Skip to main content
Top
Published in: The Cerebellum 2/2017

01-04-2017 | Original Paper

Defining Trends in Global Gene Expression in Arabian Horses with Cerebellar Abiotrophy

Authors: E. Y. Scott, M. C. T. Penedo, J. D. Murray, C. J. Finno

Published in: The Cerebellum | Issue 2/2017

Login to get access

Abstract

Equine cerebellar abiotrophy (CA) is a hereditary neurodegenerative disease that affects the Purkinje neurons of the cerebellum and causes ataxia in Arabian foals. Signs of CA are typically first recognized either at birth to any time up to 6 months of age. CA is inherited as an autosomal recessive trait and is associated with a single nucleotide polymorphism (SNP) on equine chromosome 2 (13074277G>A), located in the fourth exon of TOE1 and in proximity to MUTYH on the antisense strand. We hypothesize that unraveling the functional consequences of the CA SNP using RNA-seq will elucidate the molecular pathways underlying the CA phenotype. RNA-seq (100 bp PE strand-specific) was performed in cerebellar tissue from four CA-affected and five age-matched unaffected horses. Three pipelines for differential gene expression (DE) analysis were used (Tophat2/Cuffdiff2, Kallisto/EdgeR, and Kallisto/Sleuth) with 151 significant DE genes identified by all three pipelines in CA-affected horses. TOE1 (Log2(foldchange) = 0.92, p = 0.66) and MUTYH (Log2(foldchange) = 1.13, p = 0.66) were not differentially expressed. Among the major pathways that were differentially expressed, genes associated with calcium homeostasis and specifically expressed in Purkinje neurons, CALB1 (Log2(foldchange) = −1.7, p < 0.01) and CA8 (Log2(foldchange) = −0.97, p < 0.01), were significantly down-regulated, confirming loss of Purkinje neurons. There was also a significant up-regulation of markers for microglial phagocytosis, TYROBP (Log2(foldchange) = 1.99, p < 0.01) and TREM2 (Log2(foldchange) = 2.02, p < 0.01). These findings reaffirm a loss of Purkinje neurons in CA-affected horses along with a potential secondary loss of granular neurons and activation of microglial cells.
Appendix
Available only for authorised users
Literature
2.
go back to reference Koehler JW, Newcomer BW, Holland M, Caldwell JM. A novel inherited cerebellar abiotrophy in a cohort of related goats. J Comp Pathol. 2015;153(2–3):135–9.CrossRefPubMed Koehler JW, Newcomer BW, Holland M, Caldwell JM. A novel inherited cerebellar abiotrophy in a cohort of related goats. J Comp Pathol. 2015;153(2–3):135–9.CrossRefPubMed
3.
go back to reference Sato J, Yamada N, Kobayashi R, Tsuchitani M, Kobayashi Y. Morphometric analysis of progressive changes in hereditary cerebellar cortical degenerative disease (abiotrophy) in rabbits caused by abnormal synaptogenesis. J Toxicol Pathol. 2015;28(2):73–8.CrossRefPubMedPubMedCentral Sato J, Yamada N, Kobayashi R, Tsuchitani M, Kobayashi Y. Morphometric analysis of progressive changes in hereditary cerebellar cortical degenerative disease (abiotrophy) in rabbits caused by abnormal synaptogenesis. J Toxicol Pathol. 2015;28(2):73–8.CrossRefPubMedPubMedCentral
4.
go back to reference Shearman JR, Cook RW, McCowan C, Fletcher JL, Taylor RM, Wilton AN. Mapping cerebellar abiotrophy in Australian kelpies. Anim Genet. 2011;42(6):675–8.CrossRefPubMed Shearman JR, Cook RW, McCowan C, Fletcher JL, Taylor RM, Wilton AN. Mapping cerebellar abiotrophy in Australian kelpies. Anim Genet. 2011;42(6):675–8.CrossRefPubMed
5.
go back to reference DeBowes RM, Leipold HW, Turner-Beatty M. Cerebellar abiotrophy. Vet Clin North Am Equine Pract. 1987;3(2):345–52.PubMed DeBowes RM, Leipold HW, Turner-Beatty M. Cerebellar abiotrophy. Vet Clin North Am Equine Pract. 1987;3(2):345–52.PubMed
6.
go back to reference Blanco A, Moyano R, Vivo J, Flores-Acuna R, Molina A, Blanco C, et al. Purkinje cell apoptosis in Arabian horses with cerebellar abiotrophy. J Vet Med A Physiol Pathol Clin Med. 2006;53(6):286–7.CrossRefPubMed Blanco A, Moyano R, Vivo J, Flores-Acuna R, Molina A, Blanco C, et al. Purkinje cell apoptosis in Arabian horses with cerebellar abiotrophy. J Vet Med A Physiol Pathol Clin Med. 2006;53(6):286–7.CrossRefPubMed
