Skip to main content
Top
Published in: The Cerebellum 2/2017

01-04-2017 | Consensus paper

Consensus Paper: Cerebellum and Emotion

Authors: M. Adamaszek, F. D’Agata, R. Ferrucci, C. Habas, S. Keulen, K. C. Kirkby, M. Leggio, P. Mariën, M. Molinari, E. Moulton, L. Orsi, F. Van Overwalle, C. Papadelis, A. Priori, B. Sacchetti, D. J. Schutter, C. Styliadis, J. Verhoeven

Published in: The Cerebellum | Issue 2/2017

Login to get access

Abstract

Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.
Literature
1.
2.
go back to reference Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.PubMedCrossRef Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.PubMedCrossRef
3.
go back to reference Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRef Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRef
4.
go back to reference Roth MJ, Synofzik M, Lindner A. The cerebellum optimizes perceptual predictions about external sensory events. Curr Biol. 2013;23:930–5.PubMedCrossRef Roth MJ, Synofzik M, Lindner A. The cerebellum optimizes perceptual predictions about external sensory events. Curr Biol. 2013;23:930–5.PubMedCrossRef
5.
go back to reference Shobe ER. Independent and collaborative contributions of the cerebral hemispheres to emotional processing. Front Hum Neurosci. 2014;22(8):230. Shobe ER. Independent and collaborative contributions of the cerebral hemispheres to emotional processing. Front Hum Neurosci. 2014;22(8):230.
6.
go back to reference Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleemann AM, et al. Cerebral differences in explicit and implicit emotional processing—an fMRI study. Neuropsychobiology. 2007;56(1):32–9.PubMedCrossRef Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleemann AM, et al. Cerebral differences in explicit and implicit emotional processing—an fMRI study. Neuropsychobiology. 2007;56(1):32–9.PubMedCrossRef
7.
go back to reference Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRef
8.
go back to reference Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRef
9.
go back to reference Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61:805–11.PubMedCrossRef Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61:805–11.PubMedCrossRef
10.
go back to reference Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto RR, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45:1331–41.PubMedCrossRef Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto RR, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45:1331–41.PubMedCrossRef
11.
go back to reference Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2008;46(2):161–9.PubMedCrossRef Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2008;46(2):161–9.PubMedCrossRef
12.
go back to reference Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99.PubMedCrossRef Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99.PubMedCrossRef
13.
go back to reference Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–5.PubMedPubMedCentral Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–5.PubMedPubMedCentral
14.
go back to reference Lupo M, Troisi E, Chiricozzi FR, Clausi S, Molinari M, Leggio M. Inability to process negative emotions in cerebellar damage: a functional transcranial Doppler sonographic study. Cerebellum 2015. Lupo M, Troisi E, Chiricozzi FR, Clausi S, Molinari M, Leggio M. Inability to process negative emotions in cerebellar damage: a functional transcranial Doppler sonographic study. Cerebellum 2015.
15.
go back to reference Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6.PubMedCrossRef Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6.PubMedCrossRef
16.
go back to reference Coricelli G, Crichley HD, Joffily M, O’Doherty JP, Sirigu A, Dolan RJ. Regret and its avoidance: a neuroimaging study of choice behavior. Nat Neurosci. 2005;8:1255–62.PubMedCrossRef Coricelli G, Crichley HD, Joffily M, O’Doherty JP, Sirigu A, Dolan RJ. Regret and its avoidance: a neuroimaging study of choice behavior. Nat Neurosci. 2005;8:1255–62.PubMedCrossRef
17.
go back to reference Coricelli G, Dolan JR, Sirigu A. Brain, emotion and decision making: the paradigmatic example of regret. Trends Cogn Sci. 2007;11:258–65.PubMedCrossRef Coricelli G, Dolan JR, Sirigu A. Brain, emotion and decision making: the paradigmatic example of regret. Trends Cogn Sci. 2007;11:258–65.PubMedCrossRef
18.
go back to reference Clausi S, Coricelli G, Pisotta I, Pavone EF, Lauriola M, Molinari M, et al. Cerebellar damage impairs the self-rating of regret feeling in a gambling task. Front Behav Neurosci. 2015;9:113.PubMedPubMedCentralCrossRef Clausi S, Coricelli G, Pisotta I, Pavone EF, Lauriola M, Molinari M, et al. Cerebellar damage impairs the self-rating of regret feeling in a gambling task. Front Behav Neurosci. 2015;9:113.PubMedPubMedCentralCrossRef
19.
go back to reference Clausi S, Aloise F, Contento MP, Pizzamiglio L, Molinari M, Leggio M. Monitoring mood states in everyday life: a new device for patients with cerebellar ataxia. Psychiatry Res. 2014;220(1-2):719–21.PubMedCrossRef Clausi S, Aloise F, Contento MP, Pizzamiglio L, Molinari M, Leggio M. Monitoring mood states in everyday life: a new device for patients with cerebellar ataxia. Psychiatry Res. 2014;220(1-2):719–21.PubMedCrossRef
20.
go back to reference Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRef
21.
go back to reference Annoni JM, Ptak R, Caldara-Schnetzer AS, Khateb A, Pollermann BZ. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53:654–8.PubMedCrossRef Annoni JM, Ptak R, Caldara-Schnetzer AS, Khateb A, Pollermann BZ. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53:654–8.PubMedCrossRef
22.
23.
go back to reference D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural. 2013;6:1–23. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural. 2013;6:1–23.
24.
go back to reference Paquette S, Mignault Goulet G, Rothermich K. Prediction, attention and unconscious processing in hierarchical auditory perception. Front Psychol. 2013;4:955–6.PubMedPubMedCentral Paquette S, Mignault Goulet G, Rothermich K. Prediction, attention and unconscious processing in hierarchical auditory perception. Front Psychol. 2013;4:955–6.PubMedPubMedCentral
25.
go back to reference Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.PubMedCrossRef Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.PubMedCrossRef
26.
go back to reference Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMedCrossRef Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMedCrossRef
27.
go back to reference Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14(1):35–8.PubMedCrossRef Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14(1):35–8.PubMedCrossRef
28.
go back to reference Blakemore SJ, Smith JS, Steel R, Johnstone EC, Frith CD. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for breakdown in self-monitoring. Psychol Med. 2000;30:1131–9.PubMedCrossRef Blakemore SJ, Smith JS, Steel R, Johnstone EC, Frith CD. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for breakdown in self-monitoring. Psychol Med. 2000;30:1131–9.PubMedCrossRef
29.
go back to reference Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.PubMedCrossRef Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.PubMedCrossRef
33.
go back to reference Gordon I, Eilbott J a, Feldman R, Pelphrey K a, Vander Wyk BC. Social, reward, and attention brain networks are involved when online bids for joint attention are met with congruent versus incongruent responses. Soc Neurosci. 2013;8:544–54. doi:10.1080/17470919.2013.832374.PubMedCrossRef Gordon I, Eilbott J a, Feldman R, Pelphrey K a, Vander Wyk BC. Social, reward, and attention brain networks are involved when online bids for joint attention are met with congruent versus incongruent responses. Soc Neurosci. 2013;8:544–54. doi:10.​1080/​17470919.​2013.​832374.PubMedCrossRef
34.
