Elbarbary NS, Ismail EAR, et al. Zinc supplementation improves glucose homeostasis in patients with β-thalassemia major complicated with diabetes mellitus: A randomized controlled trial. Nutrition. 2020;73:110702.PubMedCrossRef
42.
go back to reference De Sanctis V, Soliman AT, Elsedfy H, et al. The ICET-A recommendations for the diagnosis and management of disturbances of glucose homeostasis in thalassemia major patients. Mediterr J Hematol Infect Dis. 2016;8(1):e2016058.PubMedPubMedCentralCrossRef De Sanctis V, Soliman AT, Elsedfy H, et al. The ICET-A recommendations for the diagnosis and management of disturbances of glucose homeostasis in thalassemia major patients. Mediterr J Hematol Infect Dis. 2016;8(1):e2016058.PubMedPubMedCentralCrossRef
45.
go back to reference Ahuja C, Farsad K, Chadha M. An overview of splenic embolization. Am J Roentgenol. 2015;205(4):720–5.CrossRef Ahuja C, Farsad K, Chadha M. An overview of splenic embolization. Am J Roentgenol. 2015;205(4):720–5.CrossRef
46.
go back to reference Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.PubMedPubMedCentralCrossRef Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863.PubMedPubMedCentralCrossRef
47.
go back to reference Martinez PA, Suragani R, Bhasin M, et al. Rap-536 (murine ACE-536/luspatercept) inhibits Smad2/3 signaling and promotes erythroid differentiation by restoring GATA-1 function in murine b-thalassemia. Blood. 2015;126(23):751.CrossRef Martinez PA, Suragani R, Bhasin M, et al. Rap-536 (murine ACE-536/luspatercept) inhibits Smad2/3 signaling and promotes erythroid differentiation by restoring GATA-1 function in murine b-thalassemia. Blood. 2015;126(23):751.CrossRef
48.
go back to reference Cappellini M, Hermine O, Piga A, et al. Assessment of response to luspatercept by B-globin genotype in adult patients with B-thalassemia in the believe trial. In: 25th Congress of the European Hematology Association; M Hallek, Germany: Hemasphere; 2020. p. 108–9. https://doi.org/10.1097/HS9.0000000000000404. Cappellini M, Hermine O, Piga A, et al. Assessment of response to luspatercept by B-globin genotype in adult patients with B-thalassemia in the believe trial. In: 25th Congress of the European Hematology Association; M Hallek, Germany: Hemasphere; 2020. p. 108–9. https://​doi.​org/​10.​1097/​HS9.​0000000000000404​.
49.
go back to reference Weidner H, Balaian E, Baschant U, et al. (eds). Luspatercept improves anemia and bone homeostasis in a mouse model of myelodysplastic syndromes. In: Oncology research and treatment. Karger, Basel, Switzerland. 2018; 41(suppl 4):1–358. https://doi.org/10.1159/000492737. Weidner H, Balaian E, Baschant U, et al. (eds). Luspatercept improves anemia and bone homeostasis in a mouse model of myelodysplastic syndromes. In: Oncology research and treatment. Karger, Basel, Switzerland. 2018; 41(suppl 4):1–358. https://​doi.​org/​10.​1159/​000492737.
50.
go back to reference Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood. 2014;123(25):3864–72.PubMedPubMedCentralCrossRef Suragani RN, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood. 2014;123(25):3864–72.PubMedPubMedCentralCrossRef
51.
go back to reference Attie KM, Allison MJ, McClure T, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol. 2014;89(7):766–70.PubMedPubMedCentralCrossRef Attie KM, Allison MJ, McClure T, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol. 2014;89(7):766–70.PubMedPubMedCentralCrossRef
52.
go back to reference Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood. 2019;133(8):790–4.PubMedCrossRef Fenaux P, Kiladjian JJ, Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood. 2019;133(8):790–4.PubMedCrossRef
53.
go back to reference Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20(4):408–14.PubMedCrossRef Suragani RN, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20(4):408–14.PubMedCrossRef
54.
go back to reference Emamgholipour S, Ahmadi B, Rajabi A, et al. Cost-utility of treatment of the patients with Thalassemia Major in Iran. Scientific Journal of Iran Blood Transfus Organ. 2018;15(4):257–64. Emamgholipour S, Ahmadi B, Rajabi A, et al. Cost-utility of treatment of the patients with Thalassemia Major in Iran. Scientific Journal of Iran Blood Transfus Organ. 2018;15(4):257–64.
55.
go back to reference Chen N, Laadem A, Wilson DM, et al. Pharmacokinetics and exposure-response of luspatercept in patients with beta-thalassemia: preliminary results from phase 2 studies [Abstract]. Blood. 2016;128(22):2463.CrossRef Chen N, Laadem A, Wilson DM, et al. Pharmacokinetics and exposure-response of luspatercept in patients with beta-thalassemia: preliminary results from phase 2 studies [Abstract]. Blood. 2016;128(22):2463.CrossRef
Metadata
Title
Luspatercept: A Gigantic Step in the Treatment of Transfusion-Dependent β-Thalassemia Patients—a Quick Review
Authors
Hadi Darvishi-Khezri
Hossein Karami
Publication date
01-04-2021
Publisher
Springer Healthcare
Keyword
Thalassemia
Published in
Advances in Therapy / Issue 4/2021
Print ISSN: 0741-238X
Electronic ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-021-01663-4

Other articles of this Issue 4/2021

Advances in Therapy 4/2021 Go to the issue