Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2020

01-04-2020 | Arterial Occlusive Disease | Review

Extracellular Vesicles as Messengers in Atherosclerosis

Authors: Mengna Peng, Xinfeng Liu, Gelin Xu

Published in: Journal of Cardiovascular Translational Research | Issue 2/2020

Login to get access

Abstract

Atherosclerosis is a major cause of cardiovascular diseases. Most cells involved in atherosclerosis can shed extracellular vesicles (EVs). Both atherogenic factors, such as hypoxia and oxidative stress, and atheroprotective factors, such as laminar blood flow, can influence the production of EV shedding. EVs can carry protein, DNA, mRNA, and noncoding RNA and act as mediators or messengers for cell-to-cell communications. EVs have been proven to promote or inhibit atherogenesis under particular circumstances. Therefore, EVs might be targeted for preventing or treating atherosclerotic diseases. The level of circulating EVs has been associated with the presence, progressiveness, or severity of atherosclerosis. Therefore, EVs may be utilized as indexes for diagnosing and grading atherosclerosis. Here, we reviewed the progress concerning the involvements of EVs in atherogenesis and atheroprotection. We also discussed the potential applications of EVs in managing atherosclerotic diseases.
Literature
1.
go back to reference van der Pol, E., Boing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64(3), 676–705.PubMed van der Pol, E., Boing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64(3), 676–705.PubMed
2.
go back to reference Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-8(1540-8140 (Electronic)). Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-8(1540-8140 (Electronic)).
3.
go back to reference Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.
4.
go back to reference Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics. Clinical Applications, 9(3-4), 358–367.PubMedPubMedCentral Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics. Clinical Applications, 9(3-4), 358–367.PubMedPubMedCentral
5.
go back to reference Morel, O., Jesel, L., Freyssinet, J. M., & Toti, F. (2011). Cellular mechanisms underlying the formation of circulating microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(1), 15–26.PubMed Morel, O., Jesel, L., Freyssinet, J. M., & Toti, F. (2011). Cellular mechanisms underlying the formation of circulating microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(1), 15–26.PubMed
6.
go back to reference Giuseppina Turturici, R. T., Sconzo, G., & Geraci, F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. American Journal of Physiology. Cell Physiology, 306, C621–CC33.PubMed Giuseppina Turturici, R. T., Sconzo, G., & Geraci, F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. American Journal of Physiology. Cell Physiology, 306, C621–CC33.PubMed
7.
go back to reference Brown, R. A., Shantsila, E., Varma, C., & Lip, G. Y. (2017). Current understanding of atherogenesis. The American Journal of Medicine, 130(3), 268–282.PubMed Brown, R. A., Shantsila, E., Varma, C., & Lip, G. Y. (2017). Current understanding of atherogenesis. The American Journal of Medicine, 130(3), 268–282.PubMed
8.
go back to reference Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., et al. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. Journal of Cellular and Molecular Medicine, 20(12), 2318–2327.PubMedPubMedCentral Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., et al. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. Journal of Cellular and Molecular Medicine, 20(12), 2318–2327.PubMedPubMedCentral
9.
go back to reference Zakharova, L., Svetlova, M., & Fomina, A. F. (2007). T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. Journal of Cellular Physiology, 212(1), 174–181.PubMed Zakharova, L., Svetlova, M., & Fomina, A. F. (2007). T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. Journal of Cellular Physiology, 212(1), 174–181.PubMed
10.
go back to reference Jansen, F., Yang, X., Franklin, B. S., Hoelscher, M., Schmitz, T., Bedorf, J., et al. (2013). High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research, 98(1), 94–106.PubMed Jansen, F., Yang, X., Franklin, B. S., Hoelscher, M., Schmitz, T., Bedorf, J., et al. (2013). High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research, 98(1), 94–106.PubMed
11.
go back to reference Paudel, K. R., Panth, N., & Kim, D. W. (2016). Circulating endothelial microparticles: a key hallmark of atherosclerosis progression. Scientifica., 2016, 8514056.PubMedPubMedCentral Paudel, K. R., Panth, N., & Kim, D. W. (2016). Circulating endothelial microparticles: a key hallmark of atherosclerosis progression. Scientifica., 2016, 8514056.PubMedPubMedCentral
12.
go back to reference Jansen, F., Yang, X., Hoelscher, M., Cattelan, A., Schmitz, T., Proebsting, S., et al. (2013). Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation., 128(18), 2026–2038.PubMed Jansen, F., Yang, X., Hoelscher, M., Cattelan, A., Schmitz, T., Proebsting, S., et al. (2013). Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation., 128(18), 2026–2038.PubMed
13.
go back to reference Jansen, F., Stumpf, T., Proebsting, S., Franklin, B. S., Wenzel, D., Pfeifer, P., et al. (2017). Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. Journal of Molecular and Cellular Cardiology, 104, 43–52.PubMed Jansen, F., Stumpf, T., Proebsting, S., Franklin, B. S., Wenzel, D., Pfeifer, P., et al. (2017). Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. Journal of Molecular and Cellular Cardiology, 104, 43–52.PubMed
14.
go back to reference Njock, M. S., Cheng, H. S., Dang, L. T., Nazari-Jahantigh, M., Lau, A. C., Boudreau, E., et al. (2015). Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood., 125(20), 3202–3212.PubMedPubMedCentral Njock, M. S., Cheng, H. S., Dang, L. T., Nazari-Jahantigh, M., Lau, A. C., Boudreau, E., et al. (2015). Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood., 125(20), 3202–3212.PubMedPubMedCentral
15.
go back to reference Keyel, P. A., Tkacheva, O. A., Larregina, A. T., & Salter, R. D. (2012). Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation. Journal of Immunology, 189(9), 4621–4629. Keyel, P. A., Tkacheva, O. A., Larregina, A. T., & Salter, R. D. (2012). Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation. Journal of Immunology, 189(9), 4621–4629.
16.
go back to reference Barberio, M. D., Kasselman, L. J., Playford, M. P., Epstein, S. B., Renna, H. A., Goldberg, M., et al. (2019). Cholesterol efflux alterations in adolescent obesity: role of adipose-derived extracellular vesical microRNAs. Journal of Translational Medicine, 17(1). Barberio, M. D., Kasselman, L. J., Playford, M. P., Epstein, S. B., Renna, H. A., Goldberg, M., et al. (2019). Cholesterol efflux alterations in adolescent obesity: role of adipose-derived extracellular vesical microRNAs. Journal of Translational Medicine, 17(1).
17.
go back to reference Lovren, F., & Verma, S. (2013). Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clinical Chemistry, 59(8), 1166–1174.PubMed Lovren, F., & Verma, S. (2013). Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clinical Chemistry, 59(8), 1166–1174.PubMed
18.
go back to reference Huang, C., Huang, Y., Zhou, Y., Nie, W., Pu, X., Xu, X., et al. (2018). Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Molecular Medicine Reports, 17(3), 4605–4610.PubMed Huang, C., Huang, Y., Zhou, Y., Nie, W., Pu, X., Xu, X., et al. (2018). Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Molecular Medicine Reports, 17(3), 4605–4610.PubMed
19.
go back to reference Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., et al. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association, 5(10). Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., et al. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association, 5(10).
20.
go back to reference Canault, M., Leroyer, A. S., Peiretti, F., Leseche, G., Tedgui, A., Bonardo, B., et al. (2007). Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. The American Journal of Pathology., 171(5), 1713–1723.PubMedPubMedCentral Canault, M., Leroyer, A. S., Peiretti, F., Leseche, G., Tedgui, A., Bonardo, B., et al. (2007). Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. The American Journal of Pathology., 171(5), 1713–1723.PubMedPubMedCentral
21.
go back to reference Rautou, P. E., Leroyer, A. S., Ramkhelawon, B., Devue, C., Duflaut, D., Vion, A. C., et al. (2011). Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circulation Research, 108(3), 335–343.PubMed Rautou, P. E., Leroyer, A. S., Ramkhelawon, B., Devue, C., Duflaut, D., Vion, A. C., et al. (2011). Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circulation Research, 108(3), 335–343.PubMed
22.
go back to reference Fu, Z., Zhou, E., Wang, X., Tian, M., Kong, J., Li, J., et al. (2017). Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1. American Journal of Physiology. Cell Physiology, 313(5), C567–CC74.PubMed Fu, Z., Zhou, E., Wang, X., Tian, M., Kong, J., Li, J., et al. (2017). Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1. American Journal of Physiology. Cell Physiology, 313(5), C567–CC74.PubMed
23.
go back to reference Hoyer, F. F., Giesen, M. K., Nunes Franca, C., Lutjohann, D., Nickenig, G., & Werner, N. (2012). Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. Journal of Cellular and Molecular Medicine, 16(11), 2777–2788.PubMedPubMedCentral Hoyer, F. F., Giesen, M. K., Nunes Franca, C., Lutjohann, D., Nickenig, G., & Werner, N. (2012). Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. Journal of Cellular and Molecular Medicine, 16(11), 2777–2788.PubMedPubMedCentral
24.
go back to reference Wadey, R. M., Connolly, K. D., Mathew, D., Walters, G., Rees, D. A., & James, P. E. (2019). Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis., 283, 19–27.PubMed Wadey, R. M., Connolly, K. D., Mathew, D., Walters, G., Rees, D. A., & James, P. E. (2019). Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis., 283, 19–27.PubMed
25.
go back to reference Suades, R., Padro, T., Vilahur, G., & Badimon, L. (2012). Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thrombosis and Haemostasis, 108(6), 1208–1219.PubMed Suades, R., Padro, T., Vilahur, G., & Badimon, L. (2012). Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thrombosis and Haemostasis, 108(6), 1208–1219.PubMed
26.
go back to reference Hutcheson, J. D., Goettsch, C., Bertazzo, S., Maldonado, N., Ruiz, J. L., Goh, W., et al. (2016). Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nature Materials, 15(3), 335–343.PubMedPubMedCentral Hutcheson, J. D., Goettsch, C., Bertazzo, S., Maldonado, N., Ruiz, J. L., Goh, W., et al. (2016). Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nature Materials, 15(3), 335–343.PubMedPubMedCentral
27.
go back to reference Wang, F., Chen, F. F., Shang, Y. Y., Li, Y., Wang, Z. H., Han, L., et al. (2018). Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE(-/-) mice. International Journal of Cardiology, 265, 181–187.PubMed Wang, F., Chen, F. F., Shang, Y. Y., Li, Y., Wang, Z. H., Han, L., et al. (2018). Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE(-/-) mice. International Journal of Cardiology, 265, 181–187.PubMed
28.
go back to reference Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., et al. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129(3), 259–269.PubMed Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., et al. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129(3), 259–269.PubMed
29.
go back to reference Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.PubMed Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.PubMed
30.
go back to reference Liu, Y., Li, Q., Hosen, M. R., Zietzer, A., Flender, A., Levermann, P., et al. (2018). Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circulation Research. Liu, Y., Li, Q., Hosen, M. R., Zietzer, A., Flender, A., Levermann, P., et al. (2018). Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circulation Research.
31.
go back to reference Nguyen, M. A., Karunakaran, D., Geoffrion, M., Cheng, H. S., Tandoc, K., Perisic Matic, L., et al. (2018). Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 1524–4636 (Electronic). Nguyen, M. A., Karunakaran, D., Geoffrion, M., Cheng, H. S., Tandoc, K., Perisic Matic, L., et al. (2018). Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 1524–4636 (Electronic).
32.
go back to reference Chen, L., Yang, W., Guo, Y., Chen, W., Zheng, P., Zeng, J., et al. (2017). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 12(9), e0185406.PubMedPubMedCentral Chen, L., Yang, W., Guo, Y., Chen, W., Zheng, P., Zeng, J., et al. (2017). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 12(9), e0185406.PubMedPubMedCentral
33.
go back to reference Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., et al. (2014). Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14888–14893.PubMedPubMedCentral Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., et al. (2014). Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14888–14893.PubMedPubMedCentral
34.
go back to reference Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.PubMed Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.PubMed
35.
go back to reference Gu, J., Zhang, H., Ji, B., Jiang, H., Zhao, T., Jiang, R., et al. (2017). Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells. Scientific Reports, 7, 43546.PubMedPubMedCentral Gu, J., Zhang, H., Ji, B., Jiang, H., Zhao, T., Jiang, R., et al. (2017). Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells. Scientific Reports, 7, 43546.PubMedPubMedCentral
36.
go back to reference Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14(3), 249–256.PubMed Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14(3), 249–256.PubMed
37.
go back to reference Huang, C., Han, J., Wu, Y., Li, S., Wang, Q., Lin, W., et al. (2018). Exosomal MALAT1 derived from oxidized low-density lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Molecular Medicine Reports, 18(1), 509–515.PubMed Huang, C., Han, J., Wu, Y., Li, S., Wang, Q., Lin, W., et al. (2018). Exosomal MALAT1 derived from oxidized low-density lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Molecular Medicine Reports, 18(1), 509–515.PubMed
38.
go back to reference Li, L., Wang, Z., Hu, X., Wan, T., Wu, H., Jiang, W., et al. (2016). Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 479(2), 343–350.PubMed Li, L., Wang, Z., Hu, X., Wan, T., Wu, H., Jiang, W., et al. (2016). Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 479(2), 343–350.PubMed
39.
go back to reference Li, J., Tan, M., Xiang, Q., Zhou, Z., & Yan, H. (2017). Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thrombosis Research, 154, 96–105.PubMed Li, J., Tan, M., Xiang, Q., Zhou, Z., & Yan, H. (2017). Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thrombosis Research, 154, 96–105.PubMed
40.
go back to reference Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., et al. (2014). MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 3(6), e001249.PubMedPubMedCentral Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., et al. (2014). MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 3(6), e001249.PubMedPubMedCentral
41.
go back to reference Zhu, J. J., Liu, Y. F., Zhang, Y. P., Zhao, C. R., Yao, W. J., Li, Y. S., et al. (2017). VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proceedings of the National Academy of Sciences of the United States of America. Zhu, J. J., Liu, Y. F., Zhang, Y. P., Zhao, C. R., Yao, W. J., Li, Y. S., et al. (2017). VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proceedings of the National Academy of Sciences of the United States of America.
42.
go back to reference Boon, R. A., & Horrevoets, A. J. (2009). Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie., 29(1), 39–40 1-3.PubMed Boon, R. A., & Horrevoets, A. J. (2009). Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie., 29(1), 39–40 1-3.PubMed
43.
go back to reference Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., & Elia, L. (2015). TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circulation Research, 116(11), 1753–1764.PubMed Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., & Elia, L. (2015). TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circulation Research, 116(11), 1753–1764.PubMed
44.
go back to reference Vion, A. C., Ramkhelawon, B., Loyer, X., Chironi, G., Devue, C., Loirand, G., et al. (2013). Shear stress regulates endothelial microparticle release. Circulation Research, 112(10), 1323–1333.PubMed Vion, A. C., Ramkhelawon, B., Loyer, X., Chironi, G., Devue, C., Loirand, G., et al. (2013). Shear stress regulates endothelial microparticle release. Circulation Research, 112(10), 1323–1333.PubMed
45.
go back to reference Suades, R., Padro, T., Alonso, R., Lopez-Miranda, J., Mata, P., & Badimon, L. (2014). Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thrombosis and Haemostasis, 111(1), 111–121.PubMed Suades, R., Padro, T., Alonso, R., Lopez-Miranda, J., Mata, P., & Badimon, L. (2014). Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thrombosis and Haemostasis, 111(1), 111–121.PubMed
46.
go back to reference Sarlon-Bartoli, G., Bennis, Y., Lacroix, R., Piercecchi-Marti, M. D., Bartoli, M. A., Arnaud, L., et al. (2013). Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. Journal of the American College of Cardiology, 62(16), 1436–1441.PubMed Sarlon-Bartoli, G., Bennis, Y., Lacroix, R., Piercecchi-Marti, M. D., Bartoli, M. A., Arnaud, L., et al. (2013). Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. Journal of the American College of Cardiology, 62(16), 1436–1441.PubMed
47.
go back to reference Wekesa, A. L., Cross, K. S., O'Donovan, O., Dowdall, J. F., O'Brien, O., Doyle, M., et al. (2014). Predicting carotid artery disease and plaque instability from cell-derived microparticles. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery., 48(5), 489–495. Wekesa, A. L., Cross, K. S., O'Donovan, O., Dowdall, J. F., O'Brien, O., Doyle, M., et al. (2014). Predicting carotid artery disease and plaque instability from cell-derived microparticles. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery., 48(5), 489–495.
48.
go back to reference Christersson, C., Thulin, A., & Siegbahn, A. (2017). Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thrombosis and Haemostasis, 117(8), 1571–1581.PubMed Christersson, C., Thulin, A., & Siegbahn, A. (2017). Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thrombosis and Haemostasis, 117(8), 1571–1581.PubMed
49.
go back to reference Sinning, J. M., Losch, J., Walenta, K., Bohm, M., Nickenig, G., & Werner, N. (2011). Circulating CD31+/annexin V+ microparticles correlate with cardiovascular outcomes. European Heart Journal, 32(16), 2034–2041.PubMed Sinning, J. M., Losch, J., Walenta, K., Bohm, M., Nickenig, G., & Werner, N. (2011). Circulating CD31+/annexin V+ microparticles correlate with cardiovascular outcomes. European Heart Journal, 32(16), 2034–2041.PubMed
50.
go back to reference Kanhai, D. A., Visseren, F. L., van der Graaf, Y., Schoneveld, A. H., Catanzariti, L. M., Timmers, L., et al. (2013). Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. International Journal of Cardiology, 168(3), 2358–2363.PubMed Kanhai, D. A., Visseren, F. L., van der Graaf, Y., Schoneveld, A. H., Catanzariti, L. M., Timmers, L., et al. (2013). Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. International Journal of Cardiology, 168(3), 2358–2363.PubMed
51.
go back to reference Vrijenhoek, J. E., Pasterkamp, G., Moll, F. L., de Borst, G. J., Bots, M. L., Catanzariti, L., et al. (2015). Extracellular vesicle-derived CD14 is independently associated with the extent of cardiovascular disease burden in patients with manifest vascular disease. European Journal of Preventive Cardiology, 22(4), 451–457.PubMed Vrijenhoek, J. E., Pasterkamp, G., Moll, F. L., de Borst, G. J., Bots, M. L., Catanzariti, L., et al. (2015). Extracellular vesicle-derived CD14 is independently associated with the extent of cardiovascular disease burden in patients with manifest vascular disease. European Journal of Preventive Cardiology, 22(4), 451–457.PubMed
52.
go back to reference Eikendal, A. L., den Ruijter, H. M., Uiterwaal, C. S., Pasterkamp, G., Hoefer, I. E., de Kleijn, D. P., et al. (2014). Extracellular vesicle protein CD14 relates to common carotid intima-media thickness in eight-year-old children. Atherosclerosis., 236(2), 270–276.PubMed Eikendal, A. L., den Ruijter, H. M., Uiterwaal, C. S., Pasterkamp, G., Hoefer, I. E., de Kleijn, D. P., et al. (2014). Extracellular vesicle protein CD14 relates to common carotid intima-media thickness in eight-year-old children. Atherosclerosis., 236(2), 270–276.PubMed
53.
go back to reference Finn, N. A., Eapen, D., Manocha, P., Al Kassem, H., Lassegue, B., Ghasemzadeh, N., et al. (2013). Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Letters, 587(21), 3456–3463.PubMedPubMedCentral Finn, N. A., Eapen, D., Manocha, P., Al Kassem, H., Lassegue, B., Ghasemzadeh, N., et al. (2013). Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Letters, 587(21), 3456–3463.PubMedPubMedCentral
54.
go back to reference Miller, V. M., Lahr, B. D., Bailey, K. R., Hodis, H. N., Mulvagh, S. L., & Jayachandran, M. (2016). Specific cell-derived microvesicles: linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women. Atherosclerosis., 246, 21–28.PubMed Miller, V. M., Lahr, B. D., Bailey, K. R., Hodis, H. N., Mulvagh, S. L., & Jayachandran, M. (2016). Specific cell-derived microvesicles: linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women. Atherosclerosis., 246, 21–28.PubMed
55.
go back to reference Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2015). High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thrombosis and Haemostasis, 114(6), 1310–1321.PubMed Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2015). High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thrombosis and Haemostasis, 114(6), 1310–1321.PubMed
56.
go back to reference Chiva-Blanch, G., Padro, T., Alonso, R., Crespo, J., Perez de Isla, L., Mata, P., et al. (2019). Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(5), 945–955.PubMed Chiva-Blanch, G., Padro, T., Alonso, R., Crespo, J., Perez de Isla, L., Mata, P., et al. (2019). Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(5), 945–955.PubMed
57.
go back to reference de Gonzalo-Calvo, D., Cenarro, A., Garlaschelli, K., Pellegatta, F., Vilades, D., Nasarre, L., et al. (2017). Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. Journal of Molecular and Cellular Cardiology, 106, 55–67.PubMed de Gonzalo-Calvo, D., Cenarro, A., Garlaschelli, K., Pellegatta, F., Vilades, D., Nasarre, L., et al. (2017). Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. Journal of Molecular and Cellular Cardiology, 106, 55–67.PubMed
58.
go back to reference Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., et al. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 31(8), 3689–3694. Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., et al. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 31(8), 3689–3694.
59.
go back to reference Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2013). Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thrombosis and Haemostasis, 110(2), 366–377.PubMed Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2013). Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thrombosis and Haemostasis, 110(2), 366–377.PubMed
60.
go back to reference Wang, Z., Zhang, J., Zhang, S., Yan, S., Wang, Z., Wang, C., et al. (2019). MiR30e and miR92a are related to atherosclerosis by targeting ABCA1. Molecular Medicine Reports, 19(4), 3298–3304.PubMed Wang, Z., Zhang, J., Zhang, S., Yan, S., Wang, Z., Wang, C., et al. (2019). MiR30e and miR92a are related to atherosclerosis by targeting ABCA1. Molecular Medicine Reports, 19(4), 3298–3304.PubMed
61.
go back to reference Ohno, S., Drummen, G. P., & Kuroda, M. (2016). Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. International Journal of Molecular Sciences, 17(2), 172.PubMedPubMedCentral Ohno, S., Drummen, G. P., & Kuroda, M. (2016). Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. International Journal of Molecular Sciences, 17(2), 172.PubMedPubMedCentral
62.
go back to reference Alexandru, N., Andrei, E., Niculescu, L., Dragan, E., Ristoiu, V., & Georgescu, A. (2017). Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiologica, 221(4), 230–249.PubMed Alexandru, N., Andrei, E., Niculescu, L., Dragan, E., Ristoiu, V., & Georgescu, A. (2017). Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiologica, 221(4), 230–249.PubMed
63.
go back to reference Yi, S., Allen, S. D., Liu, Y. G., Ouyang, B. Z., Li, X., Augsornworawat, P., et al. (2016). Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano, 10(12), 11290–11303.PubMedPubMedCentral Yi, S., Allen, S. D., Liu, Y. G., Ouyang, B. Z., Li, X., Augsornworawat, P., et al. (2016). Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano, 10(12), 11290–11303.PubMedPubMedCentral
64.
go back to reference Ma, S., Tian, X. Y., Zhang, Y., Mu, C., Shen, H., Bismuth, J., et al. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports, 6, 22910.PubMedPubMedCentral Ma, S., Tian, X. Y., Zhang, Y., Mu, C., Shen, H., Bismuth, J., et al. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports, 6, 22910.PubMedPubMedCentral
65.
go back to reference Elahi, F. M., Farwell, D. G., Nolta, J. A., & Anderson, J. D. (2019). Concise review: preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem cells (Dayton, Ohio). Elahi, F. M., Farwell, D. G., Nolta, J. A., & Anderson, J. D. (2019). Concise review: preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem cells (Dayton, Ohio).
66.
go back to reference Branscome, H., Paul, S., Khatkar, P., Kim, Y., Barclay, R. A., Pinto, D. O., et al. (2019). Stem cell extracellular vesicles and their potential to contribute to the repair of damaged CNS cells. Journal of Neuroimmune Pharmacology. Branscome, H., Paul, S., Khatkar, P., Kim, Y., Barclay, R. A., Pinto, D. O., et al. (2019). Stem cell extracellular vesicles and their potential to contribute to the repair of damaged CNS cells. Journal of Neuroimmune Pharmacology.
67.
go back to reference Vazquez-Rios, A. J., Molina-Crespo, A., Bouzo, B. L., Lopez-Lopez, R., Moreno-Bueno, G., & de la Fuente, M. (2019). Exosome-mimetic nanoplatforms for targeted cancer drug delivery. Journal of Nanobiotechnology, 17(1), 85.PubMedPubMedCentral Vazquez-Rios, A. J., Molina-Crespo, A., Bouzo, B. L., Lopez-Lopez, R., Moreno-Bueno, G., & de la Fuente, M. (2019). Exosome-mimetic nanoplatforms for targeted cancer drug delivery. Journal of Nanobiotechnology, 17(1), 85.PubMedPubMedCentral
Metadata
Title
Extracellular Vesicles as Messengers in Atherosclerosis
Authors
Mengna Peng
Xinfeng Liu
Gelin Xu
Publication date
01-04-2020
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2020
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-019-09923-z

Other articles of this Issue 2/2020

Journal of Cardiovascular Translational Research 2/2020 Go to the issue