7.
go back to reference Cavalleri JM, Metzger J, Hellige M, Lampe V, Stuckenschneider K, Tipold A, et al. Morphometric magnetic resonance imaging and genetic testing in cerebellar abiotrophy in Arabian horses. BMC Vet Res. 2013;9:105.CrossRefPubMedPubMedCentral Cavalleri JM, Metzger J, Hellige M, Lampe V, Stuckenschneider K, Tipold A, et al. Morphometric magnetic resonance imaging and genetic testing in cerebellar abiotrophy in Arabian horses. BMC Vet Res. 2013;9:105.CrossRefPubMedPubMedCentral
8.
go back to reference Palmer AC, Blakemore WF, Cook WR, Platt H, Whitwell KE. Cerebellar hypoplasia and degeneration in the young Arab horse: clinical and neuropathological features. Vet Rec. 1973;93(3):62–6.CrossRefPubMed Palmer AC, Blakemore WF, Cook WR, Platt H, Whitwell KE. Cerebellar hypoplasia and degeneration in the young Arab horse: clinical and neuropathological features. Vet Rec. 1973;93(3):62–6.CrossRefPubMed
9.
go back to reference Brault LS, Cooper CA, Famula TR, Murray JD, Penedo MC. Mapping of equine cerebellar abiotrophy to ECA2 and identification of a potential causative mutation affecting expression of MUTYH. Genomics. 2011;97(2):121–9.CrossRefPubMed Brault LS, Cooper CA, Famula TR, Murray JD, Penedo MC. Mapping of equine cerebellar abiotrophy to ECA2 and identification of a potential causative mutation affecting expression of MUTYH. Genomics. 2011;97(2):121–9.CrossRefPubMed
10.
go back to reference Brault LS, Famula TR, Penedo MC. Inheritance of cerebellar abiotrophy in Arabians. Am J Vet Res. 2011;72(7):940–4.CrossRefPubMed Brault LS, Famula TR, Penedo MC. Inheritance of cerebellar abiotrophy in Arabians. Am J Vet Res. 2011;72(7):940–4.CrossRefPubMed
11.
go back to reference Wagner E, Clement SL, Lykke-Andersen J. An unconventional human Ccr4-Caf1 deadenylase complex in nuclear cajal bodies. Mol Cell Biol. 2007;27(5):1686–95.CrossRefPubMed Wagner E, Clement SL, Lykke-Andersen J. An unconventional human Ccr4-Caf1 deadenylase complex in nuclear cajal bodies. Mol Cell Biol. 2007;27(5):1686–95.CrossRefPubMed
12.
go back to reference Zheng D, Ezzeddine N, Chen CY, Zhu W, He X, Shyu AB. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol. 2008;182(1):89–101.CrossRefPubMedPubMedCentral Zheng D, Ezzeddine N, Chen CY, Zhu W, He X, Shyu AB. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol. 2008;182(1):89–101.CrossRefPubMedPubMedCentral
13.
go back to reference Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA. 2013;4(1):17–34.CrossRefPubMed Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA. 2013;4(1):17–34.CrossRefPubMed
14.
go back to reference Parker R, Sheth UP. Bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25(5):635–46.CrossRefPubMed Parker R, Sheth UP. Bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25(5):635–46.CrossRefPubMed
15.
go back to reference Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, et al. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci. 2008;28(51):13793–804.CrossRefPubMed Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, et al. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci. 2008;28(51):13793–804.CrossRefPubMed
16.
go back to reference Baltanas FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol. 2011;21(4):374–88.CrossRefPubMed Baltanas FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M. Nucleolar disruption and cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in purkinje cells. Brain Pathol. 2011;21(4):374–88.CrossRefPubMed
17.
go back to reference Oka S, Ohno M, Tsuchimoto D, Sakumi K, Furuichi M, Nakabeppu Y. Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J. 2008;27(2):421–32.CrossRefPubMedPubMedCentral Oka S, Ohno M, Tsuchimoto D, Sakumi K, Furuichi M, Nakabeppu Y. Two distinct pathways of cell death triggered by oxidative damage to nuclear and mitochondrial DNAs. EMBO J. 2008;27(2):421–32.CrossRefPubMedPubMedCentral
18.
