Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2011

01-06-2011 | NON-THEMATIC REVIEW

The heparanase system and tumor metastasis: is heparanase the seed and soil?

Authors: Gil Arvatz, Itay Shafat, Flonia Levy-Adam, Neta Ilan, Israel Vlodavsky

Published in: Cancer and Metastasis Reviews | Issue 2/2011

Login to get access

Abstract

Tumor metastasis, the leading cause of cancer patients’ death, is still insufficiently understood. While concepts and mechanisms of tumor metastasis are evolving, it is widely accepted that cancer metastasis is accompanied by orchestrated proteolytic activity executed by array of proteases. While matrix metalloproteinases (MMPs) attracted much attention, other proteases constitute the tumor milieu, of which a large family consists of cysteine proteases named cathepsins. Like MMPs, some cathepsins are often upregulated in cancer and, once secreted or localized to the cell surface, can degrade components of the extracellular matrix. In addition, cathepsin L is held responsible for processing and activation of heparanase, an endo-β-glucuronidase capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans, activity that is strongly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. In this review, we discuss recent progress in heparanase research focusing on heparanase-related molecules namely, cathepsin L and heparanase 2 (Hpa2), a heparanase homolog.
Literature
1.
go back to reference Risau, W. (1997). Mechanisms of angiogenesis. Nature, 356(6626), 671–674. Risau, W. (1997). Mechanisms of angiogenesis. Nature, 356(6626), 671–674.
2.
go back to reference Paget, S. (1889). The distribution of a secondary growths in cancer of the breast. Lancet, 133, 571–573.CrossRef Paget, S. (1889). The distribution of a secondary growths in cancer of the breast. Lancet, 133, 571–573.CrossRef
3.
go back to reference Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis:historical perspective. Cancer Research, 70(14), 5649–5669.PubMedCrossRef Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis:historical perspective. Cancer Research, 70(14), 5649–5669.PubMedCrossRef
4.
go back to reference Nicolson, G. L. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer and Metastasis Reviews, 7(2), 143–188.PubMedCrossRef Nicolson, G. L. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer and Metastasis Reviews, 7(2), 143–188.PubMedCrossRef
5.
go back to reference Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the "soil": the premetastatic niche. Cancer Research, 66(23), 11089–11093.PubMedCrossRef Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the "soil": the premetastatic niche. Cancer Research, 66(23), 11089–11093.PubMedCrossRef
6.
go back to reference Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer and Metastasis Reviews, 25(4), 521–529.PubMedCrossRef Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer and Metastasis Reviews, 25(4), 521–529.PubMedCrossRef
7.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef
8.
go back to reference Ferrara, N., Hillan, K. J., Gerber, H. P., et al. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews. Drug Discovery, 3(5), 391–400.PubMedCrossRef Ferrara, N., Hillan, K. J., Gerber, H. P., et al. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Reviews. Drug Discovery, 3(5), 391–400.PubMedCrossRef
9.
go back to reference Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.PubMedCrossRef Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883–899.PubMedCrossRef
10.
go back to reference Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 22(2), 231–237.PubMedCrossRef Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology, 22(2), 231–237.PubMedCrossRef
11.
go back to reference Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.PubMedCrossRef Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.PubMedCrossRef
12.
go back to reference Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., et al. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196.PubMedCrossRef Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., et al. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196.PubMedCrossRef
13.
go back to reference Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.PubMedCrossRef Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.PubMedCrossRef
14.
go back to reference Franco, O. E., Shaw, A. K., Strand, D. W., et al. (2010). Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology, 21(1), 33–39.CrossRef Franco, O. E., Shaw, A. K., Strand, D. W., et al. (2010). Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology, 21(1), 33–39.CrossRef
15.
go back to reference Shimoda, M., Mellody, K. T., & Orimo, A. (2010). Carcinoma-associated fibroblasts are a rate- limiting determinant for tumour progression. Seminars in Cell & Developmental Biology, 21(1), 19–25.CrossRef Shimoda, M., Mellody, K. T., & Orimo, A. (2010). Carcinoma-associated fibroblasts are a rate- limiting determinant for tumour progression. Seminars in Cell & Developmental Biology, 21(1), 19–25.CrossRef
16.
go back to reference Bhowmick, N. A., Chytil, A., Plieth, D., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 848–851.PubMedCrossRef Bhowmick, N. A., Chytil, A., Plieth, D., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 848–851.PubMedCrossRef
17.
go back to reference Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432(7015), 332–337.PubMedCrossRef Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432(7015), 332–337.PubMedCrossRef
18.
go back to reference Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.PubMedCrossRef Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.PubMedCrossRef
19.
go back to reference Erez, N., Truitt, M., Olson, P., et al. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.PubMedCrossRef Erez, N., Truitt, M., Olson, P., et al. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.PubMedCrossRef
21.
go back to reference Pentheroudakis, G., Briasoulis, E., & Pavlidis, N. (2007). Cancer of unknown primary site: missing primary or missing biology? The Oncologist, 12(4), 418–425.PubMedCrossRef Pentheroudakis, G., Briasoulis, E., & Pavlidis, N. (2007). Cancer of unknown primary site: missing primary or missing biology? The Oncologist, 12(4), 418–425.PubMedCrossRef
22.
go back to reference Husemann, Y., Geigl, J. B., Schubert, F., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.PubMedCrossRef Husemann, Y., Geigl, J. B., Schubert, F., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.PubMedCrossRef
23.
go back to reference Podsypanina, K., Du, Y. C., Jechlinger, M., et al. (2008). Seeding and propagation of untransformed mouse mammary cells in the lung. Science, 321, 1841–1844.PubMedCrossRef Podsypanina, K., Du, Y. C., Jechlinger, M., et al. (2008). Seeding and propagation of untransformed mouse mammary cells in the lung. Science, 321, 1841–1844.PubMedCrossRef
24.
go back to reference Kim, M-Y., Oskarsson, T., Acharyya, S., Nguyen, D. X., Zhang, X. H-F., Norton, L., & Massague, J. (2009). Tumor self-seeding by circulating cancer cells. Cell, 139, 1315–1326. Kim, M-Y., Oskarsson, T., Acharyya, S., Nguyen, D. X., Zhang, X. H-F., Norton, L., & Massague, J. (2009). Tumor self-seeding by circulating cancer cells. Cell, 139, 1315–1326.
25.
go back to reference Leung, C. T., & Brugge, J. S. (2009). Tumor self-seeding: bidirectional flow of tumor cells. Cell, 139(7), 1226–1228.PubMedCrossRef Leung, C. T., & Brugge, J. S. (2009). Tumor self-seeding: bidirectional flow of tumor cells. Cell, 139(7), 1226–1228.PubMedCrossRef
26.
go back to reference Duda, D. G., Duyverman, A. M., Kohno, M., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21677–21682.PubMedCrossRef Duda, D. G., Duyverman, A. M., Kohno, M., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21677–21682.PubMedCrossRef
27.
go back to reference Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52–67.PubMedCrossRef Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52–67.PubMedCrossRef
28.
go back to reference Murdoch, C., Muthana, M., Coffelt, S. B., et al. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8(8), 618–631.PubMedCrossRef Murdoch, C., Muthana, M., Coffelt, S. B., et al. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews. Cancer, 8(8), 618–631.PubMedCrossRef
29.
go back to reference Noel, A., Jost, M., & Maquoi, E. (2008). Matrix metalloproteinases at cancer tumor-host interface. Seminars in Cell & Developmental Biology, 19(1), 52–60.CrossRef Noel, A., Jost, M., & Maquoi, E. (2008). Matrix metalloproteinases at cancer tumor-host interface. Seminars in Cell & Developmental Biology, 19(1), 52–60.CrossRef
30.
go back to reference Van Damme, J., Struyf, S., & Opdenakker, G. (2004). Chemokine-protease interactions in cancer. Seminars in Cancer Biology, 14(3), 201–208.PubMedCrossRef Van Damme, J., Struyf, S., & Opdenakker, G. (2004). Chemokine-protease interactions in cancer. Seminars in Cancer Biology, 14(3), 201–208.PubMedCrossRef
31.
go back to reference Gocheva, V., & Joyce, J. A. (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 6(1), 60–64.PubMedCrossRef Gocheva, V., & Joyce, J. A. (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 6(1), 60–64.PubMedCrossRef
32.
go back to reference Lankelma, J. M., Voorend, D. M., Barwari, T., et al. (2010). Cathepsin L, target in cancer treatment? Life Sciences, 86(7–8), 225–233.PubMedCrossRef Lankelma, J. M., Voorend, D. M., Barwari, T., et al. (2010). Cathepsin L, target in cancer treatment? Life Sciences, 86(7–8), 225–233.PubMedCrossRef
33.
go back to reference Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta, 1477(1–2), 98–111.PubMed Turk, B., Turk, D., & Turk, V. (2000). Lysosomal cysteine proteases: more than scavengers. Biochimica et Biophysica Acta, 1477(1–2), 98–111.PubMed
34.
go back to reference Turk, V., Turk, B., & Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO Journal, 20(17), 4629–4633.PubMedCrossRef Turk, V., Turk, B., & Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO Journal, 20(17), 4629–4633.PubMedCrossRef
35.
go back to reference Mohamed, M. M., & Sloane, B. F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nature Reviews. Cancer, 6(10), 764–775.PubMedCrossRef Mohamed, M. M., & Sloane, B. F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nature Reviews. Cancer, 6(10), 764–775.PubMedCrossRef
36.
go back to reference Reiser, J., Adair, B., & Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. Journal of Clinical Investigation, 120(10), 3421–3431.PubMedCrossRef Reiser, J., Adair, B., & Reinheckel, T. (2010). Specialized roles for cysteine cathepsins in health and disease. Journal of Clinical Investigation, 120(10), 3421–3431.PubMedCrossRef
37.
go back to reference Berdowska, I. (2004). Cysteine proteases as disease markers. Clinica Chimica Acta, 342(1–2), 41–69.CrossRef Berdowska, I. (2004). Cysteine proteases as disease markers. Clinica Chimica Acta, 342(1–2), 41–69.CrossRef
38.
go back to reference Palermo, C., & Joyce, J. A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences, 29(1), 22–28.PubMedCrossRef Palermo, C., & Joyce, J. A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences, 29(1), 22–28.PubMedCrossRef
39.
go back to reference Zcharia, E., Jia, J., Zhang, X., et al. (2009). Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE, 4(4), e5181.PubMedCrossRef Zcharia, E., Jia, J., Zhang, X., et al. (2009). Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE, 4(4), e5181.PubMedCrossRef
40.
go back to reference Iozzo, R. V., & San Antonio, J. D. (2001). Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. Journal of Clinical Investigation, 108(3), 349–355.PubMed Iozzo, R. V., & San Antonio, J. D. (2001). Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. Journal of Clinical Investigation, 108(3), 349–355.PubMed
41.
go back to reference Kjellen, L., & Lindahl, U. (1991). Proteoglycans: structures and interactions. Annual Review of Biochemistry, 60, 443–475.PubMedCrossRef Kjellen, L., & Lindahl, U. (1991). Proteoglycans: structures and interactions. Annual Review of Biochemistry, 60, 443–475.PubMedCrossRef
42.
go back to reference Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: a key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.PubMed Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: a key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.PubMed
43.
go back to reference Vlodavsky, I., & Friedmann, Y. (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. Journal of Clinical Investigation, 108(3), 341–347.PubMed Vlodavsky, I., & Friedmann, Y. (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. Journal of Clinical Investigation, 108(3), 341–347.PubMed
44.
go back to reference Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38(12), 2018–2039.CrossRef Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The International Journal of Biochemistry & Cell Biology, 38(12), 2018–2039.CrossRef
45.
go back to reference Fux, L., Ilan, N., Sanderson, R. D., & Vlodavsky, I. (2009). Heparanase: busy at the cell surface. Trends in Biochemical Sciences, 34(10), 511–519.PubMedCrossRef Fux, L., Ilan, N., Sanderson, R. D., & Vlodavsky, I. (2009). Heparanase: busy at the cell surface. Trends in Biochemical Sciences, 34(10), 511–519.PubMedCrossRef
46.
go back to reference Shafat I, Bem-Arush MW, Issakov J, et al (2011) Pre-clinical and clinical significance of heparanase in Ewing’s sarcoma. J Cell Mol Med (in press) Shafat I, Bem-Arush MW, Issakov J, et al (2011) Pre-clinical and clinical significance of heparanase in Ewing’s sarcoma. J Cell Mol Med (in press)
47.
go back to reference Vreys, V., & David, G. (2007). Mammalian heparanase: what is the message? Journal of Cellular and Molecular Medicine, 11(3), 427–452.PubMedCrossRef Vreys, V., & David, G. (2007). Mammalian heparanase: what is the message? Journal of Cellular and Molecular Medicine, 11(3), 427–452.PubMedCrossRef
48.
go back to reference Vlodavsky, I., Ilan, N., Naggi, A., et al. (2007). Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Current Pharmaceutical Design, 13(20), 2057–2073.PubMedCrossRef Vlodavsky, I., Ilan, N., Naggi, A., et al. (2007). Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Current Pharmaceutical Design, 13(20), 2057–2073.PubMedCrossRef
49.
go back to reference Casu, B., Vlodavsky, I., & Sanderson, R. D. (2008). Non-anticoagulant heparins and inhibition of cancer. Pathophysiology of Haemostasis and Thrombosis, 36(3–4), 195–203.PubMed Casu, B., Vlodavsky, I., & Sanderson, R. D. (2008). Non-anticoagulant heparins and inhibition of cancer. Pathophysiology of Haemostasis and Thrombosis, 36(3–4), 195–203.PubMed
50.
go back to reference Dredge, K., Hammond, E., Davis, K., et al. (2010). The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs, 28(3), 276–283.PubMedCrossRef Dredge, K., Hammond, E., Davis, K., et al. (2010). The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs, 28(3), 276–283.PubMedCrossRef
51.
go back to reference Fairweather, J. K., Hammond, E., Johnstone, K. D., et al. (2008). Synthesis and heparanase inhibitory activity of sulfated mannooligosaccharides related to the antiangiogenic agent PI-88. Bioorganic & Medicinal Chemistry, 16(2), 699–709.CrossRef Fairweather, J. K., Hammond, E., Johnstone, K. D., et al. (2008). Synthesis and heparanase inhibitory activity of sulfated mannooligosaccharides related to the antiangiogenic agent PI-88. Bioorganic & Medicinal Chemistry, 16(2), 699–709.CrossRef
52.
go back to reference Ferro, V., & Hammond, E. (2004). The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem, 4(6), 693–702.PubMed Ferro, V., & Hammond, E. (2004). The development of inhibitors of heparanase, a key enzyme involved in tumour metastasis, angiogenesis and inflammation. Mini Rev Med Chem, 4(6), 693–702.PubMed
53.
go back to reference Johnstone, K. D., Karoli, T., Liu, L., et al. (2010). Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth. Journal of Medicinal Chemistry, 53(4), 1686–1699.PubMedCrossRef Johnstone, K. D., Karoli, T., Liu, L., et al. (2010). Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth. Journal of Medicinal Chemistry, 53(4), 1686–1699.PubMedCrossRef
54.
go back to reference McKenzie, E. A. (2007). Heparanase: a target for drug discovery in cancer and inflammation. British Journal of Pharmacology, 151(1), 1–14.PubMedCrossRef McKenzie, E. A. (2007). Heparanase: a target for drug discovery in cancer and inflammation. British Journal of Pharmacology, 151(1), 1–14.PubMedCrossRef
55.
go back to reference Miao, H. Q., Liu, H., Navarro, E., et al. (2006). Development of heparanase inhibitors for anti- cancer therapy. Current Medicinal Chemistry, 13(18), 2101–2111.PubMedCrossRef Miao, H. Q., Liu, H., Navarro, E., et al. (2006). Development of heparanase inhibitors for anti- cancer therapy. Current Medicinal Chemistry, 13(18), 2101–2111.PubMedCrossRef
56.
go back to reference Simizu, S., Ishida, K., & Osada, H. (2004). Heparanase as a molecular target of cancer chemotherapy. Cancer Science, 95(7), 553–558.PubMedCrossRef Simizu, S., Ishida, K., & Osada, H. (2004). Heparanase as a molecular target of cancer chemotherapy. Cancer Science, 95(7), 553–558.PubMedCrossRef
57.
go back to reference Shteper, P. J., Zcharia, E., Ashhab, Y., et al. (2003). Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene, 22(49), 7737–7749.PubMedCrossRef Shteper, P. J., Zcharia, E., Ashhab, Y., et al. (2003). Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene, 22(49), 7737–7749.PubMedCrossRef
58.
go back to reference Ogishima, T., Shiina, H., Breault, J. E., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.PubMed Ogishima, T., Shiina, H., Breault, J. E., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.PubMed
59.
go back to reference Ogishima, T., Shiina, H., Breault, J. E., et al. (2005). Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene, 24(45), 6765–6772.PubMedCrossRef Ogishima, T., Shiina, H., Breault, J. E., et al. (2005). Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene, 24(45), 6765–6772.PubMedCrossRef
60.
go back to reference de Mestre, A. M., Khachigian, L. M., Santiago, F. S., et al. (2003). Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. The Journal of Biological Chemistry, 278(50), 50377–50385.PubMedCrossRef de Mestre, A. M., Khachigian, L. M., Santiago, F. S., et al. (2003). Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. The Journal of Biological Chemistry, 278(50), 50377–50385.PubMedCrossRef
61.
go back to reference de Mestre, A. M., Rao, S., Hornby, J. R., et al. (2005). Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. The Journal of Biological Chemistry, 277(42), 35136–35147.CrossRef de Mestre, A. M., Rao, S., Hornby, J. R., et al. (2005). Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. The Journal of Biological Chemistry, 277(42), 35136–35147.CrossRef
62.
go back to reference Jiang, P., Kumar, A., Parrillo, J. E., et al. (2002). Cloning and characterization of the human heparanase-1 (HPR1) gene promoter: role of GA-binding protein and Sp1 in regulating HPR1 basal promoter activity. The Journal of Biological Chemistry, 277(11), 8989–8998.PubMedCrossRef Jiang, P., Kumar, A., Parrillo, J. E., et al. (2002). Cloning and characterization of the human heparanase-1 (HPR1) gene promoter: role of GA-binding protein and Sp1 in regulating HPR1 basal promoter activity. The Journal of Biological Chemistry, 277(11), 8989–8998.PubMedCrossRef
63.
go back to reference Jean, D., Rousselet, N., & Frade, R. (2006). Expression of cathepsin L in human tumor cells is under the control of distinct regulatory mechanisms. Oncogene, 25(10), 1474–1484.PubMedCrossRef Jean, D., Rousselet, N., & Frade, R. (2006). Expression of cathepsin L in human tumor cells is under the control of distinct regulatory mechanisms. Oncogene, 25(10), 1474–1484.PubMedCrossRef
64.
go back to reference Abdulkadir, S. A., Qu, Z., Garabedian, E., et al. (2001). Impaired prostate tumorigenesis in Egr1-deficient mice. Natural Medicines, 7(1), 101–107.CrossRef Abdulkadir, S. A., Qu, Z., Garabedian, E., et al. (2001). Impaired prostate tumorigenesis in Egr1-deficient mice. Natural Medicines, 7(1), 101–107.CrossRef
65.
go back to reference Khachigian, L. M. (2004). Early growth response-1: blocking angiogenesis by shooting the messenger. Cell Cycle, 3(1), 10–11.PubMedCrossRef Khachigian, L. M. (2004). Early growth response-1: blocking angiogenesis by shooting the messenger. Cell Cycle, 3(1), 10–11.PubMedCrossRef
66.
go back to reference Ishidoh, K., Taniguchi, S., & Kominami, E. (1997). Egr family member proteins are involved in the activation of the cathepsin L gene in v-src-transformed cells. Biochemical and Biophysical Research Communications, 238(2), 665–669.PubMedCrossRef Ishidoh, K., Taniguchi, S., & Kominami, E. (1997). Egr family member proteins are involved in the activation of the cathepsin L gene in v-src-transformed cells. Biochemical and Biophysical Research Communications, 238(2), 665–669.PubMedCrossRef
67.
go back to reference Barash, U., Cohen-Kaplan, V., Dowek, I., et al. (2010). Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. The FEBS Journal, 277(19), 3890–3903.PubMedCrossRef Barash, U., Cohen-Kaplan, V., Dowek, I., et al. (2010). Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. The FEBS Journal, 277(19), 3890–3903.PubMedCrossRef
68.
go back to reference Levy-Adam, F., Ilan, N., & Vlodavsky, I. (2010). Tumorigenic and adhesive properties of heparanase. Seminars in Cancer Biology, 20(3), 153–160.PubMedCrossRef Levy-Adam, F., Ilan, N., & Vlodavsky, I. (2010). Tumorigenic and adhesive properties of heparanase. Seminars in Cancer Biology, 20(3), 153–160.PubMedCrossRef
69.
go back to reference Cohen-Kaplan, V., Naroditsky, I., Zetser, A., et al. (2008). Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. International Journal of Cancer, 123(11), 2566–2573.CrossRef Cohen-Kaplan, V., Naroditsky, I., Zetser, A., et al. (2008). Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. International Journal of Cancer, 123(11), 2566–2573.CrossRef
70.
go back to reference Levicar, N., Dewey, R. A., Daley, E., et al. (2003). Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Therapy, 10(2), 141–151.PubMedCrossRef Levicar, N., Dewey, R. A., Daley, E., et al. (2003). Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Therapy, 10(2), 141–151.PubMedCrossRef
71.
go back to reference Rousselet, N., Mills, L., Jean, D., et al. (2004). Inhibition of tumorigenicity and metastasis of human melanoma cells by anti-cathepsin L single chain variable fragment. Cancer Research, 64(1), 146–151.PubMedCrossRef Rousselet, N., Mills, L., Jean, D., et al. (2004). Inhibition of tumorigenicity and metastasis of human melanoma cells by anti-cathepsin L single chain variable fragment. Cancer Research, 64(1), 146–151.PubMedCrossRef
72.
go back to reference Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353–364.PubMedCrossRef Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86(3), 353–364.PubMedCrossRef
73.
go back to reference Joyce, J. A., Baruch, A., Chehade, K., et al. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.PubMedCrossRef Joyce, J. A., Baruch, A., Chehade, K., et al. (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5(5), 443–453.PubMedCrossRef
74.
go back to reference Joyce, J. A., Freeman, C., Meyer-Morse, N., et al. (2005). A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene, 24(25), 4037–4051.PubMed Joyce, J. A., Freeman, C., Meyer-Morse, N., et al. (2005). A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene, 24(25), 4037–4051.PubMed
75.
go back to reference Gocheva, V., Zeng, W., Ke, D., et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development, 20(5), 543–556.CrossRef Gocheva, V., Zeng, W., Ke, D., et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development, 20(5), 543–556.CrossRef
76.
go back to reference Leto, G., Sepporta, M. V., Crescimanno, M., et al. (2010). Cathepsin L in metastatic bone disease: therapeutic implications. Biological Chemistry, 391(6), 655–664.PubMedCrossRef Leto, G., Sepporta, M. V., Crescimanno, M., et al. (2010). Cathepsin L in metastatic bone disease: therapeutic implications. Biological Chemistry, 391(6), 655–664.PubMedCrossRef
77.
go back to reference Katunuma, N., Murata, E., Kakegawa, H., et al. (1999). Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Letters, 458(1), 6–10.PubMedCrossRef Katunuma, N., Murata, E., Kakegawa, H., et al. (1999). Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Letters, 458(1), 6–10.PubMedCrossRef
78.
go back to reference Katunuma, N., Tsuge, H., Nukatsuka, M., et al. (2002). Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells. Archives of Biochemistry and Biophysics, 397(2), 305–311.PubMedCrossRef Katunuma, N., Tsuge, H., Nukatsuka, M., et al. (2002). Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells. Archives of Biochemistry and Biophysics, 397(2), 305–311.PubMedCrossRef
79.
go back to reference Kelly, T., Miao, H.-Q., Yang, Y., et al. (2003). High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Research, 63(24), 8749–8756.PubMed Kelly, T., Miao, H.-Q., Yang, Y., et al. (2003). High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Research, 63(24), 8749–8756.PubMed
80.
go back to reference Mahtouk, K., Hose, D., Raynaud, P., et al. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109(11), 4914–4923.PubMedCrossRef Mahtouk, K., Hose, D., Raynaud, P., et al. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109(11), 4914–4923.PubMedCrossRef
81.
go back to reference Purushothaman, A., Uyama, T., Kobayashi, F., et al. (2010). Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 115(12), 2449–2457.PubMedCrossRef Purushothaman, A., Uyama, T., Kobayashi, F., et al. (2010). Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood, 115(12), 2449–2457.PubMedCrossRef
82.
go back to reference Yang, Y., Macleod, V., Miao, H. Q., et al. (2007). Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. The Journal of Biological Chemistry, 282(18), 13326–13333.PubMedCrossRef Yang, Y., Macleod, V., Miao, H. Q., et al. (2007). Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. The Journal of Biological Chemistry, 282(18), 13326–13333.PubMedCrossRef
83.
go back to reference Yang, Y., Macleod, V., Bendre, M., et al. (2005). Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood, 105(3), 1303–1309.PubMedCrossRef Yang, Y., Macleod, V., Bendre, M., et al. (2005). Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood, 105(3), 1303–1309.PubMedCrossRef
84.
go back to reference Casu, B., Guerrini, M., Guglieri, S., et al. (2004). Undersulfated and glycol-split heparins endowed with antiangiogenic activity. Journal of Medicinal Chemistry, 47(4), 838–848.PubMedCrossRef Casu, B., Guerrini, M., Guglieri, S., et al. (2004). Undersulfated and glycol-split heparins endowed with antiangiogenic activity. Journal of Medicinal Chemistry, 47(4), 838–848.PubMedCrossRef
85.
go back to reference Naggi, A., Casu, B., Perez, M., et al. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280(13), 12103–12113.PubMedCrossRef Naggi, A., Casu, B., Perez, M., et al. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280(13), 12103–12113.PubMedCrossRef
86.
go back to reference Yang, Y., MacLeod, V., Dai, Y., et al. (2007). The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 110(6), 2041–2048.PubMedCrossRef Yang, Y., MacLeod, V., Dai, Y., et al. (2007). The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 110(6), 2041–2048.PubMedCrossRef
87.
go back to reference Kelly, T., Suva, L. J., Huang, Y., et al. (2005). Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Research, 65(13), 5778–5784.PubMedCrossRef Kelly, T., Suva, L. J., Huang, Y., et al. (2005). Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Research, 65(13), 5778–5784.PubMedCrossRef
88.
go back to reference Kelly, T., Suva, L. J., Nicks, K. M., et al. (2010). Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. Journal of Bone and Mineral Research, 25(6), 1295–1304.PubMedCrossRef Kelly, T., Suva, L. J., Nicks, K. M., et al. (2010). Tumor-derived syndecan-1 mediates distal cross-talk with bone that enhances osteoclastogenesis. Journal of Bone and Mineral Research, 25(6), 1295–1304.PubMedCrossRef
89.
go back to reference Yang, Y., Ren, Y., Ramani, V. C., et al. (2010). Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL. Cancer Research, 70(21), 8329–8338.PubMedCrossRef Yang, Y., Ren, Y., Ramani, V. C., et al. (2010). Heparanase enhances local and systemic osteolysis in multiple myeloma by upregulating the expression and secretion of RANKL. Cancer Research, 70(21), 8329–8338.PubMedCrossRef
90.
go back to reference Ramani VC, Yang Y, Ren Y, et al (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem (in press) Ramani VC, Yang Y, Ren Y, et al (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem (in press)
91.
go back to reference Jean, D., Rousselet, N., & Frade, R. (2008). Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5′-untranslated region. The Biochemical Journal, 413(1), 125–134.PubMedCrossRef Jean, D., Rousselet, N., & Frade, R. (2008). Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5′-untranslated region. The Biochemical Journal, 413(1), 125–134.PubMedCrossRef
92.
go back to reference Arvatz, G., Barash, U., Nativ, O., et al. (2010). Post-transcriptional regulation of heparanase gene expression by a 3′ AU-rich element. The FASEB Journal, 24(12), 4969–4976.PubMedCrossRef Arvatz, G., Barash, U., Nativ, O., et al. (2010). Post-transcriptional regulation of heparanase gene expression by a 3′ AU-rich element. The FASEB Journal, 24(12), 4969–4976.PubMedCrossRef
93.
go back to reference Barreau, C., Paillard, L., & Osborne, H. B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Research, 33(22), 7138–7150.PubMedCrossRef Barreau, C., Paillard, L., & Osborne, H. B. (2005). AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Research, 33(22), 7138–7150.PubMedCrossRef
94.
go back to reference Chen, C. Y., & Shyu, A. B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends in Biochemical Sciences, 20(11), 465–470.PubMedCrossRef Chen, C. Y., & Shyu, A. B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends in Biochemical Sciences, 20(11), 465–470.PubMedCrossRef
95.
go back to reference Eberhardt, W., Doller, A., el Akool, S., et al. (2007). Modulation of mRNA stability as a novel therapeutic approach. Pharmacology & Therapeutics, 114(1), 56–73.CrossRef Eberhardt, W., Doller, A., el Akool, S., et al. (2007). Modulation of mRNA stability as a novel therapeutic approach. Pharmacology & Therapeutics, 114(1), 56–73.CrossRef
96.
go back to reference Barash, U., Cohen-Kaplan, V., Arvatz, G., et al. (2010). A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. The FASEB Journal, 24(4), 1239–1248.PubMedCrossRef Barash, U., Cohen-Kaplan, V., Arvatz, G., et al. (2010). A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. The FASEB Journal, 24(4), 1239–1248.PubMedCrossRef
97.
go back to reference Nasser, N. J., Avivi, A., Shushy, M., et al. (2007). Cloning, expression, and characterization of an alternatively spliced variant of human heparanase. Biochemical and Biophysical Research Communications, 354(1), 33–38.PubMedCrossRef Nasser, N. J., Avivi, A., Shushy, M., et al. (2007). Cloning, expression, and characterization of an alternatively spliced variant of human heparanase. Biochemical and Biophysical Research Communications, 354(1), 33–38.PubMedCrossRef
98.
go back to reference Sato, M., Amemiya, K., Hayakawa, S., et al. (2008). Subcellular localization of human heparanase and its alternative splice variant in COS-7 cells. Cell Biochemistry and Function, 26(6), 676–683.PubMedCrossRef Sato, M., Amemiya, K., Hayakawa, S., et al. (2008). Subcellular localization of human heparanase and its alternative splice variant in COS-7 cells. Cell Biochemistry and Function, 26(6), 676–683.PubMedCrossRef
99.
go back to reference Dong, J., Kukula, A. K., Toyoshima, M., et al. (2000). Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene, 253(2), 171–178.PubMedCrossRef Dong, J., Kukula, A. K., Toyoshima, M., et al. (2000). Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene, 253(2), 171–178.PubMedCrossRef
100.
go back to reference Barash, U., Cohen-Kaplan, V., Arvatz, G., et al. (2009). A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. The FASEB Journal, 24, 1239–1248.PubMedCrossRef Barash, U., Cohen-Kaplan, V., Arvatz, G., et al. (2009). A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. The FASEB Journal, 24, 1239–1248.PubMedCrossRef
101.
go back to reference Ben-Zaken, O., Shafat, I., Gingis-Velitski, S., et al. (2008). Low and high affinity receptors mediate cellular uptake of heparanase. The International Journal of Biochemistry & Cell Biology, 40(3), 530–542.CrossRef Ben-Zaken, O., Shafat, I., Gingis-Velitski, S., et al. (2008). Low and high affinity receptors mediate cellular uptake of heparanase. The International Journal of Biochemistry & Cell Biology, 40(3), 530–542.CrossRef
102.
go back to reference Cohen-Kaplan, V., Doweck, I., Naroditsky, I., et al. (2008). Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Research, 68(24), 10077–10085.PubMedCrossRef Cohen-Kaplan, V., Doweck, I., Naroditsky, I., et al. (2008). Heparanase augments epidermal growth factor receptor phosphorylation: correlation with head and neck tumor progression. Cancer Research, 68(24), 10077–10085.PubMedCrossRef
103.
go back to reference Fux, L., Feibish, N., Cohen-Kaplan, V., et al. (2009). Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research, 69(5), 1758–1767.PubMedCrossRef Fux, L., Feibish, N., Cohen-Kaplan, V., et al. (2009). Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research, 69(5), 1758–1767.PubMedCrossRef
104.
go back to reference Zetser, A., Bashenko, Y., Edovitsky, E., et al. (2006). Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Research, 66(3), 1455–1463.PubMedCrossRef Zetser, A., Bashenko, Y., Edovitsky, E., et al. (2006). Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Research, 66(3), 1455–1463.PubMedCrossRef
105.
go back to reference Chen, G., Wang, D., Vikramadithyan, R., et al. (2004). Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry, 43(17), 4971–4977.PubMedCrossRef Chen, G., Wang, D., Vikramadithyan, R., et al. (2004). Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry, 43(17), 4971–4977.PubMedCrossRef
106.
go back to reference Sotnikov, I., Hershkoviz, R., Grabovsky, V., et al. (2004). Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. Journal of Immunology, 172(9), 5185–5193. Sotnikov, I., Hershkoviz, R., Grabovsky, V., et al. (2004). Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. Journal of Immunology, 172(9), 5185–5193.
107.
go back to reference Shafat, I., Vlodavsky, I., & Ilan, N. (2006). Characterization of mechanisms involved in secretion of active heparanase. The Journal of Biological Chemistry, 281(33), 23804–23811.PubMedCrossRef Shafat, I., Vlodavsky, I., & Ilan, N. (2006). Characterization of mechanisms involved in secretion of active heparanase. The Journal of Biological Chemistry, 281(33), 23804–23811.PubMedCrossRef
108.
go back to reference Communi, D., Janssens, R., Suarez-Huerta, N., et al. (2000). Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cellular Signalling, 12(6), 351–360.PubMedCrossRef Communi, D., Janssens, R., Suarez-Huerta, N., et al. (2000). Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cellular Signalling, 12(6), 351–360.PubMedCrossRef
109.
go back to reference Abbracchio, M. P., & Burnstock, G. (1998). Purinergic signalling: pathophysiological roles. Japanese Journal of Pharmacology, 78(2), 113–145.PubMedCrossRef Abbracchio, M. P., & Burnstock, G. (1998). Purinergic signalling: pathophysiological roles. Japanese Journal of Pharmacology, 78(2), 113–145.PubMedCrossRef
110.
go back to reference van der Weyden, L., Conigrave, A. D., & Morris, M. B. (2000). Signal transduction and white cell maturation via extracellular ATP and the P2Y11 receptor. Immunology and Cell Biology, 78(4), 369–374.PubMedCrossRef van der Weyden, L., Conigrave, A. D., & Morris, M. B. (2000). Signal transduction and white cell maturation via extracellular ATP and the P2Y11 receptor. Immunology and Cell Biology, 78(4), 369–374.PubMedCrossRef
111.
go back to reference Gordon, J. L. (1986). Extracellular ATP: effects, sources and fate. The Biochemical Journal, 233(2), 309–319.PubMed Gordon, J. L. (1986). Extracellular ATP: effects, sources and fate. The Biochemical Journal, 233(2), 309–319.PubMed
112.
go back to reference Wang, F., Wang, Y., Kim, M. S., et al. (2010). Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovascular Research, 87(1), 127–136.PubMedCrossRef Wang, F., Wang, Y., Kim, M. S., et al. (2010). Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization. Cardiovascular Research, 87(1), 127–136.PubMedCrossRef
113.
go back to reference Turk, V., Kos, J., & Turk, B. (2004). Cysteine cathepsins (proteases)—on the main stage of cancer? Cancer Cell, 5(5), 409–410.PubMedCrossRef Turk, V., Kos, J., & Turk, B. (2004). Cysteine cathepsins (proteases)—on the main stage of cancer? Cancer Cell, 5(5), 409–410.PubMedCrossRef
114.
go back to reference Shafat, I., Zcharia, E., Nisman, B., et al. (2006). An ELISA method for the detection and quantification of human heparanase. Biochemical and Biophysical Research Communications, 341(4), 958–963.PubMedCrossRef Shafat, I., Zcharia, E., Nisman, B., et al. (2006). An ELISA method for the detection and quantification of human heparanase. Biochemical and Biophysical Research Communications, 341(4), 958–963.PubMedCrossRef
115.
go back to reference Shafat, I., Ben-Barak, A., Postovsky, S., et al. (2007). Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer treatment. Neoplasia, 9(11), 909–916.PubMedCrossRef Shafat, I., Ben-Barak, A., Postovsky, S., et al. (2007). Heparanase levels are elevated in the plasma of pediatric cancer patients and correlate with response to anticancer treatment. Neoplasia, 9(11), 909–916.PubMedCrossRef
116.
go back to reference Shafat, I., Pode, D., Peretz, T., et al. (2008). Clinical significance of urine heparanase in bladder cancer progression. Neoplasia, 10(2), 125–130.PubMedCrossRef Shafat, I., Pode, D., Peretz, T., et al. (2008). Clinical significance of urine heparanase in bladder cancer progression. Neoplasia, 10(2), 125–130.PubMedCrossRef
117.
go back to reference Furuyama, N., & Fujisawa, Y. (2000). Regulation of collagenolytic protease secretion through c-Src in osteoclasts. Biochemical and Biophysical Research Communications, 272(1), 116–124.PubMedCrossRef Furuyama, N., & Fujisawa, Y. (2000). Regulation of collagenolytic protease secretion through c-Src in osteoclasts. Biochemical and Biophysical Research Communications, 272(1), 116–124.PubMedCrossRef
118.
go back to reference Levy-Adam, F., Miao, H. Q., Heinrikson, R. L., et al. (2003). Heterodimer formation is essential for heparanase enzymatic activity. Biochemical and Biophysical Research Communications, 308(4), 885–891.PubMedCrossRef Levy-Adam, F., Miao, H. Q., Heinrikson, R. L., et al. (2003). Heterodimer formation is essential for heparanase enzymatic activity. Biochemical and Biophysical Research Communications, 308(4), 885–891.PubMedCrossRef
119.
go back to reference Gingis-Velitski, S., Zetser, A., Flugelman, M. Y., et al. (2004). Heparanase induces endothelial cell migration via protein kinase B/Akt activation. The Journal of Biological Chemistry, 279(22), 23536–23541.PubMedCrossRef Gingis-Velitski, S., Zetser, A., Flugelman, M. Y., et al. (2004). Heparanase induces endothelial cell migration via protein kinase B/Akt activation. The Journal of Biological Chemistry, 279(22), 23536–23541.PubMedCrossRef
120.
go back to reference Vreys, V., Delande, N., Zhang, Z., et al. (2005). Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6- phosphate receptors, and heparan sulfate proteoglycans. The Journal of Biological Chemistry, 280(39), 33141–33148.PubMedCrossRef Vreys, V., Delande, N., Zhang, Z., et al. (2005). Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6- phosphate receptors, and heparan sulfate proteoglycans. The Journal of Biological Chemistry, 280(39), 33141–33148.PubMedCrossRef
121.
go back to reference Goldshmidt, O., Nadav, L., Aingorn, H., et al. (2002). Human heparanase is localized within lysosomes in a stable form. Experimental Cell Research, 281(1), 50–62.PubMedCrossRef Goldshmidt, O., Nadav, L., Aingorn, H., et al. (2002). Human heparanase is localized within lysosomes in a stable form. Experimental Cell Research, 281(1), 50–62.PubMedCrossRef
122.
go back to reference Nadav, L., Eldor, A., Yacoby-Zeevi, O., et al. (2002). Activation, processing and trafficking of extracellular heparanase by primary human fibroblasts. J Cell Sci, 115(10), 2179–2187.PubMed Nadav, L., Eldor, A., Yacoby-Zeevi, O., et al. (2002). Activation, processing and trafficking of extracellular heparanase by primary human fibroblasts. J Cell Sci, 115(10), 2179–2187.PubMed
123.
go back to reference Cohen, E., Atzmon, R., Vlodavsky, I., et al. (2005). Heparanase processing by lysosomal/endosomal protein preparation. FEBS Letters, 579(11), 2334–2338.PubMedCrossRef Cohen, E., Atzmon, R., Vlodavsky, I., et al. (2005). Heparanase processing by lysosomal/endosomal protein preparation. FEBS Letters, 579(11), 2334–2338.PubMedCrossRef
124.
