Skip to main content
Top
Published in: Cancer Microenvironment 2/2012

01-08-2012 | Review Paper

Significance of Heparanase in Cancer and Inflammation

Authors: Israel Vlodavsky, Phillip Beckhove, Immanuel Lerner, Claudio Pisano, Amichai Meirovitz, Neta Ilan, Michael Elkin

Published in: Cancer Microenvironment | Issue 2/2012

Login to get access

Abstract

Heparan sulfate proteoglycans (HSPGs) are primary components at the interface between virtually every eukaryotic cell and its extracellular matrix. HSPGs not only provide a storage depot for heparin-binding molecules in the cell microenvironment, but also decisively regulate their accessibility, function and mode of action. As such, they are intimately involved in modulating cell invasion and signaling loops that are critical for tumor growth, inflammation and kidney function. In a series of studies performed since the cloning of the human heparanase gene, we and others have demonstrated that heparanase, the sole heparan sulfate degrading endoglycosidase, is causally involved in cancer progression, inflammation and diabetic nephropathy and hence is a valid target for drug development. Heparanase is causally involved in inflammation and accelerates colon tumorigenesis associated with inflammatory bowel disease. Notably, heparanase stimulates macrophage activation, while macrophages induce production and activation of latent heparanase contributed by the colon epithelium, together generating a vicious cycle that powers colitis and the associated tumorigenesis. Heparanase also plays a decisive role in the pathogenesis of diabetic nephropathy, degrading heparan sulfate in the glomerular basement membrane and ultimately leading to proteinuria and kidney dysfunction. Notably, clinically relevant doses of ionizing radiation (IR) upregulate heparanase expression and thereby augment the metastatic potential of pancreatic carcinoma. Thus, combining radiotherapy with heparanase inhibition is an effective strategy to prevent tumor resistance and dissemination in IR-treated pancreatic cancer patients. Also, accumulating evidence indicate that peptides derived from human heparanase elicit a potent anti-tumor immune response, suggesting that heparanase represents a promising target antigen for immunotherapeutic approaches against a broad variety of tumours. Oligosaccharide-based compounds that inhibit heparanase enzymatic activity were developed, aiming primarily at halting tumor growth, metastasis and angiogenesis. Some of these compounds are being evaluated in clinical trials, targeting both the tumor and tumor microenvironment.
Literature
1.
go back to reference Vlodavsky I, Gospodarowicz D (1981) Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 289:304–306PubMedCrossRef Vlodavsky I, Gospodarowicz D (1981) Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 289:304–306PubMedCrossRef
2.
go back to reference Vlodavsky I, Lui GM, Gospodarowicz D (1980) Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19:607–616PubMedCrossRef Vlodavsky I, Lui GM, Gospodarowicz D (1980) Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19:607–616PubMedCrossRef
3.
go back to reference Vlodavsky I (2001) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol. Chapter 10:Unit 10.4 Vlodavsky I (2001) Preparation of extracellular matrices produced by cultured corneal endothelial and PF-HR9 endodermal cells. Curr Protoc Cell Biol. Chapter 10:Unit 10.4
4.
go back to reference Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386PubMedCrossRef Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386PubMedCrossRef
5.
go back to reference Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176PubMedCrossRef Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176PubMedCrossRef
6.
go back to reference Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 130:393–400PubMed Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein–basic fibroblast growth factor–is stored within basement membrane. Am J Pathol 130:393–400PubMed
7.
go back to reference Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923PubMedCrossRef Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923PubMedCrossRef
8.
go back to reference Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355PubMed Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355PubMed
9.
go back to reference Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475PubMedCrossRef Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475PubMedCrossRef
10.
go back to reference Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRef Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRef
11.
12.
go back to reference Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159PubMedCrossRef Lindahl U, Li JP (2009) Interactions between heparan sulfate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159PubMedCrossRef
13.
go back to reference Ogren S, Lindahl U (1975) Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 250:2690–2697PubMed Ogren S, Lindahl U (1975) Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma. J Biol Chem 250:2690–2697PubMed
14.
go back to reference Thunberg L, Backstrom G, Wasteson A, Robinson HC, Ogren S, Lindahl U (1982) Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem 257:10278–10282PubMed Thunberg L, Backstrom G, Wasteson A, Robinson HC, Ogren S, Lindahl U (1982) Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem 257:10278–10282PubMed
15.
go back to reference Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108PubMed Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471:M99–M108PubMed
16.
go back to reference Lerner I, Hermano E, Zcharia E et al (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121:1709–1721PubMedCrossRef Lerner I, Hermano E, Zcharia E et al (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121:1709–1721PubMedCrossRef
17.
go back to reference Li RW, Freeman C, Yu D et al (2008) Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 58:1590–1600PubMedCrossRef Li RW, Freeman C, Yu D et al (2008) Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. Arthritis Rheum 58:1590–1600PubMedCrossRef
18.
