Skip to main content
Top
Published in: Advances in Therapy 12/2019

Open Access 01-12-2019 | Gene Therapy in Oncology | Review

Leber’s Hereditary Optic Neuropathy as a Promising Disease for Gene Therapy Development

Author: Cuneyt Karaarslan

Published in: Advances in Therapy | Issue 12/2019

Login to get access

Abstract

Leber’s hereditary optic neuropathy (LHON) is a relatively common, rapidly progressing inherited optic neuropathy wherein LHON-affected eyes undergo optic nerve atrophy due to retinal ganglion cell (RGC) loss. It is a maternally inherited (or sporadic) mitochondrial disorder caused primarily by mutations in genes that encode components of respiratory complex (RC)1 in mitochondria. Mitochondrial deficiency of RC1 compromises ATP production and oxidative stress management in RGCs. The most common LHON-causing mutations are 11778G>A, 3460G>A, and 14484T>C point mutations in MT-ND4, MT-ND1, and MT-ND6. The unusually high mitochondrial load of RGCs makes them particularly sensitive to these mutations. Patients with LHON may be prescribed ubiquinone (a component of RC3) or idebenone, a ubiquinone analogue with enhanced bioavailability to act downstream of RC1. The challenge of accessing the inner mitochondrial membrane with gene therapy for LHON, and other mitochondrial diseases, may be overcome by incorporation of a specific mitochondrion-targeting sequence (MTS) that enables allotropic expression of a nucleus-transcribed ND4 transgene. Because LHON penetrance is incomplete among carriers of the aforementioned mutations, identification of environmental factors, such as heavy smoking, that interact with genetics in the phenotypic expression of LHON may be helpful toward preventing or delaying disease development. LHON has become a model for mitochondrial and neurogenerative diseases owing to it having a clearly identified genetic cause and its early onset and rapid progression characteristics. Hence, LHON studies and genetic treatment advances may inform research of other diseases.
Literature
1.
go back to reference Leber T. Ueber hereditaere und congenital angelegte sehnervenleiden. Graefes Arch Clin Exp Ophthalmol. 1871;17(2):249–91. Leber T. Ueber hereditaere und congenital angelegte sehnervenleiden. Graefes Arch Clin Exp Ophthalmol. 1871;17(2):249–91.
2.
go back to reference Man PY, Griffiths PG, Brown DT. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet. 2003;72(2):333–9. Man PY, Griffiths PG, Brown DT. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet. 2003;72(2):333–9.
3.
go back to reference Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46(3):145–58.PubMed Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46(3):145–58.PubMed
4.
go back to reference Puomila A, Hamalainen P, Kivioja S, Savontaus ML, Koivumaki S, Huoponen K. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 2007;15(10):1079–89.PubMed Puomila A, Hamalainen P, Kivioja S, Savontaus ML, Koivumaki S, Huoponen K. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 2007;15(10):1079–89.PubMed
5.
go back to reference Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol. 2010;55(4):299–334.PubMedPubMedCentral Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol. 2010;55(4):299–334.PubMedPubMedCentral
6.
go back to reference Ghelli A, Zanna C, Porcelli AM, Schapira AH, Martinuzzi A, Carelli V. Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J Biol Chem. 2003;278(6):4145–50.PubMed Ghelli A, Zanna C, Porcelli AM, Schapira AH, Martinuzzi A, Carelli V. Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J Biol Chem. 2003;278(6):4145–50.PubMed
7.
go back to reference Gropman A, Chen TJ, Perng CL, Krasnewich D, Chernoff E, Tifft C. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am J Med Genet A. 2004;124A(4):377–82.PubMed Gropman A, Chen TJ, Perng CL, Krasnewich D, Chernoff E, Tifft C. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am J Med Genet A. 2004;124A(4):377–82.PubMed
8.
go back to reference Fraser JA, Ross-Cisneros CPF. Pathoimmunologic findings which are important in the etiology of mitochondrial DNA disease in adults. Ann Neurol. 2008;63(1):35–9. Fraser JA, Ross-Cisneros CPF. Pathoimmunologic findings which are important in the etiology of mitochondrial DNA disease in adults. Ann Neurol. 2008;63(1):35–9.
9.
go back to reference Spruijt L, Smeets HJ, Hendrickx A, Bettink-Remeijer MW, Maat-Kievit A, Schoonderwoerd KC. A MELAS-associated ND1 mutation causing Leber hereditary optic neuropathy and spastic dystonia. Arch Neurol. 2007;64(6):890–3.PubMed Spruijt L, Smeets HJ, Hendrickx A, Bettink-Remeijer MW, Maat-Kievit A, Schoonderwoerd KC. A MELAS-associated ND1 mutation causing Leber hereditary optic neuropathy and spastic dystonia. Arch Neurol. 2007;64(6):890–3.PubMed
10.
go back to reference Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23(1):53–89.PubMed Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23(1):53–89.PubMed
11.
go back to reference Valentino ML, Barboni P, Ghelli A, Bucchi L, Rengo C, Achilli A. The ND1 gene of complex I is a mutational hot spot for Leber’s hereditary optic neuropathy. Ann Neurol. 2004;56(5):631–41.PubMed Valentino ML, Barboni P, Ghelli A, Bucchi L, Rengo C, Achilli A. The ND1 gene of complex I is a mutational hot spot for Leber’s hereditary optic neuropathy. Ann Neurol. 2004;56(5):631–41.PubMed
12.
go back to reference La Morgia C, Ross-Cisneros FN, Sadun AA, et al. Melanopsin retinal ganglion cells are resistant to neurodegenerationin mitochondrial optic neuropathies. Brain. 2010;133(Pt 8):2426–38.PubMedPubMedCentral La Morgia C, Ross-Cisneros FN, Sadun AA, et al. Melanopsin retinal ganglion cells are resistant to neurodegenerationin mitochondrial optic neuropathies. Brain. 2010;133(Pt 8):2426–38.PubMedPubMedCentral
13.
go back to reference Battisti C, Formichi P, Cardaioli E, Bianchi S, Mangiavacchi P, Tripodi SA. Cell response to oxidative stress induced apoptosis in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. 2004;75(12):1731–6.PubMedPubMedCentral Battisti C, Formichi P, Cardaioli E, Bianchi S, Mangiavacchi P, Tripodi SA. Cell response to oxidative stress induced apoptosis in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. 2004;75(12):1731–6.PubMedPubMedCentral
14.
go back to reference Wang JY, Gu YS, Wang J, Tong Y. Oxidative stress in Chinese patients with Leber’s hereditary optic neuropathy. J Int Med Res. 2008;36(3):544–50.PubMed Wang JY, Gu YS, Wang J, Tong Y. Oxidative stress in Chinese patients with Leber’s hereditary optic neuropathy. J Int Med Res. 2008;36(3):544–50.PubMed
15.
go back to reference McFarland R, Chinnery PF, Blakely EL, et al. Homoplasmy, heteroplasmy, and mitochondrial dystonia. Neurology. 2007;69(9):911–6.PubMed McFarland R, Chinnery PF, Blakely EL, et al. Homoplasmy, heteroplasmy, and mitochondrial dystonia. Neurology. 2007;69(9):911–6.PubMed
16.
go back to reference Barron MJ, Griffiths P, Turnbull DM, Bates D, Nichols P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol. 2004;88(2):286–90.PubMedPubMedCentral Barron MJ, Griffiths P, Turnbull DM, Bates D, Nichols P. The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol. 2004;88(2):286–90.PubMedPubMedCentral
17.
go back to reference Seedorff T. The inheritance of Leber’s disease. A genealogical follow-up study. Acta Ophthalmol. 1985;63(2):135–45. Seedorff T. The inheritance of Leber’s disease. A genealogical follow-up study. Acta Ophthalmol. 1985;63(2):135–45.
18.
go back to reference Hudson G, Carelli V, Spruijt L, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA–haplogroup background. Am J Hum Genet. 2007;81(2):228–33.PubMedPubMedCentral Hudson G, Carelli V, Spruijt L, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA–haplogroup background. Am J Hum Genet. 2007;81(2):228–33.PubMedPubMedCentral
19.