35.
go back to reference Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19:1239–55. doi:10.1093/cercor/bhn181.PubMedCrossRef Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19:1239–55. doi:10.​1093/​cercor/​bhn181.PubMedCrossRef
36.
go back to reference Schraa-Tam CKL, Rietdijk WJR, Verbeke WJMI, Dietvorst RC, Van Den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11:233–45. doi:10.1007/s12311-011-0301-2.PubMedCrossRef Schraa-Tam CKL, Rietdijk WJR, Verbeke WJMI, Dietvorst RC, Van Den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11:233–45. doi:10.​1007/​s12311-011-0301-2.PubMedCrossRef
37.
go back to reference Rocchetti M, Radua J, Paloyelis Y, Xenaki LA, Frascarelli M, Caverzasi E, et al. Neurofunctional maps of the “maternal brain” and the effects of oxytocin: a multimodal voxel-based meta-analysis. Psychiatry Clin Neurosci. 2014. doi:10.1111/pcn.12185.PubMed Rocchetti M, Radua J, Paloyelis Y, Xenaki LA, Frascarelli M, Caverzasi E, et al. Neurofunctional maps of the “maternal brain” and the effects of oxytocin: a multimodal voxel-based meta-analysis. Psychiatry Clin Neurosci. 2014. doi:10.​1111/​pcn.​12185.PubMed
43.
go back to reference Adamaszek M, D’Agata F, Kirkby KC, Trenner MU, Sehm B, Steele CJ, et al. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum. 2014;13:338–45. doi:10.1007/s12311-013-0537-0.PubMedCrossRef Adamaszek M, D’Agata F, Kirkby KC, Trenner MU, Sehm B, Steele CJ, et al. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum. 2014;13:338–45. doi:10.​1007/​s12311-013-0537-0.PubMedCrossRef
45.
go back to reference Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23:17–29. doi:10.3233/BEN-2010-0270.PubMedCrossRef Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23:17–29. doi:10.​3233/​BEN-2010-0270.PubMedCrossRef
47.
go back to reference Moll J, de Oliveira-Souza R, Garrido GJ, Bramati IE, Caparelli-Daquer EMA, Paiva ML, et al. The self as a moral agent: linking the neural bases of social agency and moral sensitivity. Soc Neurosci. 2007;2:336–52. doi:10.1080/17470910701392024.PubMedCrossRef Moll J, de Oliveira-Souza R, Garrido GJ, Bramati IE, Caparelli-Daquer EMA, Paiva ML, et al. The self as a moral agent: linking the neural bases of social agency and moral sensitivity. Soc Neurosci. 2007;2:336–52. doi:10.​1080/​1747091070139202​4.PubMedCrossRef
52.
57.
go back to reference Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8. doi:10.1093/cercor/bhj024.PubMedCrossRef Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8. doi:10.​1093/​cercor/​bhj024.PubMedCrossRef
60.
go back to reference Ekman P. Facial expressions of emotion: an old controversy and new findings. Philos Trans R Soc Lond B Biol Sci. 1992;335(1273):63–9.PubMedCrossRef Ekman P. Facial expressions of emotion: an old controversy and new findings. Philos Trans R Soc Lond B Biol Sci. 1992;335(1273):63–9.PubMedCrossRef
61.
go back to reference Izard CE. Innate and universal facial expressions: evidence from developmental and cross-cultural research. Psychol Bull. 1994;115(2):288–99.PubMedCrossRef Izard CE. Innate and universal facial expressions: evidence from developmental and cross-cultural research. Psychol Bull. 1994;115(2):288–99.PubMedCrossRef
62.
go back to reference Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.PubMed Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.PubMed
63.
go back to reference Nashold Jr BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.PubMedCrossRef Nashold Jr BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.PubMedCrossRef
64.
go back to reference Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2011;26(5):786–99.PubMedPubMedCentralCrossRef Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2011;26(5):786–99.PubMedPubMedCentralCrossRef
66.
go back to reference Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(Pt 3):918–23.PubMedCrossRef Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(Pt 3):918–23.PubMedCrossRef
67.
go back to reference Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRef Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRef
68.
go back to reference Dempesy CW, Tootle DM, Fontana CJ, Fitzjarrell AT, Garey RE, Heath RG. Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biol Psychiatry. 1983;18(1):127–32.PubMed Dempesy CW, Tootle DM, Fontana CJ, Fitzjarrell AT, Garey RE, Heath RG. Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biol Psychiatry. 1983;18(1):127–32.PubMed
69.
go back to reference Marcinkiewicz M, Morcos R, Chretien M. CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J Comp Neurol. 1989;289(1):11–35.PubMedCrossRef Marcinkiewicz M, Morcos R, Chretien M. CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J Comp Neurol. 1989;289(1):11–35.PubMedCrossRef
70.
go back to reference Fox E, Lester V, Russo R, Bowles RJ, Pichler A, Dutton K. Facial expressions of emotion: are angry faces detected more efficiently? Cogn Emot. 2000;14(1):61–92.PubMedPubMedCentralCrossRef Fox E, Lester V, Russo R, Bowles RJ, Pichler A, Dutton K. Facial expressions of emotion: are angry faces detected more efficiently? Cogn Emot. 2000;14(1):61–92.PubMedPubMedCentralCrossRef
71.
go back to reference Morewedge CK. Negativity bias in attribution of external agency. J Exp Psychol Gen. 2009;138(4):535–45.PubMedCrossRef Morewedge CK. Negativity bias in attribution of external agency. J Exp Psychol Gen. 2009;138(4):535–45.PubMedCrossRef
72.
go back to reference Siegel A, Roeling TA, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev. 1999;23(3):359–89.PubMedCrossRef Siegel A, Roeling TA, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev. 1999;23(3):359–89.PubMedCrossRef
73.
go back to reference Supple WF, Kapp BS. The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci. 1993;13:3705–11.PubMed Supple WF, Kapp BS. The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci. 1993;13:3705–11.PubMed
74.
go back to reference Supple WF, Leaton RN. Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats. Behav Neurosci. 1990;104:934–47.PubMedCrossRef Supple WF, Leaton RN. Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats. Behav Neurosci. 1990;104:934–47.PubMedCrossRef
75.
76.
go back to reference Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.PubMedCrossRef Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.PubMedCrossRef
77.
go back to reference Sacchetti B, Sacco T, Strata P. Reversible inactivation of amygdala, cerebellum, but not perirhinal cortex, impairs reactivated fear memories. Eur J Neurosci. 2007;25:2875–84.PubMedCrossRef Sacchetti B, Sacco T, Strata P. Reversible inactivation of amygdala, cerebellum, but not perirhinal cortex, impairs reactivated fear memories. Eur J Neurosci. 2007;25:2875–84.PubMedCrossRef
78.
go back to reference Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature. 2011;473:514–8.PubMedCrossRef Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature. 2011;473:514–8.PubMedCrossRef
79.
go back to reference Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM, et al. Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol. 2014;15(592):2197–213.CrossRef Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM, et al. Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol. 2014;15(592):2197–213.CrossRef
80.
go back to reference Gianlorenço AC, Riboldi AM, Silva-Marques B, Mattioli R. Cerebellar vermis H2 receptors mediate fear memory consolidation in mice. Neurosci Lett. 2015;5:57–61.CrossRef Gianlorenço AC, Riboldi AM, Silva-Marques B, Mattioli R. Cerebellar vermis H2 receptors mediate fear memory consolidation in mice. Neurosci Lett. 2015;5:57–61.CrossRef
81.
go back to reference Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.PubMedCrossRef Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.PubMedCrossRef
82.
go back to reference Labrenz F, Icenhour A, Thürling M, Schlamann M, Forsting M, Timmann D, et al. Sex differences in cerebellar mechanisms involved in pain-related safety learning. Neurobiol Learn Mem. 2015;123:92–9.PubMedCrossRef Labrenz F, Icenhour A, Thürling M, Schlamann M, Forsting M, Timmann D, et al. Sex differences in cerebellar mechanisms involved in pain-related safety learning. Neurobiol Learn Mem. 2015;123:92–9.PubMedCrossRef
83.
go back to reference Utz A, Thürling M, Ernst TM, Hermann A, Stark R, Wolf OT, et al. Cerebellar vermis contributes to the extinction of conditioned fear. Neurosci Lett. 2015;604:173–7.PubMedCrossRef Utz A, Thürling M, Ernst TM, Hermann A, Stark R, Wolf OT, et al. Cerebellar vermis contributes to the extinction of conditioned fear. Neurosci Lett. 2015;604:173–7.PubMedCrossRef
84.
go back to reference Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.PubMedCrossRef Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.PubMedCrossRef
85.
go back to reference Scelfo B, Sacchetti B, Strata P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci U S A. 2008;105:769–74.PubMedPubMedCentralCrossRef Scelfo B, Sacchetti B, Strata P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci U S A. 2008;105:769–74.PubMedPubMedCentralCrossRef
86.
go back to reference Zhu L, Sacco T, Strata P, Sacchetti B. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex. PLoS One. 2011;6, e16673.PubMedPubMedCentralCrossRef Zhu L, Sacco T, Strata P, Sacchetti B. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex. PLoS One. 2011;6, e16673.PubMedPubMedCentralCrossRef
87.
go back to reference Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2(2):133–46.PubMedCrossRef Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2(2):133–46.PubMedCrossRef
88.
go back to reference Watson TC, Koutsikou S, Cerminara NL, Flavell CR, Crook JJ, Lumb BM, et al. The olivo-cerebellar system and its relationship to survival circuits. Front Neural Circ. 2013;7:72. Watson TC, Koutsikou S, Cerminara NL, Flavell CR, Crook JJ, Lumb BM, et al. The olivo-cerebellar system and its relationship to survival circuits. Front Neural Circ. 2013;7:72.
89.
go back to reference Grosso A, Cambiaghi M, Renna A, Milano L, Merlo GR, Sacco T, et al. The higher-order auditory cortex is involved in the assignment of affective value to sensory stimuli. Nat Commun. 2015;6:8886. doi:10.1038/ncomms9886.PubMedCrossRef Grosso A, Cambiaghi M, Renna A, Milano L, Merlo GR, Sacco T, et al. The higher-order auditory cortex is involved in the assignment of affective value to sensory stimuli. Nat Commun. 2015;6:8886. doi:10.​1038/​ncomms9886.PubMedCrossRef
90.
go back to reference Grosso A, Cambiaghi M, Concina G, Sacco T, Sacchetti B. Auditory cortex involvement in emotional learning and memory. Neuroscience. 2015;299:45–55.PubMedCrossRef Grosso A, Cambiaghi M, Concina G, Sacco T, Sacchetti B. Auditory cortex involvement in emotional learning and memory. Neuroscience. 2015;299:45–55.PubMedCrossRef
91.
go back to reference Azizi SA, Burne RA, Woodward DJ. The auditory corticopontocerebellar projection in the rat, inputs to the paraflocculus and midvermis: an anatomical and physiological study. Exp Brain Res. 1985;59:36–49.PubMedCrossRef Azizi SA, Burne RA, Woodward DJ. The auditory corticopontocerebellar projection in the rat, inputs to the paraflocculus and midvermis: an anatomical and physiological study. Exp Brain Res. 1985;59:36–49.PubMedCrossRef
92.
go back to reference O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–65.PubMedPubMedCentralCrossRef O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–65.PubMedPubMedCentralCrossRef
93.
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedPubMedCentralCrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedPubMedCentralCrossRef
94.
95.
go back to reference Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, et al. Empathy and judging other’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17:2223–34.PubMedCrossRef Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, et al. Empathy and judging other’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17:2223–34.PubMedCrossRef
96.
go back to reference Lane DJ, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ. Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry. 1997;154:926–33.PubMedCrossRef Lane DJ, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ. Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry. 1997;154:926–33.PubMedCrossRef
97.
go back to reference Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. Neuroimaging evidence implicating the cerebellum in support of sensory/cognitive associated with thirst. PNAS. 2000;97:2332–6.PubMedPubMedCentralCrossRef Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. Neuroimaging evidence implicating the cerebellum in support of sensory/cognitive associated with thirst. PNAS. 2000;97:2332–6.PubMedPubMedCentralCrossRef
98.
99.
go back to reference Moulton EA, Elman I, Pendse G, Schmahmann J, Beccerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasent images. J Neurosci. 2011;31:3795–804.PubMedPubMedCentralCrossRef Moulton EA, Elman I, Pendse G, Schmahmann J, Beccerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasent images. J Neurosci. 2011;31:3795–804.PubMedPubMedCentralCrossRef
100.
go back to reference Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF. Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett. 2003;335:202–6.PubMedCrossRef Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF. Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett. 2003;335:202–6.PubMedCrossRef
101.
go back to reference Keren-Happuch E, Chen S-H A, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;32:593–615. Keren-Happuch E, Chen S-H A, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;32:593–615.
102.
go back to reference Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34:418–32.PubMedPubMedCentral Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34:418–32.PubMedPubMedCentral
103.
go back to reference Seeley WW, Menon V, Schalzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.PubMedPubMedCentralCrossRef Seeley WW, Menon V, Schalzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.PubMedPubMedCentralCrossRef
104.
go back to reference Sang L, Qin W, Liu Y, Zhang Y, Jiang T, Yu C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61:1213–25.PubMedCrossRef Sang L, Qin W, Liu Y, Zhang Y, Jiang T, Yu C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61:1213–25.PubMedCrossRef
105.
go back to reference Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, et al. Functional connectivity of the human amygdala using resting-state fMRI. NeuroImage. 2009;45:614–26.PubMedCrossRef Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, et al. Functional connectivity of the human amygdala using resting-state fMRI. NeuroImage. 2009;45:614–26.PubMedCrossRef
106.
go back to reference Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. NeuroImage. 2005;28:39–48.PubMedCrossRef Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. NeuroImage. 2005;28:39–48.PubMedCrossRef
107.
go back to reference Nisimaru N. Cardiovascular models of the cerebellum. J Physiol Sci (Jpn J Physiol). 2004;54:431–48. Nisimaru N. Cardiovascular models of the cerebellum. J Physiol Sci (Jpn J Physiol). 2004;54:431–48.
108.
go back to reference Maschke M, Schugens M, Kindsvater K, Kolb FP, Diener HC, Timmann D. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–8.PubMedPubMedCentralCrossRef Maschke M, Schugens M, Kindsvater K, Kolb FP, Diener HC, Timmann D. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–8.PubMedPubMedCentralCrossRef
109.
go back to reference Blood JD, Wu J, Chaplin TM, Hommer R, Vasquez L, et al. The variability heart: high frequency and very low frequency correlates of depressive symptoms in children and adolescents. J Affect Disord. 2015;186:119–26.PubMedPubMedCentralCrossRef Blood JD, Wu J, Chaplin TM, Hommer R, Vasquez L, et al. The variability heart: high frequency and very low frequency correlates of depressive symptoms in children and adolescents. J Affect Disord. 2015;186:119–26.PubMedPubMedCentralCrossRef
110.
go back to reference Lopiano L, dèSperati C, Montarolo PG. Long-term habituation of the acoustic startle response: role of the cerebellar vermis. Neuroscience. 1990;35(1):79–84.PubMedCrossRef Lopiano L, dèSperati C, Montarolo PG. Long-term habituation of the acoustic startle response: role of the cerebellar vermis. Neuroscience. 1990;35(1):79–84.PubMedCrossRef
111.
go back to reference Maschke M, Drepper J, Kindsvater K, Kolb FP, Diener HC, Timmann D. Fear conditioned potentiation of the acoustic blink reflex in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 2000;68(3):358–64.PubMedPubMedCentralCrossRef Maschke M, Drepper J, Kindsvater K, Kolb FP, Diener HC, Timmann D. Fear conditioned potentiation of the acoustic blink reflex in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 2000;68(3):358–64.PubMedPubMedCentralCrossRef
112.
go back to reference Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke - a case study. Neurosci Lett. 2013;548:206–11.PubMedCrossRef Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke - a case study. Neurosci Lett. 2013;548:206–11.PubMedCrossRef
113.
go back to reference Adamaszek M, Olbrich S, Kirkby KC, D’Agata F, Langner S, Steele CJ, et al. Neural correlates of disturbed emotional face recognition in cerebellar lesions. Brain Res. 2015;1613:1–12.PubMedCrossRef Adamaszek M, Olbrich S, Kirkby KC, D’Agata F, Langner S, Steele CJ, et al. Neural correlates of disturbed emotional face recognition in cerebellar lesions. Brain Res. 2015;1613:1–12.PubMedCrossRef
114.
go back to reference Snow WM, Stoesz BM, Anderson JE. The cerebellum in emotional processing: evidence from human and non-human animals. AIMS Neurosci. 2014;1(1):96–119. Snow WM, Stoesz BM, Anderson JE. The cerebellum in emotional processing: evidence from human and non-human animals. AIMS Neurosci. 2014;1(1):96–119.
115.
go back to reference Ivry RB. Sensory processing and the cerebellum: timing. In: Consensus paper: the role of the cerebellum in perceptual processes. Baumann O, Borra RJ, Bower JM, et al. Cerebellum 2015; 14: 197-220. Ivry RB. Sensory processing and the cerebellum: timing. In: Consensus paper: the role of the cerebellum in perceptual processes. Baumann O, Borra RJ, Bower JM, et al. Cerebellum 2015; 14: 197-220.
116.
go back to reference Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207.PubMedCrossRef Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207.PubMedCrossRef
117.
go back to reference Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRef Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRef
118.
go back to reference Olofsson JK, Nordin S, Sequeira H, Polich J. Affective picture processing: an integrative review of ERP findings. Biol Psychol. 2008;77:247–65.PubMedCrossRef Olofsson JK, Nordin S, Sequeira H, Polich J. Affective picture processing: an integrative review of ERP findings. Biol Psychol. 2008;77:247–65.PubMedCrossRef
119.
go back to reference Tachibana H, Kawabata K, Tomino Y, Sugita M. Prolonged P3 latency and decreased brain perfusion in cerebellar degeneration. Acta Neurol Scand. 1999;100(5):310–6.PubMedCrossRef Tachibana H, Kawabata K, Tomino Y, Sugita M. Prolonged P3 latency and decreased brain perfusion in cerebellar degeneration. Acta Neurol Scand. 1999;100(5):310–6.PubMedCrossRef
120.
go back to reference Rusiniak M, Lewandowska M, Wolak T, Pluta A, Milner R, Ganc M, et al. A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP–fMRI study. Magn Reson Mater Phy. 2013;26:511–26.CrossRef Rusiniak M, Lewandowska M, Wolak T, Pluta A, Milner R, Ganc M, et al. A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP–fMRI study. Magn Reson Mater Phy. 2013;26:511–26.CrossRef
121.
go back to reference Okon-Singer H, Hendler T, Pessoa L, Schackman AJ. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Human Neurosci. 2015;9:58. doi:10.3389/fnhum.2015.00058.CrossRef Okon-Singer H, Hendler T, Pessoa L, Schackman AJ. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Human Neurosci. 2015;9:58. doi:10.​3389/​fnhum.​2015.​00058.CrossRef
122.
go back to reference Heath RG. Modulation of emotion with a brain pacemamer. Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165(5):300–17.PubMedCrossRef Heath RG. Modulation of emotion with a brain pacemamer. Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165(5):300–17.PubMedCrossRef
123.
go back to reference Saab CY, Willis WD. The cerebellum: organization, functions and its role in nociception. Brain Res Rev. 2003;42(1):85–95.PubMedCrossRef Saab CY, Willis WD. The cerebellum: organization, functions and its role in nociception. Brain Res Rev. 2003;42(1):85–95.PubMedCrossRef
124.
go back to reference Ekerot CF, Garwicz M, Schouenborg J. The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol. 1991;441:275–84.PubMedPubMedCentralCrossRef Ekerot CF, Garwicz M, Schouenborg J. The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol. 1991;441:275–84.PubMedPubMedCentralCrossRef
125.
go back to reference Wu J, Chen PX. Discharge response of cerebellar Purkinje cells to stimulation of C-fiber in cat saphenous nerve. Brain Res. 1992;581(2):269–72.CrossRef Wu J, Chen PX. Discharge response of cerebellar Purkinje cells to stimulation of C-fiber in cat saphenous nerve. Brain Res. 1992;581(2):269–72.CrossRef
126.
go back to reference Apkarian AV, Bushnell MS, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84.PubMedCrossRef Apkarian AV, Bushnell MS, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84.PubMedCrossRef
127.
go back to reference Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMedCrossRef Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMedCrossRef
128.
go back to reference Cerminara NL, Koutsikou S, Lumb BM, Apps R. The periaqueductal grey modulates sensory input to the cerebellum: a role in coping behaviour? Eur J Neurosci. 2009;29(11):2197–206.PubMedCrossRef Cerminara NL, Koutsikou S, Lumb BM, Apps R. The periaqueductal grey modulates sensory input to the cerebellum: a role in coping behaviour? Eur J Neurosci. 2009;29(11):2197–206.PubMedCrossRef
129.
go back to reference Helmchen C, Mohr C, Erdmann C, Binkofski F. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study. Neurosci Lett. 2004;361(1-3):237–40.PubMedCrossRef Helmchen C, Mohr C, Erdmann C, Binkofski F. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study. Neurosci Lett. 2004;361(1-3):237–40.PubMedCrossRef
130.
go back to reference Borsook D, Moultoin EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy andneuropathic pain subjects. Cerebellum. 2008;7(3):252–72.PubMedCrossRef Borsook D, Moultoin EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy andneuropathic pain subjects. Cerebellum. 2008;7(3):252–72.PubMedCrossRef
131.
go back to reference Moulton EA, Elman I, Becerrra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19(3):317–31.PubMedPubMedCentralCrossRef Moulton EA, Elman I, Becerrra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19(3):317–31.PubMedPubMedCentralCrossRef
132.
go back to reference Diano M, D’Agata F, Cauda F, Costa T, Geda E, Saco K, et al. Cerebellar clustering and functional connectivity during pain processing. Cerebellum. 2015;1:1–14. Diano M, D’Agata F, Cauda F, Costa T, Geda E, Saco K, et al. Cerebellar clustering and functional connectivity during pain processing. Cerebellum. 2015;1:1–14.
133.
go back to reference E KH, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.PubMedCrossRef E KH, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.PubMedCrossRef
134.
go back to reference Colibazzi T, Posner J, Wang Z, Gorman D, Gerber A, et al. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion. 2010;10(3):377–89.PubMedCrossRef Colibazzi T, Posner J, Wang Z, Gorman D, Gerber A, et al. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion. 2010;10(3):377–89.PubMedCrossRef
135.
go back to reference Styliadis C, Ioannides AA, Bamidis PD, Papadelis C. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy. Neuroimage. 2015;110:149–61.PubMedCrossRef Styliadis C, Ioannides AA, Bamidis PD, Papadelis C. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy. Neuroimage. 2015;110:149–61.PubMedCrossRef
136.
go back to reference Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): technical manual and affective ratings. Gainesville: University of Florida, Center for Research in Psychophysiology; 1999. Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): technical manual and affective ratings. Gainesville: University of Florida, Center for Research in Psychophysiology; 1999.
137.
go back to reference Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic atlas of the human cerebellum. NeuroImage. 2009;46:39–46.PubMedCrossRef Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic atlas of the human cerebellum. NeuroImage. 2009;46:39–46.PubMedCrossRef
138.
go back to reference De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127:334–42.PubMedCrossRef De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127:334–42.PubMedCrossRef
139.
go back to reference Schmahmann J. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMedCrossRef Schmahmann J. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMedCrossRef
140.
go back to reference Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with an enigma. Cortex. 2010;46:811–20.PubMedCrossRef Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with an enigma. Cortex. 2010;46:811–20.PubMedCrossRef
141.
go back to reference Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition ? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10:37–41. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition ? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10:37–41.
142.
go back to reference Sidtis JJ, Van Lancker Sidtis DA. Neurobehavioral approach to dysprosody. Semin Speech Lang. 2003;24:93–105.PubMedCrossRef Sidtis JJ, Van Lancker Sidtis DA. Neurobehavioral approach to dysprosody. Semin Speech Lang. 2003;24:93–105.PubMedCrossRef
143.
go back to reference Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRef Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRef
144.
go back to reference Jackson JH. On affections of speech from diseases of the brain. Brain. 1915;38:106–74.CrossRef Jackson JH. On affections of speech from diseases of the brain. Brain. 1915;38:106–74.CrossRef
145.
go back to reference Raithel V, Hielscher-Fastabend M. Emotional and linguistic perception of prosody. Reception of prosody. Folia Phoniatr Logo. 2004;56:7–13.CrossRef Raithel V, Hielscher-Fastabend M. Emotional and linguistic perception of prosody. Reception of prosody. Folia Phoniatr Logo. 2004;56:7–13.CrossRef
146.
go back to reference Wildgruber D, Ackermann H, Kreifelts B, Ethofer T. Cerebral processing of linguistic and emotional prosody: fMRI studies. Prog Brain Res. 2006;156:249–68.PubMedCrossRef Wildgruber D, Ackermann H, Kreifelts B, Ethofer T. Cerebral processing of linguistic and emotional prosody: fMRI studies. Prog Brain Res. 2006;156:249–68.PubMedCrossRef
147.
go back to reference Ross EE. The aprosodias: functional-anatomic organization of the affective components of language in the right hemisphere. Arch Neurol. 1981;38:561–70.PubMedCrossRef Ross EE. The aprosodias: functional-anatomic organization of the affective components of language in the right hemisphere. Arch Neurol. 1981;38:561–70.PubMedCrossRef
148.
go back to reference Le Jeune F, Péron J, Biseul I, Fournier S, Sauleau P, Drapier S, et al. Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a pet study. Brain. 2008;131:1599–608.PubMedPubMedCentralCrossRef Le Jeune F, Péron J, Biseul I, Fournier S, Sauleau P, Drapier S, et al. Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a pet study. Brain. 2008;131:1599–608.PubMedPubMedCentralCrossRef
149.
go back to reference Chancelliere A, Kertesz A. Lesion localization in acquired deficits of emotional expression and comprehension. Brain Cogn. 1990;13:133–47.CrossRef Chancelliere A, Kertesz A. Lesion localization in acquired deficits of emotional expression and comprehension. Brain Cogn. 1990;13:133–47.CrossRef
150.
go back to reference Van Lancker D, Sidtis JJ. The identification of affective-prosodic stimuli by left- and right-hemisphere-damaged subjects: all errors are not equal. J Speech Hear Res. 1992;35:963–70.PubMedCrossRef Van Lancker D, Sidtis JJ. The identification of affective-prosodic stimuli by left- and right-hemisphere-damaged subjects: all errors are not equal. J Speech Hear Res. 1992;35:963–70.PubMedCrossRef
151.
go back to reference Kotz SA, Meyer M, Alter K, Besson M, von Cramon Y, Friederici AD. On the lateralization of emotional prosody: an event-related functional MR investigation. Brain Lang. 2003;86:366–76.PubMedCrossRef Kotz SA, Meyer M, Alter K, Besson M, von Cramon Y, Friederici AD. On the lateralization of emotional prosody: an event-related functional MR investigation. Brain Lang. 2003;86:366–76.PubMedCrossRef
152.
go back to reference Mitchell RLC, Elliott R, Barry M, Cruttenden A, Woodruff PWR. The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia. 2003;41:1410–21.PubMedCrossRef Mitchell RLC, Elliott R, Barry M, Cruttenden A, Woodruff PWR. The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia. 2003;41:1410–21.PubMedCrossRef
153.
go back to reference Dapretto M, Hairiri A, Bialik M, Bookheimer S. Cortical correlates of affective vs. linguistic prosody: an fMRI study. Neuroimage. 1999;9:1054. Dapretto M, Hairiri A, Bialik M, Bookheimer S. Cortical correlates of affective vs. linguistic prosody: an fMRI study. Neuroimage. 1999;9:1054.
154.
go back to reference Mayer J, Wildgruber D, Riecker A, Dogil G, Ackermann H, Godd W. Prosody production and perception: converging evidence from fMRI studies, proceedings from ISCA. Int Speech Commun Assoc: Speech Prosody. 2002;2002:487–90. Mayer J, Wildgruber D, Riecker A, Dogil G, Ackermann H, Godd W. Prosody production and perception: converging evidence from fMRI studies, proceedings from ISCA. Int Speech Commun Assoc: Speech Prosody. 2002;2002:487–90.
155.
go back to reference Dogil G, Ackermann H, Grodd W, Haider H, Kamp H, Mayer J, et al. The speaking brain: a tutorial introduction to fMRI experiments in the production of speech, prosody and syntax. J Neurolinguist. 2002;15:59–90.CrossRef Dogil G, Ackermann H, Grodd W, Haider H, Kamp H, Mayer J, et al. The speaking brain: a tutorial introduction to fMRI experiments in the production of speech, prosody and syntax. J Neurolinguist. 2002;15:59–90.CrossRef
156.
go back to reference Van Lancker D, Sidtis D, Pachana N, Cummings JL, Sidtis JJ. Dysprosodic speech following basal ganglia insult: toward a conceptual framework for the study of the cerebral representation of prosody. Brain Lang. 2006;97:135–53.CrossRef Van Lancker D, Sidtis D, Pachana N, Cummings JL, Sidtis JJ. Dysprosodic speech following basal ganglia insult: toward a conceptual framework for the study of the cerebral representation of prosody. Brain Lang. 2006;97:135–53.CrossRef
158.
go back to reference Strelnikov K, Vorobyev VA, Chernigovskaya TV, Medvedev SV. Prosodic clues to syntactic processing—a PET and ERP study. Neuroimage. 2006;29:1127–34.PubMedCrossRef Strelnikov K, Vorobyev VA, Chernigovskaya TV, Medvedev SV. Prosodic clues to syntactic processing—a PET and ERP study. Neuroimage. 2006;29:1127–34.PubMedCrossRef
159.
go back to reference Pichon S, Kell CA. Affective and sensorimotor component of emotional prosody generation. J of Neurosci. 2013;33:1640–50.CrossRef Pichon S, Kell CA. Affective and sensorimotor component of emotional prosody generation. J of Neurosci. 2013;33:1640–50.CrossRef
160.
162.
go back to reference Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005;72:109–22.PubMedCrossRef Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005;72:109–22.PubMedCrossRef
163.
go back to reference Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci. 2010;107:4407–11.PubMedPubMedCentralCrossRef Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci. 2010;107:4407–11.PubMedPubMedCentralCrossRef
164.
go back to reference Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol. 2003;13:545–55.PubMedCrossRef Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol. 2003;13:545–55.PubMedCrossRef
165.
go back to reference Singh MK, Spielman D, Libby A, Adams E, Acquaye T, Howe M, et al. Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder. Bipolar Disord. 2011;13:189–97.PubMedPubMedCentralCrossRef Singh MK, Spielman D, Libby A, Adams E, Acquaye T, Howe M, et al. Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder. Bipolar Disord. 2011;13:189–97.PubMedPubMedCentralCrossRef
166.
go back to reference Mills NP, Delbello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162:1530–2.PubMedCrossRef Mills NP, Delbello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162:1530–2.PubMedCrossRef
167.
go back to reference Monkul ES, Hatch JP, Sassi RB, Axelson D, Brambilla P, Nicoletti MA, et al. MRI study of the cerebellum in young bipolar patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:613–9.PubMedCrossRef Monkul ES, Hatch JP, Sassi RB, Axelson D, Brambilla P, Nicoletti MA, et al. MRI study of the cerebellum in young bipolar patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:613–9.PubMedCrossRef
168.
go back to reference Kim D, Cho HB, Dager SR, Yurgelun-Todd DA, Yoon S, Lee JH, et al. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord. 2013;150:499–506.PubMedCrossRef Kim D, Cho HB, Dager SR, Yurgelun-Todd DA, Yoon S, Lee JH, et al. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord. 2013;150:499–506.PubMedCrossRef
169.
go back to reference Baldaçara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GG, Guimarães JL, et al. Is cerebellar volume related to bipolar disorder? J Affect Disord. 2011;135:305–9.PubMedCrossRef Baldaçara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GG, Guimarães JL, et al. Is cerebellar volume related to bipolar disorder? J Affect Disord. 2011;135:305–9.PubMedCrossRef
170.
go back to reference Moorhead TW, McKirdy J, Sussmann JE, Hall J, Lawrie SM, Johnstone EC, et al. Progressive gray matter loss in patients with bipolar disorder. Biol Psychiatry. 2007;62:894–900.PubMedCrossRef Moorhead TW, McKirdy J, Sussmann JE, Hall J, Lawrie SM, Johnstone EC, et al. Progressive gray matter loss in patients with bipolar disorder. Biol Psychiatry. 2007;62:894–900.PubMedCrossRef
171.
go back to reference Adler CM, DelBello MP, Jarvis K, Levine A, Adams J, Strakowski SM. Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol Psychiatry. 2007;61:776–81.PubMedCrossRef Adler CM, DelBello MP, Jarvis K, Levine A, Adams J, Strakowski SM. Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol Psychiatry. 2007;61:776–81.PubMedCrossRef
172.
go back to reference Eker C, Simsek F, Yılmazer EE, Kitis O, Cinar C, Eker OD, et al. Brain regions associated with risk and resistance for bipolar I disorder: a voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disord. 2014;16:249–61.PubMedCrossRef Eker C, Simsek F, Yılmazer EE, Kitis O, Cinar C, Eker OD, et al. Brain regions associated with risk and resistance for bipolar I disorder: a voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disord. 2014;16:249–61.PubMedCrossRef
173.
go back to reference Frodl TS, Koutsouleris N, Bottlender R, Born C, Jäger M, Scupin I, et al. Depression-related variation in brain morphology over 3 year: effects of stress? Arch Gen Psychiatry. 2008;65:1156–65.PubMedCrossRef Frodl TS, Koutsouleris N, Bottlender R, Born C, Jäger M, Scupin I, et al. Depression-related variation in brain morphology over 3 year: effects of stress? Arch Gen Psychiatry. 2008;65:1156–65.PubMedCrossRef
174.
go back to reference Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80:395–9.PubMedCrossRef Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80:395–9.PubMedCrossRef
175.
go back to reference Schutter DJ, Koolschijn PC, Peper JS, Crone EA. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers. PLoS One. 2012;7, e37252.PubMedPubMedCentralCrossRef Schutter DJ, Koolschijn PC, Peper JS, Crone EA. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers. PLoS One. 2012;7, e37252.PubMedPubMedCentralCrossRef
176.
go back to reference Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA, et al. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology. 2009;34:1590–600.PubMedPubMedCentralCrossRef Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA, et al. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology. 2009;34:1590–600.PubMedPubMedCentralCrossRef
177.
go back to reference Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010;181:64–70.PubMedCrossRef Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010;181:64–70.PubMedCrossRef
178.
go back to reference Guo W, Liu F, Liu J, Yu L, Zhang Z, Zhang J, et al. Is there a cerebellar compensatory effort in first-episode, treatment-naive major depressive disorder at rest? Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:13–8.PubMedCrossRef Guo W, Liu F, Liu J, Yu L, Zhang Z, Zhang J, et al. Is there a cerebellar compensatory effort in first-episode, treatment-naive major depressive disorder at rest? Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:13–8.PubMedCrossRef
179.
go back to reference Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29:683–95.PubMedPubMedCentralCrossRef Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29:683–95.PubMedPubMedCentralCrossRef
180.
go back to reference Wang L, Li K, Zhang Q, Zeng Y, Dai W, Su Y, et al. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging. Psychol Med. 2014;44:1417–26.PubMedCrossRef Wang L, Li K, Zhang Q, Zeng Y, Dai W, Su Y, et al. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging. Psychol Med. 2014;44:1417–26.PubMedCrossRef
181.
go back to reference Rapkin AJ, Berman SM, Mandelkern MA, Silverman DH, Morgan M, London ED. Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biol Psychiatry. 2011;69:374–80.PubMedCrossRef Rapkin AJ, Berman SM, Mandelkern MA, Silverman DH, Morgan M, London ED. Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biol Psychiatry. 2011;69:374–80.PubMedCrossRef
182.
go back to reference Zhang WN, Chang SH, Guo LY, Zhang KL, Wang J. The neural correlates of reward-related processing in major depressive disorder:a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord. 2013;151:531–9.PubMedCrossRef Zhang WN, Chang SH, Guo LY, Zhang KL, Wang J. The neural correlates of reward-related processing in major depressive disorder:a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord. 2013;151:531–9.PubMedCrossRef
183.
go back to reference Dotson VM, Beason-Held L, Kraut MA, Resnick SM. Longitudinal study of chronic depressive symptoms and regional cerebral blood flow in older men and women. Int J Geriatr Psychiatry. 2009;24:809–19.PubMedPubMedCentralCrossRef Dotson VM, Beason-Held L, Kraut MA, Resnick SM. Longitudinal study of chronic depressive symptoms and regional cerebral blood flow in older men and women. Int J Geriatr Psychiatry. 2009;24:809–19.PubMedPubMedCentralCrossRef
184.
go back to reference Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL, et al. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state fMRI. PLoS One. 2013;8, e79999.PubMedPubMedCentralCrossRef Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL, et al. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state fMRI. PLoS One. 2013;8, e79999.PubMedPubMedCentralCrossRef
185.
go back to reference Liu CH, Ma X, Wu X, Zhang Y, Zhou FC, Li F, et al. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;41:52–9.PubMedCrossRef Liu CH, Ma X, Wu X, Zhang Y, Zhou FC, Li F, et al. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;41:52–9.PubMedCrossRef
186.
go back to reference Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:51–7.PubMedCrossRef Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:51–7.PubMedCrossRef
187.
go back to reference Peng HJ, Zheng HR, Ning YP, Zhang Y, Shan BC, Zhang L, et al. Abnormalities of cortical-limbic-cerebellar white matter networks may contribute to treatment-resistant depression: a diffusion tensor imaging study. BMC Psychiatry. 2013;13:72.PubMedPubMedCentralCrossRef Peng HJ, Zheng HR, Ning YP, Zhang Y, Shan BC, Zhang L, et al. Abnormalities of cortical-limbic-cerebellar white matter networks may contribute to treatment-resistant depression: a diffusion tensor imaging study. BMC Psychiatry. 2013;13:72.PubMedPubMedCentralCrossRef
188.
go back to reference Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore). 2015;94, e560.CrossRef Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore). 2015;94, e560.CrossRef
189.
go back to reference Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94.PubMedCrossRef Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94.PubMedCrossRef
190.
go back to reference Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7, e39516.PubMedPubMedCentralCrossRef Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7, e39516.PubMedPubMedCentralCrossRef
191.
go back to reference Gardner A, Åstrand D, Öberg J, Jacobsson H, Jonsson C, Larsson S, et al. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT. Psychiatry Res. 2014;223:171–7.PubMedCrossRef Gardner A, Åstrand D, Öberg J, Jacobsson H, Jonsson C, Larsson S, et al. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT. Psychiatry Res. 2014;223:171–7.PubMedCrossRef
192.
go back to reference Arnold JF, Zwiers MP, Fitzgerald DA, van Eijndhoven P, Becker ES, Rinck M, et al. Fronto-limbic microstructure and structural connectivity in remission from major depression. Psychiatry Res. 2012;204:40–8.PubMedCrossRef Arnold JF, Zwiers MP, Fitzgerald DA, van Eijndhoven P, Becker ES, Rinck M, et al. Fronto-limbic microstructure and structural connectivity in remission from major depression. Psychiatry Res. 2012;204:40–8.PubMedCrossRef
193.
go back to reference Yang R, Zhang H, Wu X, Yang J, Ma M, Gao Y, et al. Hypothalamus-anchored resting brain network changes before and after sertraline treatment in major depression. Biomed Res Int. 2014;2014:915026.PubMedPubMedCentral Yang R, Zhang H, Wu X, Yang J, Ma M, Gao Y, et al. Hypothalamus-anchored resting brain network changes before and after sertraline treatment in major depression. Biomed Res Int. 2014;2014:915026.PubMedPubMedCentral
194.
go back to reference Demirtas-Tatlide, Schmahmann JD. Morality: incomplete without the cerebellum? Brain. 2013;136:1–3.CrossRef Demirtas-Tatlide, Schmahmann JD. Morality: incomplete without the cerebellum? Brain. 2013;136:1–3.CrossRef
195.
go back to reference Funk CM, Gazzanigga MS. The functional brain architecture of human morality. Curr Opin Neurobiol. 2009;19(6):6778–681.CrossRef Funk CM, Gazzanigga MS. The functional brain architecture of human morality. Curr Opin Neurobiol. 2009;19(6):6778–681.CrossRef
196.
go back to reference Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.PubMedPubMedCentralCrossRef Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.PubMedPubMedCentralCrossRef
197.
go back to reference Sonni A, Kurdziel LB, Baran B, Spencer RM. The effects of sleep dysfunction on cognition, affect, and quality of life in individuals with cerebellar ataxia. J Clin Sleep Med. 2014;10:535–43.PubMedPubMedCentral Sonni A, Kurdziel LB, Baran B, Spencer RM. The effects of sleep dysfunction on cognition, affect, and quality of life in individuals with cerebellar ataxia. J Clin Sleep Med. 2014;10:535–43.PubMedPubMedCentral
198.
go back to reference Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92.PubMedCrossRef Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92.PubMedCrossRef
199.
go back to reference Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13(2):248–68.PubMedPubMedCentralCrossRef Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13(2):248–68.PubMedPubMedCentralCrossRef
200.
go back to reference Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurol Res. 1976;2(29):133–46.CrossRef Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurol Res. 1976;2(29):133–46.CrossRef
201.
go back to reference Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.PubMedCrossRef Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.PubMedCrossRef
202.
go back to reference Schmahmann JD. Dysmetria of thought: an unifying hypothesis for the cerebellar role in sensorimotor function, cognition, and emotion. In: Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 2014; 13(1):151-77????. Schmahmann JD. Dysmetria of thought: an unifying hypothesis for the cerebellar role in sensorimotor function, cognition, and emotion. In: Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 2014; 13(1):151-77????.
203.
go back to reference D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circ. 2013;6(116):1–23. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circ. 2013;6(116):1–23.
204.
205.
go back to reference Reeber SL, Otis TS, Sillitoe RV (2013) New roles for the cerebellum in health and disease. Front Syst Neurosci. Reeber SL, Otis TS, Sillitoe RV (2013) New roles for the cerebellum in health and disease. Front Syst Neurosci.
206.
go back to reference Marvel C, Desmond J. Cerebellum and verbal working memory. In: Marien P et al., Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 2014; 13: 386-410. Marvel C, Desmond J. Cerebellum and verbal working memory. In: Marien P et al., Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 2014; 13: 386-410.
207.
go back to reference Sacco T, Sacchetti B. Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science. 2010;329:649–56.PubMedCrossRef Sacco T, Sacchetti B. Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science. 2010;329:649–56.PubMedCrossRef
Metadata
Title
Consensus Paper: Cerebellum and Emotion
Authors
M. Adamaszek
F. D’Agata
R. Ferrucci
C. Habas
S. Keulen
K. C. Kirkby
M. Leggio
P. Mariën
M. Molinari
E. Moulton
L. Orsi
F. Van Overwalle
C. Papadelis
A. Priori
B. Sacchetti
D. J. Schutter
C. Styliadis
J. Verhoeven
Publication date
01-04-2017
Publisher
Springer US
Published in
The Cerebellum / Issue 2/2017
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-016-0815-8

Other articles of this Issue 2/2017

The Cerebellum 2/2017 Go to the issue