Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2019

01-12-2019 | Cardiomyopathy | Original Article

Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy

Authors: Yuichi J. Shimada, Kohei Hasegawa, Stephanie M. Kochav, Pouya Mohajer, Jeeyoun Jung, Mathew S. Maurer, Muredach P. Reilly, Michael A. Fifer

Published in: Journal of Cardiovascular Translational Research | Issue 6/2019

Login to get access

Abstract

High-throughput proteomics profiling has never been applied to discover biomarkers in patients with hypertrophic cardiomyopathy (HCM). The objective was to identify plasma protein biomarkers that can distinguish HCM from controls. We performed a case-control study of patients with HCM (n = 15) and controls (n = 22). We carried out plasma proteomics profiling of 1129 proteins using the SOMAscan assay. We used the sparse partial least squares discriminant analysis to identify 50 most discriminant proteins. We also determined the area under the curve (AUC) of the receiver operating characteristic curve using the Monte Carlo cross validation with balanced subsampling. The average AUC was 0.94 (95% confidence interval, 0.82–1.00) and the discriminative accuracy was 89%. In HCM, 13 out of the 50 proteins correlated with troponin I and 12 with New York Heart Association class. Proteomics profiling can be used to elucidate protein biomarkers that distinguish HCM from controls.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., & Bild, D. E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92, 785–789.CrossRef Maron, B. J., Gardin, J. M., Flack, J. M., Gidding, S. S., Kurosaki, T. T., & Bild, D. E. (1995). Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92, 785–789.CrossRef
2.
go back to reference Marsiglia, J. D., Credidio, F. L., de Oliveira, T. G., Reis, R. F., Antunes, M. O., de Araujo, A. Q., et al. (2014). Clinical predictors of a positive genetic test in hypertrophic cardiomyopathy in the Brazilian population. BMC Cardiovascular Disorders, 14, 36.CrossRef Marsiglia, J. D., Credidio, F. L., de Oliveira, T. G., Reis, R. F., Antunes, M. O., de Araujo, A. Q., et al. (2014). Clinical predictors of a positive genetic test in hypertrophic cardiomyopathy in the Brazilian population. BMC Cardiovascular Disorders, 14, 36.CrossRef
3.
go back to reference Hathout, Y., Brody, E., Clemens, P. R., Cripe, L., DeLisle, R. K., Furlong, P., et al. (2015). Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 112, 7153–7158.CrossRef Hathout, Y., Brody, E., Clemens, P. R., Cripe, L., DeLisle, R. K., Furlong, P., et al. (2015). Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 112, 7153–7158.CrossRef
4.
go back to reference Kiddle, S. J., Sattlecker, M., Proitsi, P., Simmons, A., Westman, E., Bazenet, C., et al. (2014). Candidate blood proteome markers of Alzheimer’s disease onset and progression: a systematic review and replication study. Journal of Alzheimer's Disease, 38, 515–531.CrossRef Kiddle, S. J., Sattlecker, M., Proitsi, P., Simmons, A., Westman, E., Bazenet, C., et al. (2014). Candidate blood proteome markers of Alzheimer’s disease onset and progression: a systematic review and replication study. Journal of Alzheimer's Disease, 38, 515–531.CrossRef
5.
go back to reference Marion, T., Elbahesh, H., Thomas, P. G., DeVincenzo, J. P., Webby, R., & Schughart, K. (2016). Respiratory mucosal proteome quantification in human influenza infections. PLoS One, 11, e0153674.CrossRef Marion, T., Elbahesh, H., Thomas, P. G., DeVincenzo, J. P., Webby, R., & Schughart, K. (2016). Respiratory mucosal proteome quantification in human influenza infections. PLoS One, 11, e0153674.CrossRef
6.
go back to reference Mehan, M. R., Ayers, D., Thirstrup, D., Xiong, W., Ostroff, R. M., Brody, E. N., et al. (2012). Protein signature of lung cancer tissues. PLoS One, 7, e35157.CrossRef Mehan, M. R., Ayers, D., Thirstrup, D., Xiong, W., Ostroff, R. M., Brody, E. N., et al. (2012). Protein signature of lung cancer tissues. PLoS One, 7, e35157.CrossRef
7.
go back to reference Webber, J., Stone, T. C., Katilius, E., Smith, B. C., Gordon, B., Mason, M. D., et al. (2014). Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan) platform. Molecular & Cellular Proteomics, 13, 1050–1064.CrossRef Webber, J., Stone, T. C., Katilius, E., Smith, B. C., Gordon, B., Mason, M. D., et al. (2014). Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan) platform. Molecular & Cellular Proteomics, 13, 1050–1064.CrossRef
8.
go back to reference Nahid, P., Bliven-Sizemore, E., Jarlsberg, L. G., De Groote, M. A., Johnson, J. L., Muzanyi, G., et al. (2014). Aptamer-based proteomic signature of intensive phase treatment response in pulmonary tuberculosis. Tuberculosis, 94, 187–196.CrossRef Nahid, P., Bliven-Sizemore, E., Jarlsberg, L. G., De Groote, M. A., Johnson, J. L., Muzanyi, G., et al. (2014). Aptamer-based proteomic signature of intensive phase treatment response in pulmonary tuberculosis. Tuberculosis, 94, 187–196.CrossRef
9.
go back to reference McArdle, A., Butt, A. Q., Szentpetery, A., de Jager, W., de Roock, S., FitzGerald, O., et al. (2015). Developing clinically relevant biomarkers in inflammatory arthritis: a multi-platform approach for serum candidate protein discovery. Proteomics. Clinical Applications. McArdle, A., Butt, A. Q., Szentpetery, A., de Jager, W., de Roock, S., FitzGerald, O., et al. (2015). Developing clinically relevant biomarkers in inflammatory arthritis: a multi-platform approach for serum candidate protein discovery. Proteomics. Clinical Applications.
10.
go back to reference Ngo, D., Sinha, S., Shen, D., Kuhn, E., Keyes, M., Shi, X., et al. (2016). Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation, 134, 270–285.CrossRef Ngo, D., Sinha, S., Shen, D., Kuhn, E., Keyes, M., Shi, X., et al. (2016). Aptamer-based proteomic profiling reveals novel candidate biomarkers and pathways in cardiovascular disease. Circulation, 134, 270–285.CrossRef
11.
go back to reference Seidman, C. E., & Seidman, J. G. (2011). Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circulation Research, 108, 743–750.CrossRef Seidman, C. E., & Seidman, J. G. (2011). Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circulation Research, 108, 743–750.CrossRef
12.
go back to reference Ho, C. Y., Lopez, B., Coelho-Filho, O. R., Lakdawala, N. K., Cirino, A. L., Jarolim, P., et al. (2010). Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. NEJM, 363, 552–563.CrossRef Ho, C. Y., Lopez, B., Coelho-Filho, O. R., Lakdawala, N. K., Cirino, A. L., Jarolim, P., et al. (2010). Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. NEJM, 363, 552–563.CrossRef
13.
go back to reference Gersh, B. J., Maron, B. J., Bonow, R. O., Dearani, J. A., Fifer, M. A., Link, M. S., et al. (2011). 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 58, e212–e260.CrossRef Gersh, B. J., Maron, B. J., Bonow, R. O., Dearani, J. A., Fifer, M. A., Link, M. S., et al. (2011). 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 58, e212–e260.CrossRef
14.
go back to reference McCullough, S. A., Fifer, M. A., Mohajer, P., Lowry, P. A., Reen, C. O., Baggish, A. L., et al. (2018). Clinical correlates and prognostic value of elevated right atrial pressure in patients with hypertrophic cardiomyopathy. Circulation Journal, 82, 1405–1411.CrossRef McCullough, S. A., Fifer, M. A., Mohajer, P., Lowry, P. A., Reen, C. O., Baggish, A. L., et al. (2018). Clinical correlates and prognostic value of elevated right atrial pressure in patients with hypertrophic cardiomyopathy. Circulation Journal, 82, 1405–1411.CrossRef
15.
go back to reference Hensley, P. (2013). SOMAmers and SOMAscan – a protein biomarker discovery platform for rapid analysis of sample collections from bench top to the clinic. Journal of Biomolecular Techniques, S5. Hensley, P. (2013). SOMAmers and SOMAscan – a protein biomarker discovery platform for rapid analysis of sample collections from bench top to the clinic. Journal of Biomolecular Techniques, S5.
16.
go back to reference Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., et al. (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 5, e15004.CrossRef Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., et al. (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One, 5, e15004.CrossRef
17.
go back to reference Kraemer, S., Vaught, J. D., Bock, C., Gold, L., Katilius, E., Keeney, T. R., et al. (2011). From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One, 6, e26332.CrossRef Kraemer, S., Vaught, J. D., Bock, C., Gold, L., Katilius, E., Keeney, T. R., et al. (2011). From SOMAmer-based biomarker discovery to diagnostic and clinical applications: a SOMAmer-based, streamlined multiplex proteomic assay. PLoS One, 6, e26332.CrossRef
18.
go back to reference Le Cao, K. A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics, 12, 253.CrossRef Le Cao, K. A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics, 12, 253.CrossRef
20.
go back to reference Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., et al. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45, D362–D368.CrossRef Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., et al. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45, D362–D368.CrossRef
21.
go back to reference Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., & Ploner, A. (2005). False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics, 21, 3017–3024.CrossRef Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., & Ploner, A. (2005). False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics, 21, 3017–3024.CrossRef
22.
go back to reference Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.CrossRef Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46, W486–W494.CrossRef
23.
go back to reference Orenes-Pinero, E., Hernandez-Romero, D., de Torre, C., Vilchez, J. A., Martinez, M., Romero-Aniorte, A. I., et al. (2013). Identification and confirmation of haptoglobin as a potential serum biomarker in hypertrophic cardiomyopathy using proteomic approaches. Annals of Medicine, 45, 341–347.CrossRef Orenes-Pinero, E., Hernandez-Romero, D., de Torre, C., Vilchez, J. A., Martinez, M., Romero-Aniorte, A. I., et al. (2013). Identification and confirmation of haptoglobin as a potential serum biomarker in hypertrophic cardiomyopathy using proteomic approaches. Annals of Medicine, 45, 341–347.CrossRef
24.
go back to reference Rehulkova, H., Rehulka, P., Myslivcova Fucikova, A., Stulik, J., & Pudil, R. (2016). Identification of novel biomarker candidates for hypertrophic cardiomyopathy and other cardiovascular diseases leading to heart failure. Physiological Research, 65, 751–762.PubMed Rehulkova, H., Rehulka, P., Myslivcova Fucikova, A., Stulik, J., & Pudil, R. (2016). Identification of novel biomarker candidates for hypertrophic cardiomyopathy and other cardiovascular diseases leading to heart failure. Physiological Research, 65, 751–762.PubMed
25.
go back to reference Kubo, T., Okumiya, T., Baba, Y., Hirota, T., Tanioka, K., Yamasaki, N., et al. (2016). Erythrocyte creatine as a marker of intravascular hemolysis due to left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Journal of Cardiology, 67, 274–278.CrossRef Kubo, T., Okumiya, T., Baba, Y., Hirota, T., Tanioka, K., Yamasaki, N., et al. (2016). Erythrocyte creatine as a marker of intravascular hemolysis due to left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Journal of Cardiology, 67, 274–278.CrossRef
26.
go back to reference Kawakami, Y., Kitaura, J., Yao, L., McHenry, R. W., Kawakami, Y., Newton, A. C., et al. (2003). A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 100, 9470–9475.CrossRef Kawakami, Y., Kitaura, J., Yao, L., McHenry, R. W., Kawakami, Y., Newton, A. C., et al. (2003). A Ras activation pathway dependent on Syk phosphorylation of protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 100, 9470–9475.CrossRef
27.
go back to reference Goode, N., Hughes, K., Woodgett, J. R., & Parker, P. J. (1992). Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. The Journal of Biological Chemistry, 267, 16878–16882.PubMed Goode, N., Hughes, K., Woodgett, J. R., & Parker, P. J. (1992). Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. The Journal of Biological Chemistry, 267, 16878–16882.PubMed
28.
go back to reference Shen, D., Podolnikova, N. P., Yakubenko, V. P., Ardell, C. L., Balabiyev, A., Ugarova, T. P., et al. (2017). Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin mac-1. The Journal of Biological Chemistry, 292, 18848–18861.CrossRef Shen, D., Podolnikova, N. P., Yakubenko, V. P., Ardell, C. L., Balabiyev, A., Ugarova, T. P., et al. (2017). Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin mac-1. The Journal of Biological Chemistry, 292, 18848–18861.CrossRef
29.
go back to reference Muramatsu, T. (2014). Structure and function of midkine as the basis of its pharmacological effects. British Journal of Pharmacology, 171, 814–826.CrossRef Muramatsu, T. (2014). Structure and function of midkine as the basis of its pharmacological effects. British Journal of Pharmacology, 171, 814–826.CrossRef
30.
go back to reference Zheng, Y., Zhang, C., Croucher, D. R., Soliman, M. A., St-Denis, N., Pasculescu, A., et al. (2013). Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature, 499, 166–171.CrossRef Zheng, Y., Zhang, C., Croucher, D. R., Soliman, M. A., St-Denis, N., Pasculescu, A., et al. (2013). Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature, 499, 166–171.CrossRef
31.
go back to reference Giglione, C., Gonfloni, S., & Parmeggiani, A. (2001). Differential actions of p60c-Src and Lck kinases on the Ras regulators p120-GAP and GDP/GTP exchange factor CDC25Mm. European Journal of Biochemistry, 268, 3275–3283.CrossRef Giglione, C., Gonfloni, S., & Parmeggiani, A. (2001). Differential actions of p60c-Src and Lck kinases on the Ras regulators p120-GAP and GDP/GTP exchange factor CDC25Mm. European Journal of Biochemistry, 268, 3275–3283.CrossRef
32.
go back to reference Kishi, T., Hirooka, Y., Konno, S., Ogawa, K., & Sunagawa, K. (2010). Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension, 55, 291–297.CrossRef Kishi, T., Hirooka, Y., Konno, S., Ogawa, K., & Sunagawa, K. (2010). Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension, 55, 291–297.CrossRef
33.
go back to reference Yang, W., Xia, Y., Cao, Y., Zheng, Y., Bu, W., Zhang, L., et al. (2012). EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Molecular Cell, 48, 771–784.CrossRef Yang, W., Xia, Y., Cao, Y., Zheng, Y., Bu, W., Zhang, L., et al. (2012). EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Molecular Cell, 48, 771–784.CrossRef
34.
go back to reference Wu, X., Simpson, J., Hong, J. H., Kim, K. H., Thavarajah, N. K., Backx, P. H., et al. (2011). MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation. The Journal of Clinical Investigation, 121, 1009–1025.CrossRef Wu, X., Simpson, J., Hong, J. H., Kim, K. H., Thavarajah, N. K., Backx, P. H., et al. (2011). MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1(L613V) mutation. The Journal of Clinical Investigation, 121, 1009–1025.CrossRef
35.
go back to reference Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 38, 331–336.CrossRef Schubbert, S., Zenker, M., Rowe, S. L., Boll, S., Klein, C., Bollag, G., et al. (2006). Germline KRAS mutations cause Noonan syndrome. Nature Genetics, 38, 331–336.CrossRef
36.
go back to reference Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.CrossRef Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39, 1007–1012.CrossRef
37.
go back to reference Rauen, K. A. (2013). The RASopathies. Annual Review of Genomics and Human Genetics, 14, 355–369.CrossRef Rauen, K. A. (2013). The RASopathies. Annual Review of Genomics and Human Genetics, 14, 355–369.CrossRef
38.
go back to reference Park, K. C., Gaze, D. C., Collinson, P. O., & Marber, M. S. (2017). Cardiac troponins: from myocardial infarction to chronic disease. Cardiovascular Research, 113, 1708–1718.CrossRef Park, K. C., Gaze, D. C., Collinson, P. O., & Marber, M. S. (2017). Cardiac troponins: from myocardial infarction to chronic disease. Cardiovascular Research, 113, 1708–1718.CrossRef
39.
go back to reference Tsybouleva, N., Zhang, L., Chen, S., Patel, R., Lutucuta, S., Nemoto, S., et al. (2004). Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 109, 1284–1291.CrossRef Tsybouleva, N., Zhang, L., Chen, S., Patel, R., Lutucuta, S., Nemoto, S., et al. (2004). Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 109, 1284–1291.CrossRef
40.
go back to reference Verschure, D. O., van Eck-Smit, B. L., Somsen, G. A., & Verberne, H. J. (2015). Cardiac sympathetic activity in hypertrophic cardiomyopathy and Tako-tsubo cardiomyopathy. Clinical and Translational Imaging, 3, 379–385.CrossRef Verschure, D. O., van Eck-Smit, B. L., Somsen, G. A., & Verberne, H. J. (2015). Cardiac sympathetic activity in hypertrophic cardiomyopathy and Tako-tsubo cardiomyopathy. Clinical and Translational Imaging, 3, 379–385.CrossRef
41.
go back to reference Wei, B. R., Simpson, R. M., Johann, D. J., Dwyer, J. E., Prieto, D. A., Kumar, M., et al. (2012). Proteomic profiling of H-Ras-G12V induced hypertrophic cardiomyopathy in transgenic mice using comparative LC-MS analysis of thin fresh-frozen tissue sections. Journal of Proteome Research, 11, 1561–1570.CrossRef Wei, B. R., Simpson, R. M., Johann, D. J., Dwyer, J. E., Prieto, D. A., Kumar, M., et al. (2012). Proteomic profiling of H-Ras-G12V induced hypertrophic cardiomyopathy in transgenic mice using comparative LC-MS analysis of thin fresh-frozen tissue sections. Journal of Proteome Research, 11, 1561–1570.CrossRef
Metadata
Title
Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy
Authors
Yuichi J. Shimada
Kohei Hasegawa
Stephanie M. Kochav
Pouya Mohajer
Jeeyoun Jung
Mathew S. Maurer
Muredach P. Reilly
Michael A. Fifer
Publication date
01-12-2019
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 6/2019
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-019-09896-z

Other articles of this Issue 6/2019

Journal of Cardiovascular Translational Research 6/2019 Go to the issue