go back to reference van den Hoven MJ, Rops AL, Bakker MA et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 70:2100–2108PubMed van den Hoven MJ, Rops AL, Bakker MA et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int 70:2100–2108PubMed
19.
go back to reference Lindahl U (1990) Biosynthesis of heparin. Biochem Soc Trans 18:803–805PubMed Lindahl U (1990) Biosynthesis of heparin. Biochem Soc Trans 18:803–805PubMed
20.
go back to reference Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327PubMedCrossRef Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327PubMedCrossRef
21.
go back to reference Ledin J, Staatz W, Li JP et al (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741PubMedCrossRef Ledin J, Staatz W, Li JP et al (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741PubMedCrossRef
22.
go back to reference Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818PubMed Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818PubMed
23.
go back to reference Lindahl U (2007) Heparan sulfate-protein interactions–a concept for drug design? Thromb Haemost 98:109–115PubMed Lindahl U (2007) Heparan sulfate-protein interactions–a concept for drug design? Thromb Haemost 98:109–115PubMed
24.
go back to reference Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024PubMedCrossRef Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024PubMedCrossRef
25.
go back to reference Cole GJ, Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3:359–371PubMed Cole GJ, Halfter W (1996) Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol 3:359–371PubMed
26.
go back to reference Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652PubMedCrossRef Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652PubMedCrossRef
27.
go back to reference Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484PubMedCrossRef Kramer KL, Yost HJ (2003) Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet 37:461–484PubMedCrossRef
28.
go back to reference Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528PubMedCrossRef Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528PubMedCrossRef
30.
31.
go back to reference Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. NatRev Mol Cell Biol 6:530–541CrossRef Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. NatRev Mol Cell Biol 6:530–541CrossRef
32.
go back to reference Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Devel Biol 12:89–98CrossRef Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Devel Biol 12:89–98CrossRef
33.
go back to reference Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186PubMedCrossRef Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186PubMedCrossRef
34.
go back to reference Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151PubMedCrossRef Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151PubMedCrossRef
35.
go back to reference Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743PubMedCrossRef Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743PubMedCrossRef
36.
go back to reference Patel VN, Knox SM, Likar KM et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186PubMedCrossRef Patel VN, Knox SM, Likar KM et al (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development 134:4177–4186PubMedCrossRef
37.
go back to reference Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 16:268–271PubMedCrossRef Vlodavsky I, Bar-Shavit R, Ishai-Michaeli R, Bashkin P, Fuks Z (1991) Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem Sci 16:268–271PubMedCrossRef
38.
go back to reference Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186PubMedCrossRef Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186PubMedCrossRef
39.
go back to reference Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277:3890–3903PubMedCrossRef Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277:3890–3903PubMedCrossRef
40.
go back to reference Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039PubMedCrossRef Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039PubMedCrossRef
41.
go back to reference Levy-Adam F, Feld S, Cohen-Kaplan V et al (2010) Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem 285:28010–28019PubMedCrossRef Levy-Adam F, Feld S, Cohen-Kaplan V et al (2010) Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J Biol Chem 285:28010–28019PubMedCrossRef
42.
go back to reference McKenzie E, Tyson K, Stamps A et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177PubMedCrossRef McKenzie E, Tyson K, Stamps A et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276:1170–1177PubMedCrossRef
43.
go back to reference Vlodavsky I, Eldor A, Haimovitz-Friedman A et al (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMed Vlodavsky I, Eldor A, Haimovitz-Friedman A et al (1992) Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12:112–127PubMed
44.
go back to reference Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15:1661–1663PubMed Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15:1661–1663PubMed
45.
go back to reference Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891PubMedCrossRef Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891PubMedCrossRef
46.
go back to reference McKenzie E, Young K, Hircock M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435PubMedCrossRef McKenzie E, Young K, Hircock M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435PubMedCrossRef
47.
go back to reference Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A, Steinkuhler C (2004) Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 43:1862–1873PubMedCrossRef Nardella C, Lahm A, Pallaoro M, Brunetti M, Vannini A, Steinkuhler C (2004) Mechanism of activation of human heparanase investigated by protein engineering. Biochemistry 43:1862–1873PubMedCrossRef
48.
go back to reference Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519PubMedCrossRef Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519PubMedCrossRef
49.
go back to reference Hulett MD, Hornby JR, Ohms SJ et al (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667PubMedCrossRef Hulett MD, Hornby JR, Ohms SJ et al (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39:15659–15667PubMedCrossRef
50.
go back to reference Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H et al (2005) Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 280:13568–13575PubMedCrossRef Abboud-Jarrous G, Rangini-Guetta Z, Aingorn H et al (2005) Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. J Biol Chem 280:13568–13575PubMedCrossRef
51.
go back to reference Abboud-Jarrous G, Atzmon R, Peretz T et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176PubMedCrossRef Abboud-Jarrous G, Atzmon R, Peretz T et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176PubMedCrossRef
52.
go back to reference Nakajima M, Irimura T, DiFerrante D, DiFerrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasion and metastatic properties of Mouse B 16 Melanoma sublines. Science 220:611–613PubMedCrossRef Nakajima M, Irimura T, DiFerrante D, DiFerrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasion and metastatic properties of Mouse B 16 Melanoma sublines. Science 220:611–613PubMedCrossRef
53.
go back to reference Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cells mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relation to tumor cell metastasis. Cancer Res 43:2704–2711PubMed Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cells mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relation to tumor cell metastasis. Cancer Res 43:2704–2711PubMed
54.
go back to reference Cohen I, Pappo O, Elkin M et al (2006) Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 118:1609–1617PubMedCrossRef Cohen I, Pappo O, Elkin M et al (2006) Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer 118:1609–1617PubMedCrossRef
55.
go back to reference Lerner I, Baraz L, Pikarsky E et al (2008) Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res 14:668–676PubMedCrossRef Lerner I, Baraz L, Pikarsky E et al (2008) Function of heparanase in prostate tumorigenesis: potential for therapy. Clin Cancer Res 14:668–676PubMedCrossRef
56.
go back to reference Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230PubMedCrossRef Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96:1219–1230PubMedCrossRef
57.
58.
go back to reference Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoteto M, Cassinelli G, Lanzi C, Pisano C, Ilan N, Vlodavsky I, Zunino F (2011) J cell mol med (PMID: 21029368) Shafat I, Ben-Arush MW, Issakov J, Meller I, Naroditsky I, Tortoteto M, Cassinelli G, Lanzi C, Pisano C, Ilan N, Vlodavsky I, Zunino F (2011) J cell mol med (PMID: 21029368)
59.
go back to reference Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073PubMedCrossRef Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073PubMedCrossRef
60.
go back to reference Casu B, Guerrini M, Guglieri S et al (2004) Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J Med Chem 47:838–848PubMedCrossRef Casu B, Guerrini M, Guglieri S et al (2004) Undersulfated and glycol-split heparins endowed with antiangiogenic activity. J Med Chem 47:838–848PubMedCrossRef
61.
go back to reference Ferro V, Hammond E, Fairweather JK (2004) The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 4:693–702PubMed Ferro V, Hammond E, Fairweather JK (2004) The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem 4:693–702PubMed
62.
go back to reference McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14PubMedCrossRef McKenzie EA (2007) Heparanase: a target for drug discovery in cancer and inflammation. Br J Pharmacol 151:1–14PubMedCrossRef
63.
go back to reference Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z (2006) Development of heparanase inhibitors for anti-cancer therapy. Curr Med Chem 13:2101–2111PubMedCrossRef Miao HQ, Liu H, Navarro E, Kussie P, Zhu Z (2006) Development of heparanase inhibitors for anti-cancer therapy. Curr Med Chem 13:2101–2111PubMedCrossRef
64.
65.
go back to reference El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N (2001) Clin Cancer Res 7(5):1299–1305PubMed El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N (2001) Clin Cancer Res 7(5):1299–1305PubMed
66.
go back to reference Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X (2002) Surgery 132:326–333PubMedCrossRef Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X (2002) Surgery 132:326–333PubMedCrossRef
67.
go back to reference Nagler R, Ben-Izhak O, Cohen-Kaplan V, Shafat I, Vlodavsky I, Akrish S, Ilan N (2007) Cancer 110:2732–2739PubMedCrossRef Nagler R, Ben-Izhak O, Cohen-Kaplan V, Shafat I, Vlodavsky I, Akrish S, Ilan N (2007) Cancer 110:2732–2739PubMedCrossRef
68.
go back to reference Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2002) Mod Pathol 15:593–598PubMedCrossRef Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K (2002) Mod Pathol 15:593–598PubMedCrossRef
69.
go back to reference Barash U, Cohen-Kaplan V, Arvatz G et al (2010) A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J 24:1239–1248PubMedCrossRef Barash U, Cohen-Kaplan V, Arvatz G et al (2010) A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J 24:1239–1248PubMedCrossRef
70.
go back to reference Doviner V, Maly B, Kaplan V et al (2006) Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence. Mod Pathol 19:878–888PubMed Doviner V, Maly B, Kaplan V et al (2006) Spatial and temporal heparanase expression in colon mucosa throughout the adenoma-carcinoma sequence. Mod Pathol 19:878–888PubMed
71.
go back to reference Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309PubMedCrossRef Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105:1303–1309PubMedCrossRef
72.
go back to reference Zetser A, Bashenko Y, Miao H-Q, Vlodavsky I, Ilan N (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63:7733–7741PubMed Zetser A, Bashenko Y, Miao H-Q, Vlodavsky I, Ilan N (2003) Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63:7733–7741PubMed
73.
go back to reference Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9:203–226PubMedCrossRef Vlodavsky I, Korner G, Ishai-Michaeli R, Bashkin P, Bar-Shavit R, Fuks Z (1990) Extracellular matrix-resident growth factors and enzymes: possible involvement in tumor metastasis and angiogenesis. Cancer Metastasis Rev 9:203–226PubMedCrossRef
74.
go back to reference Witz IP (2008) Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 100:203–229PubMedCrossRef Witz IP (2008) Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 100:203–229PubMedCrossRef
76.