go back to reference Johns DR, Smith KH, Miller NR, Sulewski ME, Bias WB. Identical twins who are discordant for Leber’s hereditary optic neuropathy. Arch Ophthalmol. 1993;111(11):1491–4.PubMed Johns DR, Smith KH, Miller NR, Sulewski ME, Bias WB. Identical twins who are discordant for Leber’s hereditary optic neuropathy. Arch Ophthalmol. 1993;111(11):1491–4.PubMed
20.
go back to reference Biousse V, Browne MD, Newman NJ, et al. De novo 14484 mitochondrial DNA mutation in monozygotic twins discordant for Leber’s hereditary optic neuropathy. Neurology. 1997;49(4):1136–8.PubMed Biousse V, Browne MD, Newman NJ, et al. De novo 14484 mitochondrial DNA mutation in monozygotic twins discordant for Leber’s hereditary optic neuropathy. Neurology. 1997;49(4):1136–8.PubMed
21.
go back to reference Kirkman MA, Yu-Wai-Man P, Korsten A. Gene environment interactions in Leber hereditary optic neuropathy. Brain. 2009;132(Pt 9):2317–26.PubMedPubMedCentral Kirkman MA, Yu-Wai-Man P, Korsten A. Gene environment interactions in Leber hereditary optic neuropathy. Brain. 2009;132(Pt 9):2317–26.PubMedPubMedCentral
22.
go back to reference Chalmers RM, Harding AE. A case-control study of Leber’s hereditary optic neuropathy. Brain. 1996;119(Pt 5):1481–6. Chalmers RM, Harding AE. A case-control study of Leber’s hereditary optic neuropathy. Brain. 1996;119(Pt 5):1481–6.
23.
go back to reference Tsao K, Aitken PA, Johns DR. Smoking as an aetiological factor in a pedigree with Leber’s hereditary optic neuropathy. Br J Ophthalmol. 1999;83(5):577–81.PubMedPubMedCentral Tsao K, Aitken PA, Johns DR. Smoking as an aetiological factor in a pedigree with Leber’s hereditary optic neuropathy. Br J Ophthalmol. 1999;83(5):577–81.PubMedPubMedCentral
24.
go back to reference Shankar SP, Fingert JH, Carelli V, et al. Evidence for a novel X-linked modifier locus for Leber hereditary optic neuropathy. Ophthalmic Genet. 2008;29(1):17–24.PubMed Shankar SP, Fingert JH, Carelli V, et al. Evidence for a novel X-linked modifier locus for Leber hereditary optic neuropathy. Ophthalmic Genet. 2008;29(1):17–24.PubMed
25.
go back to reference Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114.PubMedPubMedCentral Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114.PubMedPubMedCentral
26.
go back to reference Haefeli RH, Erb M, Gemperli AC. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One. 2011;6(3):e17963.PubMedPubMedCentral Haefeli RH, Erb M, Gemperli AC. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One. 2011;6(3):e17963.PubMedPubMedCentral
27.
go back to reference Klopstock K, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(9):2677–86.PubMedPubMedCentral Klopstock K, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(9):2677–86.PubMedPubMedCentral
28.
go back to reference Cree LM, Samuels DC, Chinnery PF. The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta. 2009;1792(12):1097–102.PubMedPubMedCentral Cree LM, Samuels DC, Chinnery PF. The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta. 2009;1792(12):1097–102.PubMedPubMedCentral
29.
go back to reference Giordano C, Montopoli M, Perli E. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 1):220–34.PubMed Giordano C, Montopoli M, Perli E. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 1):220–34.PubMed
30.
go back to reference Qi XP, Sun L, Hauswirth WW. Use of mitochondria antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch Ophthalmol. 2007;125(2):268–72.PubMed Qi XP, Sun L, Hauswirth WW. Use of mitochondria antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch Ophthalmol. 2007;125(2):268–72.PubMed
31.
go back to reference Jang Y, Lim K. Recent advances in mitochondria-targeted gene delivery. Molecules. 2018;23(9):E2316.PubMed Jang Y, Lim K. Recent advances in mitochondria-targeted gene delivery. Molecules. 2018;23(9):E2316.PubMed
32.
go back to reference Ma XC, Wang XB, Zhou M, Fei HA. Mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv Healthc Mater. 2013;2(12):1638–43.PubMed Ma XC, Wang XB, Zhou M, Fei HA. Mitochondria-targeting gold-peptide nanoassembly for enhanced cancer-cell killing. Adv Healthc Mater. 2013;2(12):1638–43.PubMed
33.
go back to reference Boddapati SV, D’Souza GG, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 2008;8(8):2559–63.PubMed Boddapati SV, D’Souza GG, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 2008;8(8):2559–63.PubMed
34.
go back to reference Wang WX, He YF, Shang YZ, Liu HL. Interaction between the gemini surfactant (12-6-12) and DNA. Acta Physico-Chim Sin. 2011;27(1):156–62. Wang WX, He YF, Shang YZ, Liu HL. Interaction between the gemini surfactant (12-6-12) and DNA. Acta Physico-Chim Sin. 2011;27(1):156–62.
35.
go back to reference Cardoso AM, Faneca H, Almeida JA, et al. Gemini surfactant dimethylene-1,2-bis(tetradecyldimethylammonium bromide)-based gene vectors: a biophysical approach to transfection efficiency. Biochim Biophys Acta. 2011;1808(1):341–51.PubMed Cardoso AM, Faneca H, Almeida JA, et al. Gemini surfactant dimethylene-1,2-bis(tetradecyldimethylammonium bromide)-based gene vectors: a biophysical approach to transfection efficiency. Biochim Biophys Acta. 2011;1808(1):341–51.PubMed
36.
go back to reference Salvado R, Sousa F, Queiroz J, Costa D. Development of mitochondrial targeting plasmid DNA nanoparticles: characterization and in vitro studies. Colloid Surf A. 2015;480:287–95. Salvado R, Sousa F, Queiroz J, Costa D. Development of mitochondrial targeting plasmid DNA nanoparticles: characterization and in vitro studies. Colloid Surf A. 2015;480:287–95.
37.
go back to reference Futaki S, Ohashi W, Suzuki T, et al. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem. 2001;12(6):1005–11.PubMed Futaki S, Ohashi W, Suzuki T, et al. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem. 2001;12(6):1005–11.PubMed
38.
go back to reference D’Souza GGM, Rammohan R, Cheng SM, Torchilin VP, Weissig V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release. 2003;92(1–2):189–97.PubMed D’Souza GGM, Rammohan R, Cheng SM, Torchilin VP, Weissig V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release. 2003;92(1–2):189–97.PubMed
39.
go back to reference Bae Y, Jung MK, Song SJ, et al. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 2017;37:27–40.PubMed Bae Y, Jung MK, Song SJ, et al. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 2017;37:27–40.PubMed
40.
go back to reference Yamada Y, Ishikawa T, Harashima H. Validation of the use of an artificial mitochondrial reporter DNA vector containing a cytomegalovirus promoter for mitochondrial transgene expression. Biomaterials. 2017;136:56–66.PubMed Yamada Y, Ishikawa T, Harashima H. Validation of the use of an artificial mitochondrial reporter DNA vector containing a cytomegalovirus promoter for mitochondrial transgene expression. Biomaterials. 2017;136:56–66.PubMed
41.
go back to reference Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release. 2012;159(3):393–402.PubMedPubMedCentral Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release. 2012;159(3):393–402.PubMedPubMedCentral
42.
go back to reference Santos JL, Pandita D, Rodrigues J, et al. Receptor-mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. Mol Pharm. 2010;7(3):763–74.PubMed Santos JL, Pandita D, Rodrigues J, et al. Receptor-mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. Mol Pharm. 2010;7(3):763–74.PubMed
43.
go back to reference Midoux P, Pichon C, Yaouanc JJ, Jaffres PA. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. 2009;157(2):166–78.PubMedPubMedCentral Midoux P, Pichon C, Yaouanc JJ, Jaffres PA. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. 2009;157(2):166–78.PubMedPubMedCentral
44.
go back to reference Chuah JA, Matsugami A, Hayashi F, Numata K. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. Biomacromolecules. 2016;17(11):3547–57.PubMed Chuah JA, Matsugami A, Hayashi F, Numata K. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. Biomacromolecules. 2016;17(11):3547–57.PubMed
45.
46.
go back to reference Yu H, Koilkonda RD, Chou TH, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109(20):E1238–47.PubMed Yu H, Koilkonda RD, Chou TH, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109(20):E1238–47.PubMed
47.
go back to reference Koilkonda RD, Yu H, Chou TH, et al. Safety and effects of the vector for the Leber hereditary optic neuropathy gene therapy clinical trial. JAMA Ophthalmol. 2014;132(4):409–20.PubMedPubMedCentral Koilkonda RD, Yu H, Chou TH, et al. Safety and effects of the vector for the Leber hereditary optic neuropathy gene therapy clinical trial. JAMA Ophthalmol. 2014;132(4):409–20.PubMedPubMedCentral
48.
go back to reference Koilkonda R, Yu H, Talla V, et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile. Invest Ophthalmol Vis Sci. 2014;55(12):7739–53.PubMedPubMedCentral Koilkonda R, Yu H, Talla V, et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile. Invest Ophthalmol Vis Sci. 2014;55(12):7739–53.PubMedPubMedCentral
49.
go back to reference Cwerman-Thibault H, Augustin S, Lechauve C, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.PubMedPubMedCentral Cwerman-Thibault H, Augustin S, Lechauve C, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.PubMedPubMedCentral
50.
go back to reference Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.PubMed Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.PubMed
51.
go back to reference Wan X, Pei H, Zhao MJ, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.PubMedPubMedCentral Wan X, Pei H, Zhao MJ, et al. Efficacy and safety of rAAV2-ND4 treatment for Leber’s hereditary optic neuropathy. Sci Rep. 2016;6:21587.PubMedPubMedCentral
52.
go back to reference Yang S, Ma SQ, Wan X, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBio Med. 2016;10:258–68. Yang S, Ma SQ, Wan X, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBio Med. 2016;10:258–68.
53.
go back to reference Vignal C, Uretsky S, Thomasson N, et al. Recombinant AAV2 containing the wild type ND4 gene (RAVV2/2-ND4) is an experimental gene therapy for vision loss in LHON due to the ND4 mitochondrial mutation: phase I/IIa safety investigation results and upcoming pivotal phase III efficacy studies. In: North-American Neuro-Ophthalmology Society 42nd annual meeting, February 27–March 3, 2016; Tucson, Arizona. Vignal C, Uretsky S, Thomasson N, et al. Recombinant AAV2 containing the wild type ND4 gene (RAVV2/2-ND4) is an experimental gene therapy for vision loss in LHON due to the ND4 mitochondrial mutation: phase I/IIa safety investigation results and upcoming pivotal phase III efficacy studies. In: North-American Neuro-Ophthalmology Society 42nd annual meeting, February 27–March 3, 2016; Tucson, Arizona.
54.
go back to reference Vignal S, Uretsky S, Fitoussi S, et al. Safety of rAVV2/2-ND4 gene therapy for Leber’s hereditary optic neuropathy. Ophthalmology. 2018;125(6):945–7.PubMed Vignal S, Uretsky S, Fitoussi S, et al. Safety of rAVV2/2-ND4 gene therapy for Leber’s hereditary optic neuropathy. Ophthalmology. 2018;125(6):945–7.PubMed
55.
go back to reference Thomasson N, Cwerman-Thibault H, Augustin S, et al. Safety, local tolerability and biodistribution of GS010 (AAV2/2-ND4), a gene therapy medicinal product in development for Leber’s hereditary optic neuropathy (LHON). ARVO Annual Meeting, 2014. Invest Ophthalmol Vis Sci. 2014;55:3340. Thomasson N, Cwerman-Thibault H, Augustin S, et al. Safety, local tolerability and biodistribution of GS010 (AAV2/2-ND4), a gene therapy medicinal product in development for Leber’s hereditary optic neuropathy (LHON). ARVO Annual Meeting, 2014. Invest Ophthalmol Vis Sci. 2014;55:3340.
Metadata
Title
Leber’s Hereditary Optic Neuropathy as a Promising Disease for Gene Therapy Development
Author
Cuneyt Karaarslan
Publication date
01-12-2019
Publisher
Springer Healthcare
Published in
Advances in Therapy / Issue 12/2019
Print ISSN: 0741-238X
Electronic ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-019-01113-2

Other articles of this Issue 12/2019

Advances in Therapy 12/2019 Go to the issue