go back to reference Zetser, A., Levy-Adam, F., Kaplan, V., et al. (2004). Processing and activation of latent heparanase occurs in lysosomes. Journal of Cell Science, 117(11), 2249–2258.PubMedCrossRef Zetser, A., Levy-Adam, F., Kaplan, V., et al. (2004). Processing and activation of latent heparanase occurs in lysosomes. Journal of Cell Science, 117(11), 2249–2258.PubMedCrossRef
125.
go back to reference Abboud-Jarrous, G., Atzmon, R., Peretz, T., et al. (2008). Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.PubMedCrossRef Abboud-Jarrous, G., Atzmon, R., Peretz, T., et al. (2008). Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.PubMedCrossRef
126.
go back to reference Abboud-Jarrous, G., Rangini-Guetta, Z., Aingorn, H., et al. (2005). Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. The Journal of Biological Chemistry, 280(14), 13568–13575.PubMedCrossRef Abboud-Jarrous, G., Rangini-Guetta, Z., Aingorn, H., et al. (2005). Site-directed mutagenesis, proteolytic cleavage, and activation of human proheparanase. The Journal of Biological Chemistry, 280(14), 13568–13575.PubMedCrossRef
127.
go back to reference Lerner E, Hermano E, Zcharia E, et al (2011) Heparanase powers a chronic inflammation circuit that promotes colitis-associated tumorigenesis. J Clin Invest (in press) Lerner E, Hermano E, Zcharia E, et al (2011) Heparanase powers a chronic inflammation circuit that promotes colitis-associated tumorigenesis. J Clin Invest (in press)
128.
go back to reference Vlodavsky, I., Friedmann, Y., Elkin, M., et al. (1999). Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Natural Medicines, 5(7), 793–802.CrossRef Vlodavsky, I., Friedmann, Y., Elkin, M., et al. (1999). Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Natural Medicines, 5(7), 793–802.CrossRef
129.
go back to reference Hulett, M. D., Freeman, C., Hamdorf, B. J., et al. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Natural Medicines, 5(7), 803–809.CrossRef Hulett, M. D., Freeman, C., Hamdorf, B. J., et al. (1999). Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Natural Medicines, 5(7), 803–809.CrossRef
130.
go back to reference Kussie, P. H., Hulmes, J. D., Ludwig, D. L., et al. (1999). Cloning and functional expression of a human heparanase gene. Biochemical and Biophysical Research Communications, 261(1), 183–187.PubMedCrossRef Kussie, P. H., Hulmes, J. D., Ludwig, D. L., et al. (1999). Cloning and functional expression of a human heparanase gene. Biochemical and Biophysical Research Communications, 261(1), 183–187.PubMedCrossRef
131.
go back to reference Toyoshima, M., & Nakajima, M. (1999). Human heparanase. Purification, characterization, cloning, and expression. The Journal of Biological Chemistry, 274(34), 24153–24160.PubMedCrossRef Toyoshima, M., & Nakajima, M. (1999). Human heparanase. Purification, characterization, cloning, and expression. The Journal of Biological Chemistry, 274(34), 24153–24160.PubMedCrossRef
132.
go back to reference McKenzie, E., Tyson, K., Stamps, A., et al. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177.PubMedCrossRef McKenzie, E., Tyson, K., Stamps, A., et al. (2000). Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochemical and Biophysical Research Communications, 276(3), 1170–1177.PubMedCrossRef
133.
go back to reference Gingis-Velitski, S., Zetser, A., Kaplan, V., et al. (2004). Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. The Journal of Biological Chemistry, 279(42), 44084–44092.PubMedCrossRef Gingis-Velitski, S., Zetser, A., Kaplan, V., et al. (2004). Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. The Journal of Biological Chemistry, 279(42), 44084–44092.PubMedCrossRef
134.
go back to reference Levy-Adam, F., Feld, S., Suss-Toby, E., et al. (2008). Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE, 3(6), e2319.PubMedCrossRef Levy-Adam, F., Feld, S., Suss-Toby, E., et al. (2008). Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE, 3(6), e2319.PubMedCrossRef
135.
go back to reference Fuki, I. V., Kuhn, K. M., Lomazov, I. R., et al. (1997). The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. Journal of Clinical Investigation, 100(6), 1611–1622.PubMedCrossRef Fuki, I. V., Kuhn, K. M., Lomazov, I. R., et al. (1997). The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. Journal of Clinical Investigation, 100(6), 1611–1622.PubMedCrossRef
136.
go back to reference Stanford, K. I., Bishop, J. R., Foley, E. M., et al. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. Journal of Clinical Investigation, 119(11), 3236–3245.PubMed Stanford, K. I., Bishop, J. R., Foley, E. M., et al. (2009). Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. Journal of Clinical Investigation, 119(11), 3236–3245.PubMed
137.
go back to reference Fears, C. Y., & Woods, A. (2006). The role of syndecans in disease and wound healing. Matrix Biology, 25(7), 443–456.PubMedCrossRef Fears, C. Y., & Woods, A. (2006). The role of syndecans in disease and wound healing. Matrix Biology, 25(7), 443–456.PubMedCrossRef
138.
go back to reference De Moura, J. P., Jr., Nicolau, S. M., Stavale, J. N., et al. (2009). Heparanase-2 expression in normal ovarian epithelium and in benign and malignant ovarian tumors. International Journal of Gynecological Cancer, 19(9), 1494–1500.PubMedCrossRef De Moura, J. P., Jr., Nicolau, S. M., Stavale, J. N., et al. (2009). Heparanase-2 expression in normal ovarian epithelium and in benign and malignant ovarian tumors. International Journal of Gynecological Cancer, 19(9), 1494–1500.PubMedCrossRef
139.
go back to reference Peretti, T., Waisberg, J., Mader, A. M., et al. (2008). Heparanase-2, syndecan-1, and extracellular matrix remodeling in colorectal carcinoma. European Journal of Gastroenterology & Hepatology, 20(8), 756–765.CrossRef Peretti, T., Waisberg, J., Mader, A. M., et al. (2008). Heparanase-2, syndecan-1, and extracellular matrix remodeling in colorectal carcinoma. European Journal of Gastroenterology & Hepatology, 20(8), 756–765.CrossRef
140.
go back to reference Levy-Adam, F., Feld, S., Cohen-Kaplan, V., et al. (2010). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.PubMedCrossRef Levy-Adam, F., Feld, S., Cohen-Kaplan, V., et al. (2010). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.PubMedCrossRef
141.
go back to reference Doweck, I., Kaplan-Cohen, V., Naroditsky, I., et al. (2006). Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia, 8(12), 1055–1061.PubMedCrossRef Doweck, I., Kaplan-Cohen, V., Naroditsky, I., et al. (2006). Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia, 8(12), 1055–1061.PubMedCrossRef
142.
