Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2019

01-08-2019 | Arterial Diseases | Original Article

Upregulation of Circulating Cardiomyocyte-Enriched miR-1 and miR-133 Associate with the Risk of Coronary Artery Disease in Type 2 Diabetes Patients and Serve as Potential Biomarkers

Authors: Haifa Abdulla Al-Muhtaresh, Abdel Halim Salem, Ghada Al-Kafaji

Published in: Journal of Cardiovascular Translational Research | Issue 4/2019

Login to get access

Abstract

Circulating miRNAs are increasingly suggested as clinical biomarker for diseases. We evaluated the expression of circulating cardiomyocyte-enriched miR-1 and miR-133 by real-time PCR in blood from patients with type 2 diabetes (T2D) without and with coronary artery disease (CAD) and healthy controls, investigated their association with the risk of CAD risk and their potential as biomarkers. The two miRNAs were upregulated in patients with T2D and CAD compared with controls, associated with CAD risk and remained significant after adjustment for multiple confounders. LDL-C was a positive predictor for miR-1 and miR-133, and mean blood pressure was also a positive predictor for miR-133. Both miRNAs strongly distinguished CAD from controls. miR-1 significantly distinguished CAD from T2D with higher diagnostic ability than miR-133, whereas the miR-1/miR-133 combination improved the diagnostic value. Upregulation of circulating miR-1 and miR-133 associate with the risk of CAD in T2D patients and may serve as diagnostic biomarkers.
Literature
1.
go back to reference Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053.CrossRefPubMed Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–1053.CrossRefPubMed
3.
go back to reference Alhyas, L., McKay, A., & Majeed, A. (2012). Prevalence of type 2 diabetes in the states of the co-operation council for the Arab states of the Gulf: A systematic review. PLoS One, 7, e40948.PubMedPubMedCentralCrossRef Alhyas, L., McKay, A., & Majeed, A. (2012). Prevalence of type 2 diabetes in the states of the co-operation council for the Arab states of the Gulf: A systematic review. PLoS One, 7, e40948.PubMedPubMedCentralCrossRef
4.
go back to reference Nathan, D. M. (1993). Long-term complications of diabetes mellitus. The New England Journal of Medicine, 328, 1676–1685.PubMedCrossRef Nathan, D. M. (1993). Long-term complications of diabetes mellitus. The New England Journal of Medicine, 328, 1676–1685.PubMedCrossRef
5.
go back to reference Laakso, M. (2010). Cardiovascular disease in type 2 diabetes from population to man to mechanisms: The Kelly West Award Lecture 2008. Diabetes Care, 33, 442–449.PubMedPubMedCentralCrossRef Laakso, M. (2010). Cardiovascular disease in type 2 diabetes from population to man to mechanisms: The Kelly West Award Lecture 2008. Diabetes Care, 33, 442–449.PubMedPubMedCentralCrossRef
6.
go back to reference Fuster, V., Badimon, L., Badimon, J. J., & Chesebro, J. H. (1992). The pathogenesis of coronary artery disease and the acute coronary syndromes. The New England Journal of Medicine, 326, 242–250.PubMedCrossRef Fuster, V., Badimon, L., Badimon, J. J., & Chesebro, J. H. (1992). The pathogenesis of coronary artery disease and the acute coronary syndromes. The New England Journal of Medicine, 326, 242–250.PubMedCrossRef
7.
go back to reference Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111, 3481–3488.CrossRefPubMed Libby, P., & Theroux, P. (2005). Pathophysiology of coronary artery disease. Circulation, 111, 3481–3488.CrossRefPubMed
8.
go back to reference Gillies, C. L., Abrams, K. R., Lambert, P. C., Cooper, N. J., Sutton, A. J., Hsu, R. T., et al. (2007). Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis. BMJ, 334(7588), 299.PubMedPubMedCentralCrossRef Gillies, C. L., Abrams, K. R., Lambert, P. C., Cooper, N. J., Sutton, A. J., Hsu, R. T., et al. (2007). Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: Systematic review and meta-analysis. BMJ, 334(7588), 299.PubMedPubMedCentralCrossRef
9.
go back to reference Li, G., Zhang, P., Wang, J., Gregg, E. W., Yang, W., Gong, Q., et al. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet, 371, 1783–1789.PubMedCrossRef Li, G., Zhang, P., Wang, J., Gregg, E. W., Yang, W., Gong, Q., et al. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet, 371, 1783–1789.PubMedCrossRef
10.
go back to reference Bartel, D. P. (2004). Micrornas: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 181–197.CrossRef Bartel, D. P. (2004). Micrornas: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 181–197.CrossRef
11.
go back to reference He, L., & Hannon, G. J. (2004). Micrornas: Small rnas with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.PubMedCrossRef He, L., & Hannon, G. J. (2004). Micrornas: Small rnas with a big role in gene regulation. Nature Reviews. Genetics, 5, 522–531.PubMedCrossRef
12.
go back to reference Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11, 441–450.PubMedCrossRef Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11, 441–450.PubMedCrossRef
13.
go back to reference Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101, 1225–1236.PubMedCrossRef Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101, 1225–1236.PubMedCrossRef
14.
go back to reference Pandey, A. K., Agarwal, P., Kaur, K., & Datta, M. (2009). MicroRNAs in diabetes: Tiny players in big disease. Cellular Physiology and Biochemistry, 23, 221–232.PubMedCrossRef Pandey, A. K., Agarwal, P., Kaur, K., & Datta, M. (2009). MicroRNAs in diabetes: Tiny players in big disease. Cellular Physiology and Biochemistry, 23, 221–232.PubMedCrossRef
15.
go back to reference Ardekani, A. M., & Naeini, M. (2010). The role of microRNAs in human diseases. Avicenna Journal of Medical Biotechnology, 2, 161–179.PubMedPubMedCentral Ardekani, A. M., & Naeini, M. (2010). The role of microRNAs in human diseases. Avicenna Journal of Medical Biotechnology, 2, 161–179.PubMedPubMedCentral
16.
go back to reference Condorelli, G., Latronico, M. V., & Cavarretta, E. (2014). microRNAs in cardiovascular diseases current: Knowledge and the road ahead. Journal of the American College of Cardiology, 63(21), 2177–2187.PubMedCrossRef Condorelli, G., Latronico, M. V., & Cavarretta, E. (2014). microRNAs in cardiovascular diseases current: Knowledge and the road ahead. Journal of the American College of Cardiology, 63(21), 2177–2187.PubMedCrossRef
17.
go back to reference Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedPubMedCentralCrossRef Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedPubMedCentralCrossRef
18.
go back to reference Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.PubMedCrossRef Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.PubMedCrossRef
19.
go back to reference Meder, B., Keller, A., Vogel, B., Haas, J., Sedaghat-Hameddani, F., Kayvanpour, E., et al. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology, 106, 13–23.PubMedCrossRef Meder, B., Keller, A., Vogel, B., Haas, J., Sedaghat-Hameddani, F., Kayvanpour, E., et al. (2011). MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Research in Cardiology, 106, 13–23.PubMedCrossRef
20.
go back to reference Al-Kafaji, G., Al-Mahroos, G., Alsayed, N. A., Hasan, Z. A., Nawaz, S., & Bakhiet, M. (2015). Peripheral blood microRNA-15a as a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Molecular Medicine Reports, 12(5), 7485–7490.PubMedCrossRef Al-Kafaji, G., Al-Mahroos, G., Alsayed, N. A., Hasan, Z. A., Nawaz, S., & Bakhiet, M. (2015). Peripheral blood microRNA-15a as a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Molecular Medicine Reports, 12(5), 7485–7490.PubMedCrossRef
21.
go back to reference Al-Kafaji, G., Al-Mahroos, G., Al-Muhtaresh, H. A., Skrypnyk, C., Sabry, M. A., & Ramadan, A. R. (2016). Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential blood-based biomarker. Experimental and Therapeutic Medicine, 12(2), 815–822.PubMedPubMedCentralCrossRef Al-Kafaji, G., Al-Mahroos, G., Al-Muhtaresh, H. A., Skrypnyk, C., Sabry, M. A., & Ramadan, A. R. (2016). Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential blood-based biomarker. Experimental and Therapeutic Medicine, 12(2), 815–822.PubMedPubMedCentralCrossRef
22.
go back to reference Al-Kafaji, G., Al Naieb, Z. T., & Bakhiet, M. (2016). Increased oncogenic microRNA-18a expression in peripheral blood of patients with prostate cancer: A potential role as new noninvasive biomarker. Oncology Letters, 11(2), 1201–1120.PubMedCrossRef Al-Kafaji, G., Al Naieb, Z. T., & Bakhiet, M. (2016). Increased oncogenic microRNA-18a expression in peripheral blood of patients with prostate cancer: A potential role as new noninvasive biomarker. Oncology Letters, 11(2), 1201–1120.PubMedCrossRef
23.
go back to reference Al-Muhtaresh, H., & Al-Kafaji, G. (2018). Evaluation of two-diabetes related microRNAs suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus. Journal of Clinical Medical, 7(2), 12.CrossRef Al-Muhtaresh, H., & Al-Kafaji, G. (2018). Evaluation of two-diabetes related microRNAs suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus. Journal of Clinical Medical, 7(2), 12.CrossRef
24.
go back to reference Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., et al. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107, 677–684.PubMedCrossRef Fichtlscherer, S., De Rosa, S., Fox, H., Schwietz, T., Fischer, A., Liebetrau, C., et al. (2010). Circulating microRNAs in patients with coronary artery disease. Circulation Research, 107, 677–684.PubMedCrossRef
25.
go back to reference Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., & Lodish, H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 103, 8721–8726.PubMedPubMedCentralCrossRef Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., & Lodish, H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proceedings of the National Academy of Sciences of the United States of America, 103, 8721–8726.PubMedPubMedCentralCrossRef
26.
go back to reference Townley-Tilson, W. H., Callis, T. E., & Wang, D. (2010). MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry & Cell Biology, 42, 1252–1255.CrossRef Townley-Tilson, W. H., Callis, T. E., & Wang, D. (2010). MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry & Cell Biology, 42, 1252–1255.CrossRef
27.
go back to reference Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). Journal of Molecular and Cellular Cardiology, 94, 107–121.PubMedCrossRef Chistiakov, D. A., Orekhov, A. N., & Bobryshev, Y. V. (2016). Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). Journal of Molecular and Cellular Cardiology, 94, 107–121.PubMedCrossRef
28.
go back to reference Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.PubMedCrossRef Zhao, Y., Samal, E., & Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214–220.PubMedCrossRef
29.
go back to reference Ikeda, S., He, A., Kong, S. W., Lu, J., Bejar, R., Bodyak, N., et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Molecular and Cellular Biology, 29, 2193–2204.PubMedPubMedCentralCrossRef Ikeda, S., He, A., Kong, S. W., Lu, J., Bejar, R., Bodyak, N., et al. (2009). MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Molecular and Cellular Biology, 29, 2193–2204.PubMedPubMedCentralCrossRef
30.
go back to reference Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233.PubMedCrossRef Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233.PubMedCrossRef
31.
go back to reference Wang, G., Zhu, J., Zhang, J., Li, Q., Li, Y., He, J., et al. (2010). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal, 31, 659–666.PubMedCrossRef Wang, G., Zhu, J., Zhang, J., Li, Q., Li, Y., He, J., et al. (2010). Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. European Heart Journal, 31, 659–666.PubMedCrossRef
32.
go back to reference Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagoa, K., Kinoshita, M., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4(4), 446–454.PubMedCrossRef Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagoa, K., Kinoshita, M., et al. (2011). Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circulation. Cardiovascular Genetics, 4(4), 446–454.PubMedCrossRef
33.
go back to reference Briasoulis, A., Tousoulis, D., Vogiatzi, G., Siasos, G., Papageorgiou, N., Oikonomou, E., et al. (2013). MicroRNAs: Biomarkers for cardiovascular disease in patients with diabetes mellitus. Current Topics in Medicinal Chemistry, 13(13), 1533–1539.PubMedCrossRef Briasoulis, A., Tousoulis, D., Vogiatzi, G., Siasos, G., Papageorgiou, N., Oikonomou, E., et al. (2013). MicroRNAs: Biomarkers for cardiovascular disease in patients with diabetes mellitus. Current Topics in Medicinal Chemistry, 13(13), 1533–1539.PubMedCrossRef
34.
go back to reference Al-Kafaji, G., Al-Mahroos, G., Al-Muhtaresh, H., Sabry, M. A., Abdul Razzak, R., & Salem, A. H. (2017). Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers, 22(3–4), 268–278.PubMedCrossRef Al-Kafaji, G., Al-Mahroos, G., Al-Muhtaresh, H., Sabry, M. A., Abdul Razzak, R., & Salem, A. H. (2017). Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers, 22(3–4), 268–278.PubMedCrossRef
35.
go back to reference AL-Subaihi, A. (2003). Sample size determination. Influencing factors and calculation strategies for survey research. Saudi Medical Journal, 24(4), 323–330.PubMed AL-Subaihi, A. (2003). Sample size determination. Influencing factors and calculation strategies for survey research. Saudi Medical Journal, 24(4), 323–330.PubMed
36.
go back to reference Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine, 15, 539–553.PubMedCrossRef Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine, 15, 539–553.PubMedCrossRef
38.
go back to reference Feng, Y., Niu, L.-L., Wei, W., Zhang, W.-Y., Li, X.-Y., Cao, J.-H., & Zhao, S.-H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death & Disease, 4, e934.CrossRef Feng, Y., Niu, L.-L., Wei, W., Zhang, W.-Y., Li, X.-Y., Cao, J.-H., & Zhao, S.-H. (2013). A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death & Disease, 4, e934.CrossRef
39.
go back to reference Wong, L., Lee, K., Russell, I., & Chen, C. (2007). Endogenous controls for real time quantitation of miRNA using TaqManVR MicroRNA assays. New York: Macmillan Publishers Ltd.. Wong, L., Lee, K., Russell, I., & Chen, C. (2007). Endogenous controls for real time quantitation of miRNA using TaqManVR MicroRNA assays. New York: Macmillan Publishers Ltd..
40.
go back to reference Roggli, E., Britan, A., Gattesco, S., Lin-Marq, N., Abderrahmani, A., Meda, P., et al. (2010). Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes, 59, 978–986.PubMedPubMedCentralCrossRef Roggli, E., Britan, A., Gattesco, S., Lin-Marq, N., Abderrahmani, A., Meda, P., et al. (2010). Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes, 59, 978–986.PubMedPubMedCentralCrossRef
41.
go back to reference Poy, M. N., Hausser, J., Trajkovski, M., Braunc, M., Collinsc, S., Rorsmanc, P., et al. (2009). miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proceedings of the National Academy of Sciences of the United States of America, 106, 5813–5818.PubMedPubMedCentralCrossRef Poy, M. N., Hausser, J., Trajkovski, M., Braunc, M., Collinsc, S., Rorsmanc, P., et al. (2009). miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proceedings of the National Academy of Sciences of the United States of America, 106, 5813–5818.PubMedPubMedCentralCrossRef
42.
go back to reference Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef
43.
go back to reference Terentyev, D., Belevych, A. E., Terentyeva, R., Martin, M. M., Malana, G. E., Kuhn, D. E., et al. (2009). miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circulation Research, 104, 514–521.PubMedPubMedCentralCrossRef Terentyev, D., Belevych, A. E., Terentyeva, R., Martin, M. M., Malana, G. E., Kuhn, D. E., et al. (2009). miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circulation Research, 104, 514–521.PubMedPubMedCentralCrossRef
44.
go back to reference Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., et al. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. The Journal of Biological Chemistry, 283, 20045–20052.PubMedCrossRef Luo, X., Lin, H., Pan, Z., Xiao, J., Zhang, Y., Lu, Y., et al. (2008). Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. The Journal of Biological Chemistry, 283, 20045–20052.PubMedCrossRef
45.
go back to reference Williams, A. H., Liu, N., van Rooij, E., & Olson, E. N. (2009). MicroRNA control of muscle development and disease. Current Opinion in Cell Biology, 21, 461–469.PubMedPubMedCentralCrossRef Williams, A. H., Liu, N., van Rooij, E., & Olson, E. N. (2009). MicroRNA control of muscle development and disease. Current Opinion in Cell Biology, 21, 461–469.PubMedPubMedCentralCrossRef
46.
go back to reference Liu, N., Bezprozvannaya, S., Williams, A. H., Qi, X., Richardson, J. A., Bassel-Duby, R., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes & Development, 22, 3242–3254.CrossRef Liu, N., Bezprozvannaya, S., Williams, A. H., Qi, X., Richardson, J. A., Bassel-Duby, R., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes & Development, 22, 3242–3254.CrossRef
47.
go back to reference D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., et al. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 31, 2765–2773.PubMedPubMedCentralCrossRef D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P. G., et al. (2010). Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. European Heart Journal, 31, 2765–2773.PubMedPubMedCentralCrossRef
48.
go back to reference Matheus, A. S., Tannus, L. R., Cobas, R. A., Palm, A. C. C., Negrato, C. A., & Gomes, M. B. (2013). Impact of diabetes on cardiovascular disease: An update. International Journal of Hypertension, 2013, 653789.PubMedPubMedCentralCrossRef Matheus, A. S., Tannus, L. R., Cobas, R. A., Palm, A. C. C., Negrato, C. A., & Gomes, M. B. (2013). Impact of diabetes on cardiovascular disease: An update. International Journal of Hypertension, 2013, 653789.PubMedPubMedCentralCrossRef
49.
go back to reference Dokken, B. B. (2008). The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectrum: A Publication of the American Diabetes Association, 21(3), 160–165.CrossRef Dokken, B. B. (2008). The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectrum: A Publication of the American Diabetes Association, 21(3), 160–165.CrossRef
50.
go back to reference Grundy, S. M., Pasternak, R., Greenland, P., Smith, S., Jr., & Fuster, V. (1999). Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. A statement for healthcare professionals from the American heart association and the American college of cardiology. Circulation, 100, 1481–1492.PubMedCrossRef Grundy, S. M., Pasternak, R., Greenland, P., Smith, S., Jr., & Fuster, V. (1999). Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. A statement for healthcare professionals from the American heart association and the American college of cardiology. Circulation, 100, 1481–1492.PubMedCrossRef
51.
go back to reference Howard, B. V., Robbins, D. C., Sievers, M. L., et al. (2000). LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL. The Strong heart study. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 830–835.PubMedCrossRef Howard, B. V., Robbins, D. C., Sievers, M. L., et al. (2000). LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL. The Strong heart study. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 830–835.PubMedCrossRef
52.
go back to reference Escobar, E. (2002). Hypertension and coronary heart disease. Journal of Human Hypertension, 16(1), S61–S63.PubMedCrossRef Escobar, E. (2002). Hypertension and coronary heart disease. Journal of Human Hypertension, 16(1), S61–S63.PubMedCrossRef
53.
go back to reference Otsuka, T., Takada, H., Nishiyama, Y., Kodani, E., Saiki, Y., Kato, K., & Kawada, T. (2016). Dyslipidemia and the risk of developing hypertension in a working-age male population. Journal of the American Heart Association, 5, e003053.PubMedPubMedCentralCrossRef Otsuka, T., Takada, H., Nishiyama, Y., Kodani, E., Saiki, Y., Kato, K., & Kawada, T. (2016). Dyslipidemia and the risk of developing hypertension in a working-age male population. Journal of the American Heart Association, 5, e003053.PubMedPubMedCentralCrossRef
54.
go back to reference de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W. A., Revuelta-Lopez, E., Nasarre, L., et al. (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Scientific Reports, 7(1), 47.PubMedPubMedCentralCrossRef de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W. A., Revuelta-Lopez, E., Nasarre, L., et al. (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Scientific Reports, 7(1), 47.PubMedPubMedCentralCrossRef
55.
go back to reference Zhang, Z., Joyce, B. T., Kresovich, J. K., Zheng, Y., Zhong, J., Patel, R., et al. (2017). Blood pressure and expression of microRNAs in whole blood. PLoS One, 12(3), e0173550.PubMedPubMedCentralCrossRef Zhang, Z., Joyce, B. T., Kresovich, J. K., Zheng, Y., Zhong, J., Patel, R., et al. (2017). Blood pressure and expression of microRNAs in whole blood. PLoS One, 12(3), e0173550.PubMedPubMedCentralCrossRef
56.
go back to reference Jepsen, A. M., Langsted, A., Varbo, A., Bang, L. E., Kamstrup, P. R., & Nordestgaard, B. G. (2016). Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clinical Chemistry, 62(4), 593–604.PubMedCrossRef Jepsen, A. M., Langsted, A., Varbo, A., Bang, L. E., Kamstrup, P. R., & Nordestgaard, B. G. (2016). Increased remnant cholesterol explains part of residual risk of all-cause mortality in 5414 patients with ischemic heart disease. Clinical Chemistry, 62(4), 593–604.PubMedCrossRef
57.
go back to reference Sampson, U. K., Fazio, S., & Linton, M. F. (2012). Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: The evidence, etiology, and therapeutic challenges. Current Atherosclerosis Reports, 14(1), 1–10.PubMedPubMedCentralCrossRef Sampson, U. K., Fazio, S., & Linton, M. F. (2012). Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: The evidence, etiology, and therapeutic challenges. Current Atherosclerosis Reports, 14(1), 1–10.PubMedPubMedCentralCrossRef
58.
go back to reference Fruchart, J. C., Davignon, J., Hermans, M. P., Al-Rubeaan, K., Amarenco, P., Assmann, G., Barter, P., Betteridge, J., Bruckert, E., Cuevas, A., Farnier, M., et al. (2014). Residual macrovascular risk in 2013: What have we learned? Cardiovascular Diabetology, 13(1), 26.PubMedPubMedCentralCrossRef Fruchart, J. C., Davignon, J., Hermans, M. P., Al-Rubeaan, K., Amarenco, P., Assmann, G., Barter, P., Betteridge, J., Bruckert, E., Cuevas, A., Farnier, M., et al. (2014). Residual macrovascular risk in 2013: What have we learned? Cardiovascular Diabetology, 13(1), 26.PubMedPubMedCentralCrossRef
59.
go back to reference Cui, Y., Blumenthal, R. S., Flaws, J. A., Whiteman, M. K., Langenberg, P., Bachorik, P. S., & Bush, T. L. (2001). Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Archives of Internal Medicine, 161, 1413–1419.PubMedCrossRef Cui, Y., Blumenthal, R. S., Flaws, J. A., Whiteman, M. K., Langenberg, P., Bachorik, P. S., & Bush, T. L. (2001). Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Archives of Internal Medicine, 161, 1413–1419.PubMedCrossRef
60.
go back to reference Lu, W., Resnick, H. E., Jablonski, K. A., Jones, K. L., Jain, A. K., Howard, W. J., Robbins, D. C., & Howard, B. V. (2003). Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes. The strong heart study. Diabetes Care, 26(1), 16–23.PubMedCrossRef Lu, W., Resnick, H. E., Jablonski, K. A., Jones, K. L., Jain, A. K., Howard, W. J., Robbins, D. C., & Howard, B. V. (2003). Non-HDL cholesterol as a predictor of cardiovascular disease in type 2 diabetes. The strong heart study. Diabetes Care, 26(1), 16–23.PubMedCrossRef
61.
go back to reference Kroh, E. M., Parkin, R. K., Mitchell, P. S., & Tewari, M. (2010). Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 50, 298–301.PubMedPubMedCentralCrossRef Kroh, E. M., Parkin, R. K., Mitchell, P. S., & Tewari, M. (2010). Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 50, 298–301.PubMedPubMedCentralCrossRef
Metadata
Title
Upregulation of Circulating Cardiomyocyte-Enriched miR-1 and miR-133 Associate with the Risk of Coronary Artery Disease in Type 2 Diabetes Patients and Serve as Potential Biomarkers
Authors
Haifa Abdulla Al-Muhtaresh
Abdel Halim Salem
Ghada Al-Kafaji
Publication date
01-08-2019
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2019
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9857-2

Other articles of this Issue 4/2019

Journal of Cardiovascular Translational Research 4/2019 Go to the issue