go back to reference Lee HM, Hu Z, Ma H, Greeley Jr GH, Wang C, Englander EW. Developmental changes in expression and subcellular localization of the DNA repair glycosylase, MYH, in the rat brain. J Neurochem. 2004;88(2):394–400. Lee HM, Hu Z, Ma H, Greeley Jr GH, Wang C, Englander EW. Developmental changes in expression and subcellular localization of the DNA repair glycosylase, MYH, in the rat brain. J Neurochem. 2004;88(2):394–400.
19.
go back to reference Sheng Z, Oka S, Tsuchimoto D, Abolhassani N, Nomaru H, Sakumi K, et al. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. J Clin Invest. 2012;122(12):4344–61.CrossRefPubMedPubMedCentral Sheng Z, Oka S, Tsuchimoto D, Abolhassani N, Nomaru H, Sakumi K, et al. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. J Clin Invest. 2012;122(12):4344–61.CrossRefPubMedPubMedCentral
20.
go back to reference Plotz G, Casper M, Raedle J, Hinrichsen I, Heckel V, Brieger A, et al. MUTYH gene expression and alternative splicing in controls and polyposis patients. Hum Mutat. 2012;33(7):1067–74.CrossRefPubMed Plotz G, Casper M, Raedle J, Hinrichsen I, Heckel V, Brieger A, et al. MUTYH gene expression and alternative splicing in controls and polyposis patients. Hum Mutat. 2012;33(7):1067–74.CrossRefPubMed
22.
go back to reference Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. 2010;26(17):2176–82.CrossRefPubMedPubMedCentral Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics. 2010;26(17):2176–82.CrossRefPubMedPubMedCentral
23.
go back to reference Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–73.CrossRefPubMed Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002;420(6915):563–73.CrossRefPubMed
25.
go back to reference Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.CrossRefPubMedPubMedCentral Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.CrossRefPubMedPubMedCentral
26.
go back to reference Bray N, Pimentel, H., Melsted, P. & Lior, Pachter. Near-optimal RNA-Seq quantification. 2015;arXiv:1505.02710. Bray N, Pimentel, H., Melsted, P. & Lior, Pachter. Near-optimal RNA-Seq quantification. 2015;arXiv:1505.02710.
27.
go back to reference Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53.CrossRefPubMed Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53.CrossRefPubMed
28.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.CrossRefPubMed Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.CrossRefPubMed
29.
go back to reference Team RDC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistcal Computing; 2010. Team RDC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistcal Computing; 2010.
30.
go back to reference Kuhn A, Kumar A, Beilina A, Dillman A, Cookson MR, Singleton AB. Cell population-specific expression analysis of human cerebellum. BMC Genomics. 2012:13:610. Kuhn A, Kumar A, Beilina A, Dillman A, Cookson MR, Singleton AB. Cell population-specific expression analysis of human cerebellum. BMC Genomics. 2012:13:610.
32.
go back to reference Bettencourt C, Ryten M, Forabosco P, Schorge S, Hersheson J, Hardy J, et al. Insights from cerebellar transcriptomic analysis into the pathogenesis of ataxia. JAMA Neurol. 2014;71(7):831–9.CrossRefPubMedPubMedCentral Bettencourt C, Ryten M, Forabosco P, Schorge S, Hersheson J, Hardy J, et al. Insights from cerebellar transcriptomic analysis into the pathogenesis of ataxia. JAMA Neurol. 2014;71(7):831–9.CrossRefPubMedPubMedCentral
33.
go back to reference Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44(D1):D336–42.CrossRefPubMed Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44(D1):D336–42.CrossRefPubMed
34.
go back to reference Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551–66.CrossRefPubMed Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551–66.CrossRefPubMed
35.
go back to reference D'Souza CA, Chopra V, Varhol R, Xie YY, Bohacec S, Zhao Y, et al. Identification of a set of genes showing regionally enriched expression in the mouse brain. BMC Neurosci. 2008;9:66.CrossRefPubMedPubMedCentral D'Souza CA, Chopra V, Varhol R, Xie YY, Bohacec S, Zhao Y, et al. Identification of a set of genes showing regionally enriched expression in the mouse brain. BMC Neurosci. 2008;9:66.CrossRefPubMedPubMedCentral
36.
go back to reference Shen EH, Overly CC, Jones AR. The Allen human brain atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci. 2012;35(12):711–4.CrossRefPubMed Shen EH, Overly CC, Jones AR. The Allen human brain atlas: comprehensive gene expression mapping of the human brain. Trends Neurosci. 2012;35(12):711–4.CrossRefPubMed
37.
go back to reference Biolatti C, Gianella P, Capucchio MT, Borrelli A, D'Angelo A. Late onset and rapid progression of cerebellar abiotrophy in a domestic shorthair cat. J Small Anim Pract. 2010;51(2):123–6.CrossRefPubMed Biolatti C, Gianella P, Capucchio MT, Borrelli A, D'Angelo A. Late onset and rapid progression of cerebellar abiotrophy in a domestic shorthair cat. J Small Anim Pract. 2010;51(2):123–6.CrossRefPubMed
38.
go back to reference Forman OP, De Risio L, Matiasek K, Platt S, Mellersh C. Spinocerebellar ataxia in the Italian Spinone dog is associated with an intronic GAA repeat expansion in ITPR1. Mamm Genome. 2015;26(1–2):108–17.CrossRefPubMed Forman OP, De Risio L, Matiasek K, Platt S, Mellersh C. Spinocerebellar ataxia in the Italian Spinone dog is associated with an intronic GAA repeat expansion in ITPR1. Mamm Genome. 2015;26(1–2):108–17.CrossRefPubMed
39.
go back to reference Sato J, Sasaki S, Yamada N, Tsuchitani M. Hereditary cerebellar degenerative disease (cerebellar cortical abiotrophy) in rabbits. Vet Pathol. 2012;49(4):621–8.CrossRefPubMed Sato J, Sasaki S, Yamada N, Tsuchitani M. Hereditary cerebellar degenerative disease (cerebellar cortical abiotrophy) in rabbits. Vet Pathol. 2012;49(4):621–8.CrossRefPubMed
40.
go back to reference Whittington RJ, Morton AG, Kennedy DJ. Cerebellar abiotrophy in crossbred cattle. Aust Vet J. 1989;66(1):12–5.CrossRefPubMed Whittington RJ, Morton AG, Kennedy DJ. Cerebellar abiotrophy in crossbred cattle. Aust Vet J. 1989;66(1):12–5.CrossRefPubMed
41.
go back to reference Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, Bras J, et al. Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiol Aging. 2013;34(12):2699–714.CrossRefPubMedPubMedCentral Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, Bras J, et al. Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiol Aging. 2013;34(12):2699–714.CrossRefPubMedPubMedCentral
42.
go back to reference Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77–98.CrossRefPubMed Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77–98.CrossRefPubMed
43.
go back to reference Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015;289:289–99.CrossRefPubMedPubMedCentral Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015;289:289–99.CrossRefPubMedPubMedCentral
44.
go back to reference Guillot-Sestier MV, Doty KR, Gate D, Rodriguez Jr J, Leung BP, Rezai-Zadeh K, et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron. 2015;85(3):534–48. Guillot-Sestier MV, Doty KR, Gate D, Rodriguez Jr J, Leung BP, Rezai-Zadeh K, et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron. 2015;85(3):534–48.
45.
go back to reference LE F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B. Glia as a turning point in the therapeutic strategy of Parkinson's disease. CNS Neurol Disord Drug Targets. 2010;9(3):349–72.CrossRef LE F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B. Glia as a turning point in the therapeutic strategy of Parkinson's disease. CNS Neurol Disord Drug Targets. 2010;9(3):349–72.CrossRef
46.
go back to reference Sultan M, Amstislavskiy V, Risch T, Schuette M, Dokel S, Ralser M, et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics. 2014;15:675.CrossRefPubMedPubMedCentral Sultan M, Amstislavskiy V, Risch T, Schuette M, Dokel S, Ralser M, et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics. 2014;15:675.CrossRefPubMedPubMedCentral
47.
go back to reference Papadimitriou D, Le Verche V, Jacquier A, Ikiz B, Przedborski S, Re DB. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis. 2010;37(3):493–502.CrossRefPubMed Papadimitriou D, Le Verche V, Jacquier A, Ikiz B, Przedborski S, Re DB. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis. 2010;37(3):493–502.CrossRefPubMed
48.
go back to reference Kaya N, Aldhalaan H, Al-Younes B, Colak D, Shuaib T, Al-Mohaileb F, et al. Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(7):826–34.CrossRefPubMed Kaya N, Aldhalaan H, Al-Younes B, Colak D, Shuaib T, Al-Mohaileb F, et al. Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(7):826–34.CrossRefPubMed
49.
go back to reference Hirota J, Ando H, Hamada K, Mikoshiba K. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J. 2003;372(Pt 2):435–41.CrossRefPubMedPubMedCentral Hirota J, Ando H, Hamada K, Mikoshiba K. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J. 2003;372(Pt 2):435–41.CrossRefPubMedPubMedCentral
50.
go back to reference Okubo Y, Suzuki J, Kanemaru K, Nakamura N, Shibata T, Iino M. Visualization of Ca2+ filling mechanisms upon synaptic inputs in the endoplasmic reticulum of cerebellar Purkinje cells. J Neurosci. 2015;35(48):15837–46.CrossRefPubMed Okubo Y, Suzuki J, Kanemaru K, Nakamura N, Shibata T, Iino M. Visualization of Ca2+ filling mechanisms upon synaptic inputs in the endoplasmic reticulum of cerebellar Purkinje cells. J Neurosci. 2015;35(48):15837–46.CrossRefPubMed
51.
go back to reference Paxinos G. Cerebellum and Cerebellar Connections. In: Science E, editor. The Rat Nervous System. 4th ed. Burlington: Elsevier Science; 2014. p. 1053. Paxinos G. Cerebellum and Cerebellar Connections. In: Science E, editor. The Rat Nervous System. 4th ed. Burlington: Elsevier Science; 2014. p. 1053.
52.
go back to reference Anderson WA, Flumerfelt BA. Long-term effects of parallel fiber loss in the cerebellar cortex of the adult and weanling rat. Brain Res. 1986;383(1–2):245–61.CrossRefPubMed Anderson WA, Flumerfelt BA. Long-term effects of parallel fiber loss in the cerebellar cortex of the adult and weanling rat. Brain Res. 1986;383(1–2):245–61.CrossRefPubMed
53.
go back to reference Neuman T, Keen A, Zuber MX, Kristjansson GI, Gruss P, Nornes HO. Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev Biol. 1993;160(1):186–95.CrossRefPubMed Neuman T, Keen A, Zuber MX, Kristjansson GI, Gruss P, Nornes HO. Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev Biol. 1993;160(1):186–95.CrossRefPubMed
54.
go back to reference Sullivan JM, Havrda MC, Kettenbach AN, Paolella BR, Zhang Z, Gerber SA, et al. Phosphorylation regulates Id2 degradation and mediates the proliferation of neural precursor cells. Stem Cells. 2016;34(5):1321–31.CrossRefPubMedPubMedCentral Sullivan JM, Havrda MC, Kettenbach AN, Paolella BR, Zhang Z, Gerber SA, et al. Phosphorylation regulates Id2 degradation and mediates the proliferation of neural precursor cells. Stem Cells. 2016;34(5):1321–31.CrossRefPubMedPubMedCentral
55.
go back to reference Cho DH, Hong YM, Lee HJ, Woo HN, Pyo JO, Mak TW, et al. Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. J Biol Chem. 2004;279(38):39942–50.CrossRefPubMed Cho DH, Hong YM, Lee HJ, Woo HN, Pyo JO, Mak TW, et al. Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. J Biol Chem. 2004;279(38):39942–50.CrossRefPubMed
56.
go back to reference Ko DC, Gamazon ER, Shukla KP, Pfuetzner RA, Whittington D, Holden TD, et al. Functional genetic screen of human diversity reveals that a methionine salvage enzyme regulates inflammatory cell death. Proc Natl Acad Sci U S A. 2012;109(35):E2343–52.CrossRefPubMedPubMedCentral Ko DC, Gamazon ER, Shukla KP, Pfuetzner RA, Whittington D, Holden TD, et al. Functional genetic screen of human diversity reveals that a methionine salvage enzyme regulates inflammatory cell death. Proc Natl Acad Sci U S A. 2012;109(35):E2343–52.CrossRefPubMedPubMedCentral
Metadata
Title
Defining Trends in Global Gene Expression in Arabian Horses with Cerebellar Abiotrophy
Authors
E. Y. Scott
M. C. T. Penedo
J. D. Murray
C. J. Finno
Publication date
01-04-2017
Publisher
Springer US
Published in
The Cerebellum / Issue 2/2017
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-016-0823-8

Other articles of this Issue 2/2017

The Cerebellum 2/2017 Go to the issue