go back to reference Bar-Sela, G., Kaplan-Cohen, V., Ilan, N., et al. (2006). Heparanase expression in nasopharyngeal carcinoma inversely correlates with patient survival. Histopathology, 49(2), 188–193.PubMedCrossRef Bar-Sela, G., Kaplan-Cohen, V., Ilan, N., et al. (2006). Heparanase expression in nasopharyngeal carcinoma inversely correlates with patient survival. Histopathology, 49(2), 188–193.PubMedCrossRef
143.
go back to reference Ben-Izhak, O., Kaplan-Cohen, V., Ilan, N., et al. (2006). Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia, 8(10), 879–884.PubMedCrossRef Ben-Izhak, O., Kaplan-Cohen, V., Ilan, N., et al. (2006). Heparanase expression in malignant salivary gland tumors inversely correlates with long-term survival. Neoplasia, 8(10), 879–884.PubMedCrossRef
144.
go back to reference Nagler, R., Ben-Izhak, O., Cohen-Kaplan, V., et al. (2007). Heparanase up-regulation in tongue cancer: tissue and saliva analysis. Cancer, 110(12), 2732–2739.PubMedCrossRef Nagler, R., Ben-Izhak, O., Cohen-Kaplan, V., et al. (2007). Heparanase up-regulation in tongue cancer: tissue and saliva analysis. Cancer, 110(12), 2732–2739.PubMedCrossRef
145.
go back to reference Leiser Y, Abu-El-Naaj I, Sabo E, et al (2011) Prognostic value of heparanase expression and cellular localization in oral cancer. Head Neck (in press) Leiser Y, Abu-El-Naaj I, Sabo E, et al (2011) Prognostic value of heparanase expression and cellular localization in oral cancer. Head Neck (in press)
146.
go back to reference Sparmann, A., & van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer, 6(11), 846–856.PubMedCrossRef Sparmann, A., & van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Reviews. Cancer, 6(11), 846–856.PubMedCrossRef
147.
go back to reference Kleer, C. G., Cao, Q., Varambally, S., et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11606–11611.PubMedCrossRef Kleer, C. G., Cao, Q., Varambally, S., et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11606–11611.PubMedCrossRef
148.
go back to reference Yu, J., Yu, J., Rhodes, D. R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMedCrossRef Yu, J., Yu, J., Rhodes, D. R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMedCrossRef
149.
go back to reference Daly, S. B., Urquhart, J. E., Hilton, E., et al. (2010). Mutations in HPSE2 cause urofacial syndrome. Am J Human Gen, 86(6), 963–969.CrossRef Daly, S. B., Urquhart, J. E., Hilton, E., et al. (2010). Mutations in HPSE2 cause urofacial syndrome. Am J Human Gen, 86(6), 963–969.CrossRef
150.
go back to reference Pang, J., Zhang, S., Yang, P., et al. (2010). Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome. Am J Human Gen, 86(6), 957–962.CrossRef Pang, J., Zhang, S., Yang, P., et al. (2010). Loss-of-function mutations in HPSE2 cause the autosomal recessive urofacial syndrome. Am J Human Gen, 86(6), 957–962.CrossRef
151.
go back to reference Simizu, S., Ishida, K., Wierzba, M. K., et al. (2004). Secretion of Heparanase Protein Is Regulated by Glycosylation in Human Tumor Cell Lines. The Journal of Biological Chemistry, 279(4), 2697–2703.PubMedCrossRef Simizu, S., Ishida, K., Wierzba, M. K., et al. (2004). Secretion of Heparanase Protein Is Regulated by Glycosylation in Human Tumor Cell Lines. The Journal of Biological Chemistry, 279(4), 2697–2703.PubMedCrossRef
152.
go back to reference Lai, N. S., Simizu, S., Morisaki, D., et al. (2008). Requirement of the conserved, hydrophobic C-terminus region for the activation of heparanase. Experimental Cell Research, 314(15), 2834–2845.PubMedCrossRef Lai, N. S., Simizu, S., Morisaki, D., et al. (2008). Requirement of the conserved, hydrophobic C-terminus region for the activation of heparanase. Experimental Cell Research, 314(15), 2834–2845.PubMedCrossRef
153.
go back to reference Simizu, S., Suzuki, T., Muroi, M., et al. (2007). Involvement of disulfide bond formation in the activation of heparanase. Cancer Research, 67(16), 7841–7849.PubMedCrossRef Simizu, S., Suzuki, T., Muroi, M., et al. (2007). Involvement of disulfide bond formation in the activation of heparanase. Cancer Research, 67(16), 7841–7849.PubMedCrossRef
154.
go back to reference Hulett, M. D., Hornby, J. R., Ohms, S. J., et al. (2000). Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry, 39(51), 15659–15667.PubMedCrossRef Hulett, M. D., Hornby, J. R., Ohms, S. J., et al. (2000). Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry, 39(51), 15659–15667.PubMedCrossRef
155.
go back to reference Ochoa, B. (2004). Can a congenital dysfunctional bladder be diagnosed from a smile? The Ochoa syndrome updated. Pediatric Nephrology, 19(1), 6–12.PubMedCrossRef Ochoa, B. (2004). Can a congenital dysfunctional bladder be diagnosed from a smile? The Ochoa syndrome updated. Pediatric Nephrology, 19(1), 6–12.PubMedCrossRef
156.
go back to reference Bell-McGuinn, K. M., Garfall, A. L., Bogyo, M., et al. (2007). Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Research, 67(15), 7378–7385.PubMedCrossRef Bell-McGuinn, K. M., Garfall, A. L., Bogyo, M., et al. (2007). Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer. Cancer Research, 67(15), 7378–7385.PubMedCrossRef
157.
go back to reference Higgins, W. J., Fox, D. M., Kowalski, P. S., et al. (2010). Heparin enhances serpin inhibition of the cysteine protease cathepsin L. The Journal of Biological Chemistry, 285(6), 3722–3729.PubMedCrossRef Higgins, W. J., Fox, D. M., Kowalski, P. S., et al. (2010). Heparin enhances serpin inhibition of the cysteine protease cathepsin L. The Journal of Biological Chemistry, 285(6), 3722–3729.PubMedCrossRef
158.
go back to reference Zcharia, E., Metzger, S., Chajek-ShaulL, T., et al. (2004). Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. The FASEB Journal, 18(2), 252–263.PubMedCrossRef Zcharia, E., Metzger, S., Chajek-ShaulL, T., et al. (2004). Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. The FASEB Journal, 18(2), 252–263.PubMedCrossRef
Metadata
Title
The heparanase system and tumor metastasis: is heparanase the seed and soil?
Authors
Gil Arvatz
Itay Shafat
Flonia Levy-Adam
Neta Ilan
Israel Vlodavsky
Publication date
01-06-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9288-x

Other articles of this Issue 2/2011

Cancer and Metastasis Reviews 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine