Skip to main content
Top
Published in: The Cerebellum 1/2014

01-02-2014 | Review

Consensus Paper: The Cerebellum's Role in Movement and Cognition

Authors: Leonard F. Koziol, Deborah Budding, Nancy Andreasen, Stefano D’Arrigo, Sara Bulgheroni, Hiroshi Imamizu, Masao Ito, Mario Manto, Cherie Marvel, Krystal Parker, Giovanni Pezzulo, Narender Ramnani, Daria Riva, Jeremy Schmahmann, Larry Vandervert, Tadashi Yamazaki

Published in: The Cerebellum | Issue 1/2014

Login to get access

Abstract

While the cerebellum's role in motor function is well recognized, the nature of its concurrent role in cognitive function remains considerably less clear. The current consensus paper gathers diverse views on a variety of important roles played by the cerebellum across a range of cognitive and emotional functions. This paper considers the cerebellum in relation to neurocognitive development, language function, working memory, executive function, and the development of cerebellar internal control models and reflects upon some of the ways in which better understanding the cerebellum's status as a “supervised learning machine” can enrich our ability to understand human function and adaptation. As all contributors agree that the cerebellum plays a role in cognition, there is also an agreement that this conclusion remains highly inferential. Many conclusions about the role of the cerebellum in cognition originate from applying known information about cerebellar contributions to the coordination and quality of movement. These inferences are based on the uniformity of the cerebellum's compositional infrastructure and its apparent modular organization. There is considerable support for this view, based upon observations of patients with pathology within the cerebellum.
Footnotes
1
Marvel note: funding source for this study: K01 DA030442 (NIH)
 
2
It is proposed that this feature of the nearly limitless blending of internal models of sound patterns with visual-spatial imagery explains the origin of what Hockett (185) referred to as the “duality of patterning” feature of language (meaningless sounds or symbols can be rearranged to produce an unlimited number of messages, e.g., Hockett described how Morse Code exemplifies this feature). Hockett argued that duality of patterning is unique to human language. However, since monkeys have shown fronto-cerebellar action in switching tools [170] indicating an open-ended synthesis of multiple visual-spatial internal models, duality of patterning appears to be shared, at least in nascent form, with other primate species, and, therefore, that duality patterning originates not in the tags that place moments of visual-spatial working memory in long-term memory, but in the limitless potential of internal models of those visual spatial moments themselves.
 
Literature
1.
go back to reference Schmahmann JD. The cerebellum and cognition. London: Academic; 1997. Schmahmann JD. The cerebellum and cognition. London: Academic; 1997.
2.
go back to reference Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMed Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMed
3.
go back to reference Baillieux H, Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73. Baillieux H, Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: Insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.
4.
go back to reference Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—An fMRI study. Neuroimage. 2011;54(4):2612–22.PubMed Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—An fMRI study. Neuroimage. 2011;54(4):2612–22.PubMed
5.
go back to reference Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMed Molinari M, Chiricozzi FR, Clausi S, Tedesco AM, De LM, Leggio MG. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7(4):611–5.PubMed
6.
go back to reference Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMed Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMed
7.
go back to reference Parvizi J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci. 2009;13(8):354–9.PubMed Parvizi J. Corticocentric myopia: old bias in new cognitive sciences. Trends Cogn Sci. 2009;13(8):354–9.PubMed
8.
go back to reference Manto M, Haines D. Cerebellar research: two centuries of discoveries. The Cerebellum. 2012;11:446–8. Manto M, Haines D. Cerebellar research: two centuries of discoveries. The Cerebellum. 2012;11:446–8.
9.
go back to reference Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMed Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMed
10.
go back to reference Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cerebral Cortex. 2013;(in press). Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cerebral Cortex. 2013;(in press).
11.
go back to reference Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.PubMed Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.PubMed
12.
go back to reference Middleton FA, Strick PL. Basal ganglia and cerebellar output influences non-motor function. Mol Psychiatry. 1996;1(6):429–33.PubMed Middleton FA, Strick PL. Basal ganglia and cerebellar output influences non-motor function. Mol Psychiatry. 1996;1(6):429–33.PubMed
13.
go back to reference Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.PubMed Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.PubMed
14.
go back to reference Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43(2):388–98.PubMed Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage. 2008;43(2):388–98.PubMed
15.
go back to reference Shiffrin RM, Schneider W. Automatic and controlled processing revisited. Psychol Rev. 1984;91(2):269–76.PubMed Shiffrin RM, Schneider W. Automatic and controlled processing revisited. Psychol Rev. 1984;91(2):269–76.PubMed
16.
go back to reference Blomfield S, Marr D. How the cerebellum may be used. Nature. 1970;227(5264):1224–8.PubMed Blomfield S, Marr D. How the cerebellum may be used. Nature. 1970;227(5264):1224–8.PubMed
17.
go back to reference Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.PubMed Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.PubMed
18.
go back to reference Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.
19.
go back to reference Greger B, Norris S. Simple spike firing in the posterior lateral cerebellar cortex of Macaque Mulatta was correlated with success-failure during a visually guided reaching task. Exp Brain Res. 2005;167(4):660–5.PubMed Greger B, Norris S. Simple spike firing in the posterior lateral cerebellar cortex of Macaque Mulatta was correlated with success-failure during a visually guided reaching task. Exp Brain Res. 2005;167(4):660–5.PubMed
20.
go back to reference Gilbert PF, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128(2):309–28.PubMed Gilbert PF, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128(2):309–28.PubMed
21.
go back to reference Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol. 1992;68(6):2222–36.PubMed Ojakangas CL, Ebner TJ. Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol. 1992;68(6):2222–36.PubMed
22.
go back to reference Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11(10):1185–92.PubMedCentralPubMed Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11(10):1185–92.PubMedCentralPubMed
23.
go back to reference Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478(3):248–68.PubMed Schmahmann JD, Rosene DL, Pandya DN. Motor projections to the basis pontis in rhesus monkey. J Comp Neurol. 2004;478(3):248–68.PubMed
24.
go back to reference Glickstein M, May III JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235(3):343–59.PubMed Glickstein M, May III JG, Mercier BE. Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol. 1985;235(3):343–59.PubMed
25.
go back to reference Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83.PubMed Brodal P. The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain. 1978;101(2):251–83.PubMed
26.
go back to reference Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.PubMed Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20(1):214–28.PubMed
27.
go back to reference Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMed Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMed
28.
go back to reference Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2012;11(2):366–83.PubMed Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2012;11(2):366–83.PubMed
29.
go back to reference Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMed Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMed
30.
go back to reference Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMed Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.PubMed
31.
go back to reference Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289(1):53–73.PubMed Schmahmann JD, Pandya DN. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol. 1989;289(1):53–73.PubMed
32.
go back to reference Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337(1):94–112.PubMed Schmahmann JD, Pandya DN. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993;337(1):94–112.PubMed
33.
go back to reference Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.PubMed Schmahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett. 1995;199(3):175–8.PubMed
34.
go back to reference Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMed Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMed
35.
go back to reference Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.PubMed Schmahmann JD, Pandya DN. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci. 1997;17(1):438–58.PubMed
36.
go back to reference Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMed Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMed
37.
go back to reference Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52.PubMed Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52.PubMed
38.
go back to reference Bunge SA. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci. 2004;4(4):564–79.PubMed Bunge SA. How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci. 2004;4(4):564–79.PubMed
39.
go back to reference Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999;400(6741):233–8.PubMed Platt ML, Glimcher PW. Neural correlates of decision variables in parietal cortex. Nature. 1999;400(6741):233–8.PubMed
40.
go back to reference Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001;411(6840):953–6.PubMed Wallis JD, Anderson KC, Miller EK. Single neurons in prefrontal cortex encode abstract rules. Nature. 2001;411(6840):953–6.PubMed
41.
go back to reference Wallis JD, Miller EK. From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol. 2003;90(3):1790–806.PubMed Wallis JD, Miller EK. From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol. 2003;90(3):1790–806.PubMed
42.
go back to reference Miller EK, Nieder A, Freedman DJ, Wallis JD. Neural correlates of categories and concepts. Curr Opin Neurobiol. 2003;13(2):198–203.PubMed Miller EK, Nieder A, Freedman DJ, Wallis JD. Neural correlates of categories and concepts. Curr Opin Neurobiol. 2003;13(2):198–203.PubMed
43.
go back to reference O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.PubMed O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.PubMed
44.
go back to reference Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. Journal of Neuroscience. 2011;31(6):2305–12. Balsters JH, Ramnani N. Cerebellar plasticity and the automation of first-order rules. Journal of Neuroscience. 2011;31(6):2305–12.
45.
go back to reference Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMed Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMed
46.
go back to reference Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK, editors. The human nervous system. 2nd ed. San Diego: Academic; 2004. p. 321–92. Voogd J. Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK, editors. The human nervous system. 2nd ed. San Diego: Academic; 2004. p. 321–92.
47.
go back to reference Ito M. The cerebellum and neural control. New York: Raven Press; 1984. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.
48.
go back to reference Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(23):189–214. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(23):189–214.
49.
go back to reference Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71.PubMed Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71.PubMed
50.
go back to reference Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMed Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMed
51.
go back to reference Schmahmann JD, Pandya DN. The cereberocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60. Schmahmann JD, Pandya DN. The cereberocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 31–60.
52.
go back to reference Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMed Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMed
53.
go back to reference Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMed Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMed
54.
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCentralPubMed Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCentralPubMed
55.
go back to reference Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.PubMed Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.PubMed
56.
go back to reference Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMed Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMed
57.
go back to reference Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61.PubMedCentralPubMed Schmahmann JD, MacMore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61.PubMedCentralPubMed
58.
go back to reference Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.PubMed Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.PubMed
59.
go back to reference Snider RC, Stowell A. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol. 1944;7:331–57. Snider RC, Stowell A. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol. 1944;7:331–57.
60.
go back to reference Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMed Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMed
61.
go back to reference Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMed Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(Pt 5):1041–50.PubMed
62.
go back to reference Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMed Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMed
63.
go back to reference Chheda M, Sherman J, Schmahmann JD. Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology. 2002;58 suppl 3:356. Chheda M, Sherman J, Schmahmann JD. Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology. 2002;58 suppl 3:356.
64.
go back to reference Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(Pt 10):2646–60.PubMed Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(Pt 10):2646–60.PubMed
65.
go back to reference Geschwind DH. Focusing attention on cognitive impairment in spinocerebellar ataxia. Arch Neurol. 1999;56(1):20–2.PubMed Geschwind DH. Focusing attention on cognitive impairment in spinocerebellar ataxia. Arch Neurol. 1999;56(1):20–2.PubMed
66.
go back to reference Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ. Associative learning. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 151–89. Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ. Associative learning. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 151–89.
67.
go back to reference Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord. 2007;22(6):798–803.PubMed Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord. 2007;22(6):798–803.PubMed
68.
go back to reference Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMed Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMed
69.
go back to reference Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCentralPubMed Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCentralPubMed
70.
go back to reference Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781.PubMed Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781.PubMed
71.
go back to reference Allen G, Courchesne E. The cerebellum and non-motor function: clinical implications. Mol Psychiatry. 1998;3(3):207–10.PubMed Allen G, Courchesne E. The cerebellum and non-motor function: clinical implications. Mol Psychiatry. 1998;3(3):207–10.PubMed
72.
go back to reference Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMed Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMed
73.
go back to reference Lidzba K, Wilke M, Staudt M, Krageloh-Mann I, Grodd W. Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang. 2008;106(3):204–10.PubMed Lidzba K, Wilke M, Staudt M, Krageloh-Mann I, Grodd W. Reorganization of the cerebro-cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang. 2008;106(3):204–10.PubMed
74.
go back to reference Riva D. Higher cognitive function processing in developmental age: specialized areas, connections, and districuted networks. In: Riva D, Njiokiktjien C, Bulgheroni S, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2011. p. 1–8. Riva D. Higher cognitive function processing in developmental age: specialized areas, connections, and districuted networks. In: Riva D, Njiokiktjien C, Bulgheroni S, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2011. p. 1–8.
75.
go back to reference Schmahmann JD, Pandya DN. Fiber pathways of the brain. USA: OUP; 2009. Schmahmann JD, Pandya DN. Fiber pathways of the brain. USA: OUP; 2009.
76.
go back to reference Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol. 2008;35(1):42–50.PubMed Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol. 2008;35(1):42–50.PubMed
77.
go back to reference Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;4:21.PubMedCentralPubMed Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;4:21.PubMedCentralPubMed
78.
go back to reference Limperopoulos C, du Plessis AJ. Disorders of cerebellar growth and development. Curr Opin Pediatr. 2006;18(6):621–7.PubMed Limperopoulos C, du Plessis AJ. Disorders of cerebellar growth and development. Curr Opin Pediatr. 2006;18(6):621–7.PubMed
79.
go back to reference Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.PubMed Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(Pt 5):1051–61.PubMed
80.
go back to reference Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S. The role of the cerebellum in processing higher cognitive and social functions in congenital and acquired disease in developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 133–43. Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S. The role of the cerebellum in processing higher cognitive and social functions in congenital and acquired disease in developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 133–43.
81.
go back to reference Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.PubMed Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.PubMed
82.
go back to reference Riva D, Pantaleoni C, Nicheli F, Bulgheroni S, Bagnasco I. Cervelletto e funzioni psyichiche superiori in eta evolutiva: risultati preliminari in una serie di bambini con ipoplasia cerebellare congenita. Giorn Neuropsich Eta Evol. 2001;21:252–6. Riva D, Pantaleoni C, Nicheli F, Bulgheroni S, Bagnasco I. Cervelletto e funzioni psyichiche superiori in eta evolutiva: risultati preliminari in una serie di bambini con ipoplasia cerebellare congenita. Giorn Neuropsich Eta Evol. 2001;21:252–6.
83.
go back to reference Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.PubMed Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.PubMed
84.
go back to reference Riva D, Annunziata S, Contarino V, Erbetta A, Aquino D, Bulgheroni S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum 2013;(in press). Riva D, Annunziata S, Contarino V, Erbetta A, Aquino D, Bulgheroni S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum 2013;(in press).
85.
go back to reference Riva D, Giorgi C. The contribution of the cerebellum to mental and social functions in developmental age. Fiziol Cheloveka. 2000;26(1):27–31.PubMed Riva D, Giorgi C. The contribution of the cerebellum to mental and social functions in developmental age. Fiziol Cheloveka. 2000;26(1):27–31.PubMed
86.
go back to reference Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad KO, Ridolfi LA, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126(Pt 9):1998–2008.PubMed Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad KO, Ridolfi LA, et al. Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain. 2003;126(Pt 9):1998–2008.PubMed
87.
go back to reference Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.PubMed Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.PubMed
88.
go back to reference Paquier P, van Mourik M, van Dongen H, Catsman-Berrevoets C, Brison A. Cerebellar mutism syndromes with subsequent dysarthria: a study of three children and a review of the literature. Rev Neurol (Paris). 2003;159(11):1017–27. Paquier P, van Mourik M, van Dongen H, Catsman-Berrevoets C, Brison A. Cerebellar mutism syndromes with subsequent dysarthria: a study of three children and a review of the literature. Rev Neurol (Paris). 2003;159(11):1017–27.
89.
go back to reference Riva D. The cerebellar contribution to language and sequential functions: evidence from a child with cerebellitis. Cortex. 1998;34(2):279–87.PubMed Riva D. The cerebellar contribution to language and sequential functions: evidence from a child with cerebellitis. Cortex. 1998;34(2):279–87.PubMed
90.
go back to reference Tavano A, Fabbro F, Borgatti R. Speaking without the cerebellum. In: Schalley AC, Khlentzos D, editors. Mental states. 1st ed. Amsterdam: John Benjamins Publishing Company; 2007. p. 171–90. Tavano A, Fabbro F, Borgatti R. Speaking without the cerebellum. In: Schalley AC, Khlentzos D, editors. Mental states. 1st ed. Amsterdam: John Benjamins Publishing Company; 2007. p. 171–90.
91.
go back to reference Bolduc ME, du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.PubMed Bolduc ME, du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.PubMed
92.
go back to reference Ronning C, Sundet K, Due-Tonnessen B, Lundar T, Helseth E. Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg. 2005;41(1):15–21.PubMed Ronning C, Sundet K, Due-Tonnessen B, Lundar T, Helseth E. Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatr Neurosurg. 2005;41(1):15–21.PubMed
93.
go back to reference Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.PubMed Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.PubMed
94.
go back to reference Burk K. Cognition in hereditary ataxia. Cerebellum. 2007;6(3):280–6.PubMed Burk K. Cognition in hereditary ataxia. Cerebellum. 2007;6(3):280–6.PubMed
95.
go back to reference Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129(Pt 9):2341–52.PubMed Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129(Pt 9):2341–52.PubMed
96.
go back to reference Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.
97.
go back to reference Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47(1):81–100.PubMed Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47(1):81–100.PubMed
98.
go back to reference Lalonde R, Filali M, Bensoula AN, Lestienne F. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem. 1996;65(2):113–20.PubMed Lalonde R, Filali M, Bensoula AN, Lestienne F. Sensorimotor learning in three cerebellar mutant mice. Neurobiol Learn Mem. 1996;65(2):113–20.PubMed
99.
go back to reference Lalonde R, Strazielle C. Motor performance and regional brain metabolism of spontaneous murine mutations with cerebellar atrophy. Behav Brain Res. 2001;125(1):103–8.PubMed Lalonde R, Strazielle C. Motor performance and regional brain metabolism of spontaneous murine mutations with cerebellar atrophy. Behav Brain Res. 2001;125(1):103–8.PubMed
100.
go back to reference D'Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.PubMed D'Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.PubMed
101.
go back to reference Kameya T, Abe K, Aoki M, Sahara M, Tobita M, Konno H, et al. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology. 1995;45(8):1587–94.PubMed Kameya T, Abe K, Aoki M, Sahara M, Tobita M, Konno H, et al. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology. 1995;45(8):1587–94.PubMed
102.
go back to reference Spadaro M, Giunti P, Lulli P, Frontali M, Jodice C, Cappellacci S, et al. HLA-linked spinocerebellar ataxia: a clinical and genetic study of large Italian kindreds. Acta Neurol Scand. 1992;85(4):257–65.PubMed Spadaro M, Giunti P, Lulli P, Frontali M, Jodice C, Cappellacci S, et al. HLA-linked spinocerebellar ataxia: a clinical and genetic study of large Italian kindreds. Acta Neurol Scand. 1992;85(4):257–65.PubMed
103.
go back to reference Giunti P, Sweeney MG, Spadaro M, Jodice C, Novelletto A, Malaspina P, et al. The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain. 1994;117(Pt 4):645–9.PubMed Giunti P, Sweeney MG, Spadaro M, Jodice C, Novelletto A, Malaspina P, et al. The trinucleotide repeat expansion on chromosome 6p (SCA1) in autosomal dominant cerebellar ataxias. Brain. 1994;117(Pt 4):645–9.PubMed
104.
go back to reference Sasaki H, Fukazawa T, Yanagihara T, Hamada T, Shima K, Matsumoto A, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand. 1996;93(1):64–71.PubMed Sasaki H, Fukazawa T, Yanagihara T, Hamada T, Shima K, Matsumoto A, et al. Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol Scand. 1996;93(1):64–71.PubMed
105.
go back to reference Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56(1):43–50.PubMed Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJ. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56(1):43–50.PubMed
106.
go back to reference Wadia NH. A variety of olivopontocerebellar atrophy distinguished by slow eye movements and peripheral neuropathy. Adv Neurol. 1984;41:149–77.PubMed Wadia NH. A variety of olivopontocerebellar atrophy distinguished by slow eye movements and peripheral neuropathy. Adv Neurol. 1984;41:149–77.PubMed
107.
go back to reference Burk K, Stevanin G, Didierjean O, Cancel G, Trottier Y, Skalej M, et al. Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus. J Neurol. 1997;244(4):256–61.PubMed Burk K, Stevanin G, Didierjean O, Cancel G, Trottier Y, Skalej M, et al. Clinical and genetic analysis of three German kindreds with autosomal dominant cerebellar ataxia type I linked to the SCA2 locus. J Neurol. 1997;244(4):256–61.PubMed
108.
go back to reference Le PF, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7. Le PF, Zappala G, Saponara R, Domina E, Restivo D, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201(1–2):53–7.
109.
go back to reference Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado–Joseph disease. Ann Neurol. 1996;40(3):421–7.PubMed Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J. Cognitive deficits in Machado–Joseph disease. Ann Neurol. 1996;40(3):421–7.PubMed
110.
go back to reference Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7(2):125–37.PubMed Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. Cerebellum. 2008;7(2):125–37.PubMed
111.
go back to reference Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28(7):703–9.PubMed Coutinho P, Andrade C. Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology. 1978;28(7):703–9.PubMed
112.
go back to reference Fowler HL. Machado–Joseph–Azorean disease. A ten-year study. Arch Neurol. 1984;41(9):921–5.PubMed Fowler HL. Machado–Joseph–Azorean disease. A ten-year study. Arch Neurol. 1984;41(9):921–5.PubMed
113.
go back to reference Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado–Joseph disease. Adv Neurol. 1993;61:139–53.PubMed Sequeiros J, Coutinho P. Epidemiology and clinical aspects of Machado–Joseph disease. Adv Neurol. 1993;61:139–53.PubMed
114.
go back to reference Globas C, Bosch S, Zuhlke C, Daum I, Dichgans J, Burk K. The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(12):1482–7.PubMed Globas C, Bosch S, Zuhlke C, Daum I, Dichgans J, Burk K. The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol. 2003;250(12):1482–7.PubMed
115.
go back to reference Stevanin G, Durr A, Benammar N, Brice A. Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum. 2005;4(1):43–6.PubMed Stevanin G, Durr A, Benammar N, Brice A. Spinocerebellar ataxia with mental retardation (SCA13). Cerebellum. 2005;4(1):43–6.PubMed
116.
go back to reference Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan: population-based epidemiological study. Cerebellum. 2008;7(2):189–97.PubMed Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan: population-based epidemiological study. Cerebellum. 2008;7(2):189–97.PubMed
117.
go back to reference Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMed Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMed
118.
go back to reference Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Hurtig R, Rezai K, et al. Short-term and long-term verbal memory—a positron emission tomography study. Proc Natl Acad Sci U S A. 1995;92(11):5111–5.PubMedCentralPubMed Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Hurtig R, Rezai K, et al. Short-term and long-term verbal memory—a positron emission tomography study. Proc Natl Acad Sci U S A. 1995;92(11):5111–5.PubMedCentralPubMed
119.
go back to reference Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Rezai K, Watkins GL, et al. PET studies of memory: novel and practiced free recall of complex narratives.1. Neuroimage. 1995;2(4):284–95.PubMed Andreasen NC, Oleary DS, Arndt S, Cizadlo T, Rezai K, Watkins GL, et al. PET studies of memory: novel and practiced free recall of complex narratives.1. Neuroimage. 1995;2(4):284–95.PubMed
120.
go back to reference Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, et al. PET studies of memory: novel versus practiced free recall of word lists.2. Neuroimage. 1995;2(4):296–305.PubMed Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL, et al. PET studies of memory: novel versus practiced free recall of word lists.2. Neuroimage. 1995;2(4):296–305.PubMed
121.
go back to reference Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins L, et al. Remembering the past—2 facets of episodic memory explored with positron emission tomography. Am J Psychiatry. 1995;152(11):1576–85.PubMed Andreasen NC, Oleary DS, Cizadlo T, Arndt S, Rezai K, Watkins L, et al. Remembering the past—2 facets of episodic memory explored with positron emission tomography. Am J Psychiatry. 1995;152(11):1576–85.PubMed
122.
go back to reference Andreasen NC, O'Leary DS, Paradiso S, Cizadlo T, Arndt S, Watkins GL, et al. The cerebellum plays a role in conscious episodic memory retrieval. Hum Brain Mapp. 1999;8(4):226–34.PubMed Andreasen NC, O'Leary DS, Paradiso S, Cizadlo T, Arndt S, Watkins GL, et al. The cerebellum plays a role in conscious episodic memory retrieval. Hum Brain Mapp. 1999;8(4):226–34.PubMed
123.
go back to reference Andreasen NC, Calarge CA, O'Leary DS. Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophr Bull. 2008;34(4):708–19.PubMed Andreasen NC, Calarge CA, O'Leary DS. Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophr Bull. 2008;34(4):708–19.PubMed
124.
go back to reference Andreasen NC, Paradiso S, O'Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.PubMed Andreasen NC, Paradiso S, O'Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical subcortical-cerebellar circuitry? Schizophr Bull. 1998;24(2):203–18.PubMed
125.
go back to reference Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia. Biol Psychiatry. 1999;45(1):41–8.PubMed Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia. Biol Psychiatry. 1999;45(1):41–8.PubMed
126.
go back to reference Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: Evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46(5):703–11.PubMed Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: Evidence in support of the cognitive dysmetria concept. Biol Psychiatry. 1999;46(5):703–11.PubMed
127.
go back to reference Andreasen NC, Cohen G, Harris G, Cizadlo T, Parkkinen J, Rezai K, et al. Image-processing for the study of brain structure and function—problems and programs. J Neuropsychiatry Clin Neurosci. 1992;4(2):125–33.PubMed Andreasen NC, Cohen G, Harris G, Cizadlo T, Parkkinen J, Rezai K, et al. Image-processing for the study of brain structure and function—problems and programs. J Neuropsychiatry Clin Neurosci. 1992;4(2):125–33.PubMed
128.
go back to reference Andreasen NC, Oleary DS, Flaum M, Nopoulos P, Watkins GL, Ponto LLB, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997;349(9067):1730–4.PubMed Andreasen NC, Oleary DS, Flaum M, Nopoulos P, Watkins GL, Ponto LLB, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997;349(9067):1730–4.PubMed
129.
go back to reference Andreasen NC. Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science. 1997;275(5306):1586–93.PubMed Andreasen NC. Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science. 1997;275(5306):1586–93.PubMed
130.
go back to reference Nopoulos P, Torres I, Flaum M, Andreasen NC, Ehrhardt JC, Yuh WTC. Brain morphology in first-episode schizophrenia. Am J Psychiatry. 1995;152(12):1721–3.PubMed Nopoulos P, Torres I, Flaum M, Andreasen NC, Ehrhardt JC, Yuh WTC. Brain morphology in first-episode schizophrenia. Am J Psychiatry. 1995;152(12):1721–3.PubMed
131.
go back to reference Nopoulos PC, Flaum M, Andreasen NC, Swayze VW. Gray-matter heterotopias in schizophrenia. Psychiatry Res-Neuroimaging. 1995;61(1):11–4. Nopoulos PC, Flaum M, Andreasen NC, Swayze VW. Gray-matter heterotopias in schizophrenia. Psychiatry Res-Neuroimaging. 1995;61(1):11–4.
132.
go back to reference Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Ponto LLB, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport. 1998;9(8):1895–9.PubMed Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Ponto LLB, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport. 1998;9(8):1895–9.PubMed
133.
go back to reference Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, et al. Human frontal cortex: an MRI-based parcellation method. Neuroimage. 1999;10(5):500–19.PubMed Crespo-Facorro B, Kim JJ, Andreasen NC, O'Leary DS, Wiser AK, Bailey JM, et al. Human frontal cortex: an MRI-based parcellation method. Neuroimage. 1999;10(5):500–19.PubMed
134.
go back to reference Crespo-Facorro B, Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Neural basis of novel and well-learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp. 2001;12(4):219–31.PubMed Crespo-Facorro B, Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Neural basis of novel and well-learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp. 2001;12(4):219–31.PubMed
135.
go back to reference Crespo-Facorro B, Paradiso S, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA. 2001;286(4):427–35.PubMed Crespo-Facorro B, Paradiso S, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA. 2001;286(4):427–35.PubMed
136.
go back to reference Miller DD, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry. 2001;49(8):704–15.PubMed Miller DD, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry. 2001;49(8):704–15.PubMed
137.
go back to reference Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC. Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry Res. 2008;163(3):193–200.PubMed Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC. Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry Res. 2008;163(3):193–200.PubMed
138.
139.
go back to reference Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998;105(1):158–73.PubMed Baddeley A, Gathercole S, Papagno C. The phonological loop as a language learning device. Psychol Rev. 1998;105(1):158–73.PubMed
140.
go back to reference Aboitiz F, Garcia RR, Bosman C, Brunetti E. Cortical memory mechanisms and language origins. Brain Lang. 2006;98(1):40–56.PubMed Aboitiz F, Garcia RR, Bosman C, Brunetti E. Cortical memory mechanisms and language origins. Brain Lang. 2006;98(1):40–56.PubMed
141.
go back to reference Gathercole SE, Baddeley AD. Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J Mem Lang. 1989;28(2):200–13. Gathercole SE, Baddeley AD. Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J Mem Lang. 1989;28(2):200–13.
142.
go back to reference Gathercole SE, Baddeley AD. Phonological memory deficits in language disordered children: is there a causal connection? J Mem Lang. 1990;29(3):336–60. Gathercole SE, Baddeley AD. Phonological memory deficits in language disordered children: is there a causal connection? J Mem Lang. 1990;29(3):336–60.
143.
go back to reference Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.PubMed Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.PubMed
144.
go back to reference Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;46(7):896–906.PubMedCentralPubMed Durisko C, Fiez JA. Functional activation in the cerebellum during working memory and simple speech tasks. Cortex. 2010;46(7):896–906.PubMedCentralPubMed
145.
go back to reference Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.PubMed Chen SH, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43(9):1227–37.PubMed
146.
go back to reference Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage. 2007;34(3):1253–69.PubMed Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage. 2007;34(3):1253–69.PubMed
147.
go back to reference Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.PubMed Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.PubMed
148.
go back to reference Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.PubMed Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17(24):9675–85.PubMed
149.
go back to reference Marvel CL, Desmond JE. From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang. 2012;120(1):42–51.PubMedCentralPubMed Marvel CL, Desmond JE. From storage to manipulation: how the neural correlates of verbal working memory reflect varying demands on inner speech. Brain Lang. 2012;120(1):42–51.PubMedCentralPubMed
150.
go back to reference Hulsmann E, Erb M, Grodd W. From will to action: sequential cerebellar contributions to voluntary movement. Neuroimage. 2003;20(3):1485–92.PubMed Hulsmann E, Erb M, Grodd W. From will to action: sequential cerebellar contributions to voluntary movement. Neuroimage. 2003;20(3):1485–92.PubMed
151.
go back to reference Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.PubMedCentralPubMed Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.PubMedCentralPubMed
152.
go back to reference Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.PubMed Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.PubMed
153.
go back to reference Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(Pt 2):306–20.PubMed Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129(Pt 2):306–20.PubMed
154.
go back to reference Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.PubMed Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6(3):202–13.PubMed
155.
go back to reference Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.PubMed Ackermann H, Mathiak K, Ivry RB. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neurosci Rev. 2004;3(1):14–22.PubMed
156.
go back to reference Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage. 2003;19(4):1510–20.PubMed Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage. 2003;19(4):1510–20.PubMed
157.
go back to reference Marvel CL, Faulkner ML, Strain EC, Mintzer MZ, Desmond JE. An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients. Cerebellum. 2012;11(1):300–10.PubMedCentralPubMed Marvel CL, Faulkner ML, Strain EC, Mintzer MZ, Desmond JE. An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients. Cerebellum. 2012;11(1):300–10.PubMedCentralPubMed
158.
go back to reference Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–11.PubMed Silverman DH, Dy CJ, Castellon SA, Lai J, Pio BS, Abraham L, et al. Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5–10 years after chemotherapy. Breast Cancer Res Treat. 2007;103(3):303–11.PubMed
159.
go back to reference Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA. Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 2004;14(2):150–7.PubMed Sweet LH, Rao SM, Primeau M, Mayer AR, Cohen RA. Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 2004;14(2):150–7.PubMed
160.
go back to reference Valera EM, Faraone SV, Biederman J, Poldrack RA, Seidman LJ. Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(5):439–47.PubMed Valera EM, Faraone SV, Biederman J, Poldrack RA, Seidman LJ. Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(5):439–47.PubMed
161.
go back to reference Beneventi H, Tonnessen FE, Ersland L, Hugdahl K. Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci. 2010;120(1):51–9.PubMed Beneventi H, Tonnessen FE, Ersland L, Hugdahl K. Working memory deficit in dyslexia: behavioral and FMRI evidence. Int J Neurosci. 2010;120(1):51–9.PubMed
162.
go back to reference Koch K, Wagner G, Schachtzabel C, Schultz C, Sauer H, Schlosser RG. Association between learning capabilities and practice-related activation changes in schizophrenia. Schizophr Bull. 2010;36(3):486–95.PubMed Koch K, Wagner G, Schachtzabel C, Schultz C, Sauer H, Schlosser RG. Association between learning capabilities and practice-related activation changes in schizophrenia. Schizophr Bull. 2010;36(3):486–95.PubMed
163.
go back to reference White T, Schmidt M, Kim DI, Calhoun VD. Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cereb Cortex. 2011;21(3):510–8.PubMed White T, Schmidt M, Kim DI, Calhoun VD. Disrupted functional brain connectivity during verbal working memory in children and adolescents with schizophrenia. Cereb Cortex. 2011;21(3):510–8.PubMed
164.
go back to reference Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.PubMed Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.PubMed
165.
go back to reference Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008.PubMed Leiner HC, Leiner AL, Dow RS. Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci. 1989;103(5):998–1008.PubMed
166.
go back to reference Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43(3):338–49.PubMed Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43(3):338–49.PubMed
167.
go back to reference Goldman-Rakic PS. Working memory and the mind. Sci Am. 1992;267(3):110–7.PubMed Goldman-Rakic PS. Working memory and the mind. Sci Am. 1992;267(3):110–7.PubMed
168.
go back to reference Miyake A. Models of working memory: mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press; 1999. Miyake A. Models of working memory: mechanisms of active maintenance and executive control. Cambridge: Cambridge University Press; 1999.
169.
go back to reference Fragaszy DM, Cummins-Sebree SE. Relational spatial reasoning by a nonhuman: the example of capuchin monkeys. Behav Cogn Neurosci Rev. 2005;4(4):282–306.PubMed Fragaszy DM, Cummins-Sebree SE. Relational spatial reasoning by a nonhuman: the example of capuchin monkeys. Behav Cogn Neurosci Rev. 2005;4(4):282–306.PubMed
170.
go back to reference Obayashi S, Matsumoto R, Suhara T, Nagai Y, Iriki A, Maeda J. Functional organization of monkey brain for abstract operation. Cortex. 2007;43(3):389–96.PubMed Obayashi S, Matsumoto R, Suhara T, Nagai Y, Iriki A, Maeda J. Functional organization of monkey brain for abstract operation. Cortex. 2007;43(3):389–96.PubMed
171.
go back to reference Vandervert L. The evolution of language: the cerebro-cerebellar blending of visual–spatial working memory with vocalizations. J Mind Behav. 2011;32(4):317. Vandervert L. The evolution of language: the cerebro-cerebellar blending of visual–spatial working memory with vocalizations. J Mind Behav. 2011;32(4):317.
172.
go back to reference Vandervert LR. The evolution of Mandler's conceptual primitives (image-schemas) as neural mechanisms for space–time simulation structures. New Ideas Psychol. 1997;15(2):105–23. Vandervert LR. The evolution of Mandler's conceptual primitives (image-schemas) as neural mechanisms for space–time simulation structures. New Ideas Psychol. 1997;15(2):105–23.
173.
go back to reference Vandervert L. How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas Psychol. 2003;21(2):159–75. Vandervert L. How working memory and cognitive modeling functions of the cerebellum contribute to discoveries in mathematics. New Ideas Psychol. 2003;21(2):159–75.
174.
go back to reference Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav. 2009;30(1):15. Vandervert LR. The appearance of the child prodigy 10,000 years ago: an evolutionary and developmental explanation. J Mind Behav. 2009;30(1):15.
175.
go back to reference Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18. Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19(1):1–18.
176.
go back to reference Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMed Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMed
177.
go back to reference Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):RC34.PubMed Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):RC34.PubMed
178.
go back to reference Nakano E. Composition and decomposition learning of reaching movements under altered environments: an examination of the multiplicity of internal models. Syst Comput Japan. 2002;33(11):80. Nakano E. Composition and decomposition learning of reaching movements under altered environments: an examination of the multiplicity of internal models. Syst Comput Japan. 2002;33(11):80.
179.
go back to reference Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci U S A. 2003;100(9):5461–6.PubMedCentralPubMed Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci U S A. 2003;100(9):5461–6.PubMedCentralPubMed
180.
go back to reference Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(6766):192–5.PubMed Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(6766):192–5.PubMed
181.
go back to reference Chomsky N. Cartesian linguistics: a chapter in the history of rationalist thought. New York: Harper & Row; 1966. Chomsky N. Cartesian linguistics: a chapter in the history of rationalist thought. New York: Harper & Row; 1966.
182.
go back to reference Baddeley AD, Andrade J. Working memory and the vividness of imagery. J Exp Psychol Gen. 2000;129(1):126–45.PubMed Baddeley AD, Andrade J. Working memory and the vividness of imagery. J Exp Psychol Gen. 2000;129(1):126–45.PubMed
183.
go back to reference Tooby J, DeVore I. The reconstruction of hominid behavioral evolution through strategic modeling. In: Kinzey WG, editor. The evolution of human behavior: primate models. Albany, NY: State University of New York Press; 1987. p. 183–237. Tooby J, DeVore I. The reconstruction of hominid behavioral evolution through strategic modeling. In: Kinzey WG, editor. The evolution of human behavior: primate models. Albany, NY: State University of New York Press; 1987. p. 183–237.
184.
go back to reference Pinker S. Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8993–9.PubMedCentralPubMed Pinker S. Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language. Proc Natl Acad Sci U S A. 2010;107 Suppl 2:8993–9.PubMedCentralPubMed
185.
go back to reference Hockett CF. The origin of speech. San Francisco, CA: W.H. Freeman and Co; 1960. Hockett CF. The origin of speech. San Francisco, CA: W.H. Freeman and Co; 1960.
186.
go back to reference Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMed Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMed
187.
go back to reference Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–74.PubMed Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 1999;12(7–8):961–74.PubMed
188.
go back to reference Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMed Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMed
189.
go back to reference Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey M. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology 2013;(in press). Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey M. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology 2013;(in press).
190.
go back to reference Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci. 2000;4(11):423–31.PubMed Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci. 2000;4(11):423–31.PubMed
191.
go back to reference Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMed Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMed
192.
go back to reference D'Angelo E. The cerebellar network: revisiting the critical issues. J Physiol. 2011;589(Pt 14):3421–2.PubMed D'Angelo E. The cerebellar network: revisiting the critical issues. J Physiol. 2011;589(Pt 14):3421–2.PubMed
193.
go back to reference Frens MA, Donchin O. Forward models and state estimation in compensatory eye movements. Front Cell Neurosci. 2009;3:13.PubMedCentralPubMed Frens MA, Donchin O. Forward models and state estimation in compensatory eye movements. Front Cell Neurosci. 2009;3:13.PubMedCentralPubMed
194.
go back to reference Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.PubMed Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.PubMed
195.
go back to reference Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9(8):1265–79.PubMed Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9(8):1265–79.PubMed
196.
197.
go back to reference Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114. Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114.
198.
go back to reference Pezzulo G, Castelfranchi C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res. 2009;73(4):559–77.PubMed Pezzulo G, Castelfranchi C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res. 2009;73(4):559–77.PubMed
199.
go back to reference Pezzulo G, Castelfranchi C. The symbol detachment problem. Cogn Process. 2007;8(2):115–31.PubMed Pezzulo G, Castelfranchi C. The symbol detachment problem. Cogn Process. 2007;8(2):115–31.PubMed
200.
go back to reference Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.PubMed Hesslow G. Conscious thought as simulation of behaviour and perception. Trends Cogn Sci. 2002;6(6):242–7.PubMed
201.
go back to reference Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.PubMed Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103–9.PubMed
202.
go back to reference Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–96.PubMed Grush R. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377–96.PubMed
203.
go back to reference Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38.PubMed Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–38.PubMed
204.
go back to reference Schubotz RI. Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci. 2007;11(5):211–8.PubMed Schubotz RI. Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci. 2007;11(5):211–8.PubMed
205.
go back to reference Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11. Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11.
206.
go back to reference Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci. 2003;358(1431):593–602.PubMed Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci. 2003;358(1431):593–602.PubMed
207.
go back to reference Pezzulo G, Dindo H. What should I do next? Using shared representations to solve interaction problems. Exp Brain Res. 2011;211(3–4):613–30.PubMed Pezzulo G, Dindo H. What should I do next? Using shared representations to solve interaction problems. Exp Brain Res. 2011;211(3–4):613–30.PubMed
208.
go back to reference Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMed Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMed
210.
go back to reference Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.PubMed Barsalou LW. Grounded cognition. Annu Rev Psychol. 2008;59:617–45.PubMed
211.
go back to reference Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.PubMedCentralPubMed Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.PubMedCentralPubMed
212.
go back to reference Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Front Psychol. 2012;3:612.PubMedCentralPubMed Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. Computational grounded cognition: a new alliance between grounded cognition and computational modeling. Front Psychol. 2012;3:612.PubMedCentralPubMed
213.
go back to reference Moulton ST, Kosslyn SM. Imagining predictions: mental imagery as mental emulation. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1273–80.PubMed Moulton ST, Kosslyn SM. Imagining predictions: mental imagery as mental emulation. Philos Trans R Soc Lond B Biol Sci. 2009;364(1521):1273–80.PubMed
214.
go back to reference Barkley RA. The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev. 2001;11(1):1–29.PubMed Barkley RA. The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev. 2001;11(1):1–29.PubMed
215.
go back to reference Glenberg AM. What memory is for. Behav Brain Sci. 1997;20(1):1–19.PubMed Glenberg AM. What memory is for. Behav Brain Sci. 1997;20(1):1–19.PubMed
216.
go back to reference Rosenbaum DA, Carlson RA, Gilmore RO. Acquisition of intellectual and perceptual-motor skills. Annu Rev Psychol. 2001;52:453–70.PubMed Rosenbaum DA, Carlson RA, Gilmore RO. Acquisition of intellectual and perceptual-motor skills. Annu Rev Psychol. 2001;52:453–70.PubMed
217.
go back to reference Piaget J. The construction of reality in the child. New York: Basic Books; 1954. Piaget J. The construction of reality in the child. New York: Basic Books; 1954.
218.
go back to reference Pezzulo G, Barca L, Bocconi AL, Borghi AM. When affordances climb into your mind: advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain Cogn. 2010;73(1):68–73.PubMed Pezzulo G, Barca L, Bocconi AL, Borghi AM. When affordances climb into your mind: advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain Cogn. 2010;73(1):68–73.PubMed
219.
go back to reference Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.PubMed Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.PubMed
220.
go back to reference Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. In: Science-New York Then Washington. Washington, DC: American Association for the Advancement of Science;1995. p. 1880 Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. In: Science-New York Then Washington. Washington, DC: American Association for the Advancement of Science;1995. p. 1880
221.
go back to reference Flanagan JR, Wing AM. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997;17(4):1519–28.PubMed Flanagan JR, Wing AM. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997;17(4):1519–28.PubMed
222.
go back to reference Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88(2):942–53.PubMed Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88(2):942–53.PubMed
223.
go back to reference Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.PubMed Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.PubMed
224.
go back to reference Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.PubMed Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.PubMed
225.
go back to reference Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.PubMed Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.PubMed
226.
go back to reference Iriki A. The neural origins and implications of imitation, mirror neurons and tool use. Curr Opin Neurobiol. 2006;16(6):660–7.PubMed Iriki A. The neural origins and implications of imitation, mirror neurons and tool use. Curr Opin Neurobiol. 2006;16(6):660–7.PubMed
227.
go back to reference Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cogn Sci. 2004;8(2):71–8.PubMed Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cogn Sci. 2004;8(2):71–8.PubMed
228.
go back to reference Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMed Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMed
229.
go back to reference Rosenblatt F. Principles of neurodynamics. Washington: Spartan Books; 1962. Rosenblatt F. Principles of neurodynamics. Washington: Spartan Books; 1962.
230.
go back to reference Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45(3):195–206.PubMed Fujita M. Adaptive filter model of the cerebellum. Biol Cybern. 1982;45(3):195–206.PubMed
231.
go back to reference Dean P, Porrill J, Ekerot CF, Jorntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43.PubMed Dean P, Porrill J, Ekerot CF, Jorntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43.PubMed
232.
go back to reference Barlow JS. The cerebellum and adaptive control. Cambridge, UK: Cambridge University Press; 2002. Barlow JS. The cerebellum and adaptive control. Cambridge, UK: Cambridge University Press; 2002.
234.
go back to reference Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949. Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949.
235.
go back to reference Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMed Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMed
236.
go back to reference Craik KJW. The nature of explanation. Cambridge: University Press; 1952. Craik KJW. The nature of explanation. Cambridge: University Press; 1952.
237.
go back to reference Johnson-Laird PN. Mental models : towards a cognitive science of language, inference, and consciousness. Cambridge, Mass: Harvard University Press; 1983. Johnson-Laird PN. Mental models : towards a cognitive science of language, inference, and consciousness. Cambridge, Mass: Harvard University Press; 1983.
238.
go back to reference Piaget J. The psychology of intelligence. London: Routledge & Paul; 1950. Piaget J. The psychology of intelligence. London: Routledge & Paul; 1950.
239.
go back to reference Ito M. The cerebellum: brain for an implicit self. Upper Saddle River, NJ: Ft Press; 2011. Ito M. The cerebellum: brain for an implicit self. Upper Saddle River, NJ: Ft Press; 2011.
240.
go back to reference McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Mag. 2006;27(4):12.
241.
go back to reference Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 1996;119(Pt 4):1199–211.PubMed Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain. 1996;119(Pt 4):1199–211.PubMed
242.
go back to reference Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11(2):505–25.PubMed Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11(2):505–25.PubMed
243.
go back to reference Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.PubMed Penhune VB, Steele CJ. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav Brain Res. 2012;226(2):579–91.PubMed
244.
go back to reference Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27(10):2493–502.PubMed Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci. 2007;27(10):2493–502.PubMed
245.
go back to reference Hirata Y, Lockard JM, Highstein SM. Capacity of vertical VOR adaptation in squirrel monkey. J Neurophysiol. 2002;88(6):3194–207.PubMed Hirata Y, Lockard JM, Highstein SM. Capacity of vertical VOR adaptation in squirrel monkey. J Neurophysiol. 2002;88(6):3194–207.PubMed
246.
go back to reference Kramer PD, Shelhamer M, Zee DS. Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Exp Brain Res. 1995;106(2):318–26.PubMed Kramer PD, Shelhamer M, Zee DS. Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Exp Brain Res. 1995;106(2):318–26.PubMed
247.
go back to reference Gluck MA, Reifsnider ES, Thompson RF. Adaptive signal processing and the cerebellum: models of classical conditioning and VOR adaptation. In: Gluck MA, Rumelhart DE, editors. Neuroscience and connectionist theory. Hillsdale, NJ: Lawrence Erlbaum; 1990. p. 131–86. Gluck MA, Reifsnider ES, Thompson RF. Adaptive signal processing and the cerebellum: models of classical conditioning and VOR adaptation. In: Gluck MA, Rumelhart DE, editors. Neuroscience and connectionist theory. Hillsdale, NJ: Lawrence Erlbaum; 1990. p. 131–86.
248.
go back to reference Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn Mem. 1997;4(1):130–58.PubMed Mauk MD, Donegan NH. A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learn Mem. 1997;4(1):130–58.PubMed
249.
go back to reference Yamazaki T, Nagao S. A computational mechanism for unified gain and timing control in the cerebellum. PLoS One. 2012;7(3):e33319.PubMedCentralPubMed Yamazaki T, Nagao S. A computational mechanism for unified gain and timing control in the cerebellum. PLoS One. 2012;7(3):e33319.PubMedCentralPubMed
250.
go back to reference Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.PubMed Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.PubMed
251.
go back to reference Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 157–86. Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge, France: John Libbey Eurotext; 2010. p. 157–86.
252.
go back to reference Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex. 2011;21:1761–70. Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebral Cortex. 2011;21:1761–70.
253.
go back to reference Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol. 2005;35(8):773–9.PubMed Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol. 2005;35(8):773–9.PubMed
254.
255.
go back to reference Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160(2):262–73.PubMed Allen G, Courchesne E. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry. 2003;160(2):262–73.PubMed
256.
go back to reference Hopyan T, Laughlin S, Dennis M. Emotions and their cognitive control in children with cerebellar tumors. J Int Neuropsychol Soc. 2010;16(6):1027–38.PubMed Hopyan T, Laughlin S, Dennis M. Emotions and their cognitive control in children with cerebellar tumors. J Int Neuropsychol Soc. 2010;16(6):1027–38.PubMed
257.
go back to reference Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49:1863–9. Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49:1863–9.
258.
go back to reference Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.PubMedCentralPubMed Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.PubMedCentralPubMed
259.
go back to reference Poldrack RA, Mumford JA, Schonberg T, Kalar D, Barman B, Yarkoni T. Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput Biol. 2012;8(10):e1002707.PubMedCentralPubMed Poldrack RA, Mumford JA, Schonberg T, Kalar D, Barman B, Yarkoni T. Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput Biol. 2012;8(10):e1002707.PubMedCentralPubMed
260.
go back to reference Dobromyslin VI, Salat DH, Fortier CB, Leritz EC, Beckmann CF, Milberg WP, et al. Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis. Neuroimage. 2012;60(4):2073–85.PubMedCentralPubMed Dobromyslin VI, Salat DH, Fortier CB, Leritz EC, Beckmann CF, Milberg WP, et al. Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis. Neuroimage. 2012;60(4):2073–85.PubMedCentralPubMed
261.
go back to reference Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109(1):46–57.PubMed Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109(1):46–57.PubMed
262.
go back to reference Stoodley CJ, Valera EM, Schmahmann JD. An fMRI case study of functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.PubMedCentralPubMed Stoodley CJ, Valera EM, Schmahmann JD. An fMRI case study of functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.PubMedCentralPubMed
263.
go back to reference Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI atlas of the human cerebellum. San Diego: Academic. 2000 Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI atlas of the human cerebellum. San Diego: Academic. 2000
Metadata
Title
Consensus Paper: The Cerebellum's Role in Movement and Cognition
Authors
Leonard F. Koziol
Deborah Budding
Nancy Andreasen
Stefano D’Arrigo
Sara Bulgheroni
Hiroshi Imamizu
Masao Ito
Mario Manto
Cherie Marvel
Krystal Parker
Giovanni Pezzulo
Narender Ramnani
Daria Riva
Jeremy Schmahmann
Larry Vandervert
Tadashi Yamazaki
Publication date
01-02-2014
Publisher
Springer US
Published in
The Cerebellum / Issue 1/2014
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-013-0511-x

Other articles of this Issue 1/2014

The Cerebellum 1/2014 Go to the issue