77.
go back to reference Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67PubMedCrossRef Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67PubMedCrossRef
78.
79.
80.
go back to reference Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Sem Cell Dev Biol 19:52–60CrossRef Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Sem Cell Dev Biol 19:52–60CrossRef
81.
go back to reference Van Damme J, Struyf S, Opdenakker G (2004) Chemokine-protease interactions in cancer. Semin Cancer Biol 14:201–208PubMedCrossRef Van Damme J, Struyf S, Opdenakker G (2004) Chemokine-protease interactions in cancer. Semin Cancer Biol 14:201–208PubMedCrossRef
82.
go back to reference Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64PubMedCrossRef Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64PubMedCrossRef
83.
go back to reference Lankelma JM, Voorend DM, Barwari T et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233PubMedCrossRef Lankelma JM, Voorend DM, Barwari T et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233PubMedCrossRef
84.
go back to reference Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111PubMedCrossRef Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111PubMedCrossRef
85.
go back to reference Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60PubMedCrossRef Bix G, Iozzo RV (2005) Matrix revolutions: “tails” of basement-membrane components with angiostatic functions. Trends Cell Biol 15:52–60PubMedCrossRef
86.
go back to reference Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636PubMedCrossRef Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636PubMedCrossRef
87.
go back to reference Zcharia E, Jia J, Zhang X et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4:e5181PubMedCrossRef Zcharia E, Jia J, Zhang X et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4:e5181PubMedCrossRef
88.
go back to reference Chen L, Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PLoS ONE 4(3):e4947PubMedCrossRef Chen L, Sanderson RD (2009) Heparanase regulates levels of syndecan-1 in the nucleus. PLoS ONE 4(3):e4947PubMedCrossRef
89.
go back to reference Paget S (1889) The distribution of a secondary growths in cancer of the breast. Lancet 133:571–583CrossRef Paget S (1889) The distribution of a secondary growths in cancer of the breast. Lancet 133:571–583CrossRef
90.
go back to reference Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedCrossRef Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669PubMedCrossRef
91.
go back to reference Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMedCrossRef Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188PubMedCrossRef
92.
go back to reference Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529PubMedCrossRef Kaplan RN, Psaila B, Lyden D (2006) Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25:521–529PubMedCrossRef
93.
go back to reference Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRef Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRef
94.
go back to reference Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRef Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRef
95.
go back to reference Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMedCrossRef Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMedCrossRef
96.
go back to reference Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Sem Cell Dev Biol 21:33–39CrossRef Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Sem Cell Dev Biol 21:33–39CrossRef
97.
go back to reference Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Sem cell Dev Biol 221:19–25CrossRef Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Sem cell Dev Biol 221:19–25CrossRef
98.
go back to reference Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedCrossRef Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851PubMedCrossRef
99.
go back to reference Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337PubMedCrossRef
101.
go back to reference Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRef Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRef
102.
103.
go back to reference Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Cur Opin Immunol 22:231–237CrossRef Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Cur Opin Immunol 22:231–237CrossRef
104.
go back to reference Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266PubMedCrossRef Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266PubMedCrossRef
105.
go back to reference Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196PubMedCrossRef Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196PubMedCrossRef
106.
go back to reference Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRef Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRef
107.
go back to reference Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616PubMedCrossRef Edovitsky E, Lerner I, Zcharia E, Peretz T, Vlodavsky I, Elkin M (2006) Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107:3609–3616PubMedCrossRef
108.
go back to reference Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20:8–14PubMedCrossRef Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20:8–14PubMedCrossRef
109.
110.
go back to reference Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRef Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRef
111.
go back to reference Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRef Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRef
112.
go back to reference Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570PubMed Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570PubMed
113.
go back to reference Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92PubMedCrossRef Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39:87–92PubMedCrossRef
114.
115.
go back to reference Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedCrossRef Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedCrossRef
116.
go back to reference Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702PubMed Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702PubMed
117.
go back to reference Zcharia E, Metzger S, Chajek-ShaulL T et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18:252–263PubMedCrossRef Zcharia E, Metzger S, Chajek-ShaulL T et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18:252–263PubMedCrossRef
118.
go back to reference Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21–33PubMedCrossRef Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6:21–33PubMedCrossRef
119.
go back to reference Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288PubMedCrossRef Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288PubMedCrossRef
120.
go back to reference Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367PubMedCrossRef Elson CO, Sartor RB, Tennyson GS, Riddell RH (1995) Experimental models of inflammatory bowel disease. Gastroenterology 109:1344–1367PubMedCrossRef
121.
go back to reference Krieglstein CF, Cerwinka WH, Sprague AG et al (2002) Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 110:1773–1782PubMed Krieglstein CF, Cerwinka WH, Sprague AG et al (2002) Collagen-binding integrin alpha1beta1 regulates intestinal inflammation in experimental colitis. J Clin Invest 110:1773–1782PubMed
122.
go back to reference Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRef Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRef
123.
go back to reference Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. FASEB J 19:872–874PubMed Brunn GJ, Bungum MK, Johnson GB, Platt JL (2005) Conditional signaling by Toll-like receptor 4. FASEB J 19:872–874PubMed
124.
go back to reference Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881PubMedCrossRef Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881PubMedCrossRef
125.
go back to reference Fukata M, Hernandez Y, Conduah D et al (2009) Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15:997–1006PubMedCrossRef Fukata M, Hernandez Y, Conduah D et al (2009) Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15:997–1006PubMedCrossRef
126.
go back to reference Kumar V, Abbas A, Fausto N, (eds) (2005) Pathologic basis of disease: Elsevier Saunders Kumar V, Abbas A, Fausto N, (eds) (2005) Pathologic basis of disease: Elsevier Saunders
127.
go back to reference de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD (2005) Early Growth Response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 280:35136–35147PubMedCrossRef de Mestre AM, Rao S, Hornby JR, Soe-Htwe T, Khachigian LM, Hulett MD (2005) Early Growth Response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J Biol Chem 280:35136–35147PubMedCrossRef
128.
go back to reference Subbaramaiah K, Yoshimatsu K, Scherl E et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279:12647–12658PubMedCrossRef Subbaramaiah K, Yoshimatsu K, Scherl E et al (2004) Microsomal prostaglandin E synthase-1 is overexpressed in inflammatory bowel disease. Evidence for involvement of the transcription factor Egr-1. J Biol Chem 279:12647–12658PubMedCrossRef
129.
go back to reference Fiebiger E, Maehr R, Villadangos J et al (2002) Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 196:1263–1269PubMedCrossRef Fiebiger E, Maehr R, Villadangos J et al (2002) Invariant chain controls the activity of extracellular cathepsin L. J Exp Med 196:1263–1269PubMedCrossRef
130.
go back to reference Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533PubMedCrossRef Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533PubMedCrossRef
131.
go back to reference Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM (2008) Molecular targeted therapies for pancreatic cancer. Am J Surg 196:430–441PubMedCrossRef Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM (2008) Molecular targeted therapies for pancreatic cancer. Am J Surg 196:430–441PubMedCrossRef
132.
go back to reference Raimondi S, Maisonneuve P, Lowenfels AB (2009) Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6:699–708PubMedCrossRef Raimondi S, Maisonneuve P, Lowenfels AB (2009) Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol 6:699–708PubMedCrossRef
133.
go back to reference Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24:87–94PubMedCrossRef Shaib YH, Davila JA, El-Serag HB (2006) The epidemiology of pancreatic cancer in the United States: changes below the surface. Aliment Pharmacol Ther 24:87–94PubMedCrossRef
134.
go back to reference Muller MW, Friess H, Koninger J et al (2008) Factors influencing survival after bypass procedures in patients with advanced pancreatic adenocarcinomas. Am J Surg 195:221–228PubMedCrossRef Muller MW, Friess H, Koninger J et al (2008) Factors influencing survival after bypass procedures in patients with advanced pancreatic adenocarcinomas. Am J Surg 195:221–228PubMedCrossRef
135.
go back to reference Network NCC (2008) NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma. v.1 Network NCC (2008) NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma. v.1
136.
go back to reference Cohen SJ, Dobelbower R Jr, Lipsitz S et al (2005) A randomized phase III study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: Eastern Cooperative Oncology Group study E8282. Int J Radiat Oncol Biol Phys 62:1345–1350PubMedCrossRef Cohen SJ, Dobelbower R Jr, Lipsitz S et al (2005) A randomized phase III study of radiotherapy alone or with 5-fluorouracil and mitomycin-C in patients with locally advanced adenocarcinoma of the pancreas: Eastern Cooperative Oncology Group study E8282. Int J Radiat Oncol Biol Phys 62:1345–1350PubMedCrossRef
137.
go back to reference Neoptolemos JP, Stocken DD, Friess H et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350:1200–1210PubMedCrossRef Neoptolemos JP, Stocken DD, Friess H et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350:1200–1210PubMedCrossRef
138.
go back to reference Camphausen K, Moses MA, Beecken W-D, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211PubMed Camphausen K, Moses MA, Beecken W-D, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61:2207–2211PubMed
139.
go back to reference Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4:1717–1728PubMedCrossRef Kaliski A, Maggiorella L, Cengel KA et al (2005) Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 4:1717–1728PubMedCrossRef
140.
go back to reference Madani I, De Neve W, Mareel M (2008) Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer 95:292–300PubMed Madani I, De Neve W, Mareel M (2008) Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer 95:292–300PubMed
141.
go back to reference Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222PubMedCrossRef Ohuchida K, Mizumoto K, Murakami M et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64:3215–3222PubMedCrossRef
142.
go back to reference Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519PubMedCrossRef Park CM, Park MJ, Kwak HJ et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66:8511–8519PubMedCrossRef
143.
go back to reference Qian L-W, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227PubMed Qian L-W, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227PubMed
144.
go back to reference Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750PubMed Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750PubMed
145.
go back to reference Meirovitz A, Hermano E, Lerner I et al (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71:2772–2780PubMedCrossRef Meirovitz A, Hermano E, Lerner I et al (2011) Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Res 71:2772–2780PubMedCrossRef
146.
go back to reference Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW (2001) Cancer Res 61:4655–4659PubMed Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Buchler MW (2001) Cancer Res 61:4655–4659PubMed
147.
go back to reference Quiros RM, Rao G, Plate J et al (2006) Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer 106:532–540PubMedCrossRef Quiros RM, Rao G, Plate J et al (2006) Elevated serum heparanase-1 levels in patients with pancreatic carcinoma are associated with poor survival. Cancer 106:532–540PubMedCrossRef
148.
go back to reference Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mossner J, Wittekind C, Caca K (2002) Br J Cancer 86:1270–1275PubMedCrossRef Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mossner J, Wittekind C, Caca K (2002) Br J Cancer 86:1270–1275PubMedCrossRef
149.
go back to reference Hoffmann AC, Mori R, Vallbohmer D et al (2008) High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg 12:1674–1681PubMedCrossRef Hoffmann AC, Mori R, Vallbohmer D et al (2008) High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg 12:1674–1681PubMedCrossRef
150.
go back to reference de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD (2003) Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278:50377–50385PubMedCrossRef de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD (2003) Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278:50377–50385PubMedCrossRef
151.
go back to reference de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD (2007) Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 82:1289–1300PubMedCrossRef de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD (2007) Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 82:1289–1300PubMedCrossRef
152.
go back to reference Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J (2006) NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 281:15129–15137PubMedCrossRef Srinivasan R, Mager GM, Ward RM, Mayer J, Svaren J (2006) NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J Biol Chem 281:15129–15137PubMedCrossRef
153.
go back to reference Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949PubMedCrossRef Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949PubMedCrossRef
154.
go back to reference Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203PubMedCrossRef Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203PubMedCrossRef
155.
go back to reference Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280:12103–12113PubMedCrossRef Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280:12103–12113PubMedCrossRef
156.
go back to reference Chung SI, Seong J, Park YN, Kim WW, Oh HJ, Han KH. Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. J Rsd Res 51:643–650 Chung SI, Seong J, Park YN, Kim WW, Oh HJ, Han KH. Identification of proteins indicating radiation-induced hepatic toxicity in cirrhotic rats. J Rsd Res 51:643–650
157.
go back to reference Iriyama S, Matsunaga Y, Takahashi K, Matsuzaki K, Kumagai N, Amano S (2011) Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 303:253–261PubMedCrossRef Iriyama S, Matsunaga Y, Takahashi K, Matsuzaki K, Kumagai N, Amano S (2011) Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 303:253–261PubMedCrossRef
158.
go back to reference Chen T, Tang XD, Wan Y et al (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10:977–986PubMed Chen T, Tang XD, Wan Y et al (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10:977–986PubMed
159.
go back to reference Tang W, Nakamura Y, Tsujimoto M et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598PubMedCrossRef Tang W, Nakamura Y, Tsujimoto M et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598PubMedCrossRef
160.
go back to reference Tang XD, Liang GP, Li C et al (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59:1041–1047PubMedCrossRef Tang XD, Liang GP, Li C et al (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59:1041–1047PubMedCrossRef
161.
go back to reference Wang GZ, Tang XD, Lu MH, et al (2011) Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Canc Prev Res (PMID: 21505182) Wang GZ, Tang XD, Lu MH, et al (2011) Multiple antigenic peptides of human heparanase elicit a much more potent immune response against tumors. Canc Prev Res (PMID: 21505182)
162.
go back to reference Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76PubMed Beckhove P, Feuerer M, Dolenc M et al (2004) Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 114:67–76PubMed
163.
go back to reference Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157PubMedCrossRef Feuerer M, Beckhove P, Garbi N et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9:1151–1157PubMedCrossRef
164.
go back to reference Khazaie K, Prifti S, Beckhove P et al (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA 91:7430–7434PubMedCrossRef Khazaie K, Prifti S, Beckhove P et al (1994) Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci USA 91:7430–7434PubMedCrossRef
165.
go back to reference Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534PubMedCrossRef Schirrmacher V, Feuerer M, Fournier P, Ahlert T, Umansky V, Beckhove P (2003) T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 9:526–534PubMedCrossRef
166.
go back to reference Bai L, Beckhove P, Feuerer M et al (2003) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:73–83PubMedCrossRef Bai L, Beckhove P, Feuerer M et al (2003) Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: bidirectional cell stimulation, survival and antitumor activity in vivo. Int J Cancer 103:73–83PubMedCrossRef
167.
go back to reference Schmitz-Winnenthal FH, Volk C, Z’Graggen K et al (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087PubMedCrossRef Schmitz-Winnenthal FH, Volk C, Z’Graggen K et al (2005) High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 65:10079–10087PubMedCrossRef
168.
go back to reference Wagner P, Koch M, Nummer D et al (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317PubMedCrossRef Wagner P, Koch M, Nummer D et al (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317PubMedCrossRef
169.
go back to reference Schuetz F, Ehlert K, Ge Y et al (2008) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef Schuetz F, Ehlert K, Ge Y et al (2008) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef
170.
go back to reference Sommerfeldt N, Beckhove P, Ge Y et al (2006) Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66:7716–77123PubMedCrossRef Sommerfeldt N, Beckhove P, Ge Y et al (2006) Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res 66:7716–77123PubMedCrossRef
171.
go back to reference Bonertz A, Weitz J, Pietsch DH et al (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321PubMed Bonertz A, Weitz J, Pietsch DH et al (2009) Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest 119:3311–3321PubMed
172.
go back to reference Schuetz F, Ehlert K, Ge Y et al (2009) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef Schuetz F, Ehlert K, Ge Y et al (2009) Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 58:887–900PubMedCrossRef
173.
go back to reference Levy-Adam F, Ilan N, Vlodavsky I (2010) Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol 20:153–160PubMedCrossRef Levy-Adam F, Ilan N, Vlodavsky I (2010) Tumorigenic and adhesive properties of heparanase. Semin Cancer Biol 20:153–160PubMedCrossRef
174.
go back to reference Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE 3:e2319PubMedCrossRef Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I, Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE 3:e2319PubMedCrossRef
175.
go back to reference Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326PubMedCrossRef Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139:1315–1326PubMedCrossRef
176.
go back to reference Leung CT, Brugge JS (2009) Tumor self-seeding: bidirectional flow of tumor cells. Cell 139:1226–1228PubMedCrossRef Leung CT, Brugge JS (2009) Tumor self-seeding: bidirectional flow of tumor cells. Cell 139:1226–1228PubMedCrossRef
177.
go back to reference Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051PubMed Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D (2005) A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene 24:4037–4051PubMed
178.
go back to reference Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O (2000) Am J Pathol 157(4):1167–1175PubMedCrossRef Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O (2000) Am J Pathol 157(4):1167–1175PubMedCrossRef
179.
go back to reference Brun R, Naroditsky I, Waterman M et al (2009) Heparanase expression by Barrett’s epithelium and during esophageal carcinoma progression. Mod Pathol 22:1548–1554PubMedCrossRef Brun R, Naroditsky I, Waterman M et al (2009) Heparanase expression by Barrett’s epithelium and during esophageal carcinoma progression. Mod Pathol 22:1548–1554PubMedCrossRef
180.
go back to reference Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573PubMedCrossRef Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573PubMedCrossRef
181.
go back to reference Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105:108–120PubMedCrossRef Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA (2008) Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 105:108–120PubMedCrossRef
182.
go back to reference Kovalszky I, Dudas J, Olah-Nagy J et al (1998) Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 183:11–23PubMedCrossRef Kovalszky I, Dudas J, Olah-Nagy J et al (1998) Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 183:11–23PubMedCrossRef
183.
go back to reference Ohkawa T, Naomoto Y, Takaoka M et al (2004) Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. Lab Invest 84:1289–1304PubMedCrossRef Ohkawa T, Naomoto Y, Takaoka M et al (2004) Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. Lab Invest 84:1289–1304PubMedCrossRef
184.
go back to reference Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O (2004) Human heparanase nuclear localization and enzymatic activity. Lab Invest 84:535–544PubMedCrossRef Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O (2004) Human heparanase nuclear localization and enzymatic activity. Lab Invest 84:535–544PubMedCrossRef
185.
go back to reference Kobayashi M, Naomoto Y, Nobuhisa T et al (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 74:235–243PubMedCrossRef Kobayashi M, Naomoto Y, Nobuhisa T et al (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 74:235–243PubMedCrossRef
186.
go back to reference Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem PMID: 21757697 Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem PMID: 21757697
187.
go back to reference Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp 58:45–56CrossRef Szymczak M, Kuzniar J, Klinger M (2010) The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp 58:45–56CrossRef
188.
go back to reference van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J (2007) Heparanase in glomerular diseases. Kidney Int 72:543–548PubMedCrossRef van den Hoven MJ, Rops AL, Vlodavsky I, Levidiotis V, Berden JH, van der Vlag J (2007) Heparanase in glomerular diseases. Kidney Int 72:543–548PubMedCrossRef
189.
go back to reference Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2004) Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 15:68–78PubMedCrossRef Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2004) Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J Am Soc Nephrol 15:68–78PubMedCrossRef
190.
go back to reference Levidiotis V, Kanellis J, Ierino FL, Power DA (2001) Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 60:1287–1296PubMedCrossRef Levidiotis V, Kanellis J, Ierino FL, Power DA (2001) Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int 60:1287–1296PubMedCrossRef
191.
go back to reference Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2005) Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology 10:167–173PubMedCrossRef Levidiotis V, Freeman C, Tikellis C, Cooper ME, Power DA (2005) Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology 10:167–173PubMedCrossRef
192.
go back to reference Ritchie JP, Ramani VC, Ren Y et al (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393PubMedCrossRef Ritchie JP, Ramani VC, Ren Y et al (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393PubMedCrossRef
193.
go back to reference Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 285:3722–3729PubMedCrossRef Higgins WJ, Fox DM, Kowalski PS, Nielsen JE, Worrall DM (2010) Heparin enhances serpin inhibition of the cysteine protease cathepsin L. J Biol Chem 285:3722–3729PubMedCrossRef
194.
go back to reference Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I (2011) The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 30:253–268PubMedCrossRef Arvatz G, Shafat I, Levy-Adam F, Ilan N, Vlodavsky I (2011) The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev 30:253–268PubMedCrossRef
195.
go back to reference Dredge K, Hammond E, Handley P et al (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642PubMedCrossRef Dredge K, Hammond E, Handley P et al (2011) PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br J Cancer 104:635–642PubMedCrossRef
196.
go back to reference Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654PubMedCrossRef Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D (2011) MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 71:645–654PubMedCrossRef
197.
go back to reference Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) Int J Cancer 95:295–301PubMedCrossRef Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) Int J Cancer 95:295–301PubMedCrossRef
198.
go back to reference Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) J Urol 166:1286–1290PubMedCrossRef Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M (2001) J Urol 166:1286–1290PubMedCrossRef
199.
200.
go back to reference Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N (2005) J Cancer Res Clin Oncol 131:229–237PubMedCrossRef Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N (2005) J Cancer Res Clin Oncol 131:229–237PubMedCrossRef
201.
go back to reference Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K, Matsukawa S (2004) J Surg Oncol 87:174–181PubMedCrossRef Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K, Matsukawa S (2004) J Surg Oncol 87:174–181PubMedCrossRef
203.
go back to reference Endo K, Maejara U, Baba H, Tokunaga E, Koga T, Ikeda Y, Toh Y, Kohnoe S, Okamura T, Nakajima M, Sugimachi K (2001) Anticancer Res 21:3365–3369PubMed Endo K, Maejara U, Baba H, Tokunaga E, Koga T, Ikeda Y, Toh Y, Kohnoe S, Okamura T, Nakajima M, Sugimachi K (2001) Anticancer Res 21:3365–3369PubMed
204.
go back to reference Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M (2003) Lab Invest 83:613–622PubMed Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M, Tanaka N, Haisa M (2003) Lab Invest 83:613–622PubMed
205.
go back to reference Takahashi H, Ebihara S, Okazaki T, Suzuki S, Asada M, Kubo H, Sasaki H (2004) Lung Canc (Amsterdam, Netherlands) 45: 207–214 Takahashi H, Ebihara S, Okazaki T, Suzuki S, Asada M, Kubo H, Sasaki H (2004) Lung Canc (Amsterdam, Netherlands) 45: 207–214
206.
go back to reference Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N (2008) Cancer 113:1004–1011PubMedCrossRef Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N (2008) Cancer 113:1004–1011PubMedCrossRef
207.
go back to reference Kelly T, Miao H-Q, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD (2003) Cancer Res 63:8749–8756PubMed Kelly T, Miao H-Q, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F, Zangari M, Barlogie B, Shaughnessy J, Sanderson RD (2003) Cancer Res 63:8749–8756PubMed
208.
209.
210.
go back to reference Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA (2002) J Gastrointest Surg 6:167–172PubMedCrossRef Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA (2002) J Gastrointest Surg 6:167–172PubMedCrossRef
211.
go back to reference Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y (2008) Clin Cancer Res 14:6055–6061PubMedCrossRef Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y (2008) Clin Cancer Res 14:6055–6061PubMedCrossRef
212.
Metadata
Title
Significance of Heparanase in Cancer and Inflammation
Authors
Israel Vlodavsky
Phillip Beckhove
Immanuel Lerner
Claudio Pisano
Amichai Meirovitz
Neta Ilan
Michael Elkin
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
Cancer Microenvironment / Issue 2/2012
Print ISSN: 1875-2292
Electronic ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-011-0082-7

Other articles of this Issue 2/2012

Cancer Microenvironment 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine