Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2017

Open Access 01-04-2017 | Original Article

In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE)

Authors: Benyamin Rahmani, Spyros Tzamtzis, Rose Sheridan, Michael J Mullen, John Yap, Alexander M. Seifalian, Gaetano Burriesci

Published in: Journal of Cardiovascular Translational Research | Issue 2/2017

Login to get access

Abstract

This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire frame. Valve prototypes were manufactured in three sizes of 23, 26, and 29 mm by automated dip-coating of a biostable polymer, and tested in a hydrodynamic bench setup in mock aortic roots of 21, 23, 25, and 27 mm annulus, and compared to two reference valves suitable for equivalent implantation ranges: Edwards SAPIEN XT and Medtronic CoreValve. The TRISKELE valves demonstrated a global hydrodynamic performance comparable or superior to the controls with significant reduction in paravalvular leakage. The TRISKELE valve exhibits enhanced anchoring and improved sealing. The valve is currently under preclinical investigation.
Literature
1.
go back to reference Mack, M. J., Leon, M. B., Smith, C. R., Miller, C., Rey, J., Moses, W., & Svensson, L. G. (2015). 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet, 385(9986), 2477–2484.CrossRefPubMed Mack, M. J., Leon, M. B., Smith, C. R., Miller, C., Rey, J., Moses, W., & Svensson, L. G. (2015). 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet, 385(9986), 2477–2484.CrossRefPubMed
2.
go back to reference Duncan, A., Ludman, P., Banya, W., Cunningham, D., Marlee, D., Davies, S., & Moat, N. (2015). Long-term outcomes after transcatheter aortic valve replacement in high-risk patients with severe aortic stenosis: the U.K. Transcatheter Aortic Valve Implantation Registry. JACC. Cardiovascular interventions, 8(5), 645–653.CrossRefPubMed Duncan, A., Ludman, P., Banya, W., Cunningham, D., Marlee, D., Davies, S., & Moat, N. (2015). Long-term outcomes after transcatheter aortic valve replacement in high-risk patients with severe aortic stenosis: the U.K. Transcatheter Aortic Valve Implantation Registry. JACC. Cardiovascular interventions, 8(5), 645–653.CrossRefPubMed
3.
go back to reference Schmoor, C., Frankenstein, L., Vach, W., Ph, D., Cribier, A., … Ph, D. (2015). Effect of availability of transcatheter aortic-valve replacement on clinical practice. New England Journal of Medicine, 373(25), 2438–2447. Schmoor, C., Frankenstein, L., Vach, W., Ph, D., Cribier, A., … Ph, D. (2015). Effect of availability of transcatheter aortic-valve replacement on clinical practice. New England Journal of Medicine, 373(25), 2438–2447.
4.
go back to reference Van Linden, A., Doss, M., Arsalan, M., Kim, W. K., & Walther, T. (2015). Transcatheter aortic valve implantation—update and evidence. Minimally Invasive Therapy & Allied Technologies, 24(5), 255–263. Van Linden, A., Doss, M., Arsalan, M., Kim, W. K., & Walther, T. (2015). Transcatheter aortic valve implantation—update and evidence. Minimally Invasive Therapy & Allied Technologies, 24(5), 255–263.
5.
go back to reference Abdel-Wahab, M., El-Mawardy, M., & Richardt, G. (2015). Update on transcatheter aortic valve replacement. Trends in Cardiovascular Medicine, 25(2), 154–161.CrossRefPubMed Abdel-Wahab, M., El-Mawardy, M., & Richardt, G. (2015). Update on transcatheter aortic valve replacement. Trends in Cardiovascular Medicine, 25(2), 154–161.CrossRefPubMed
6.
go back to reference Leon, M. B., Smith, C. R., Mack, M. J., Makkar, R. R., Svensson, L. G., Kodali, S. K., & PARTNER 2 Investigators (2016). Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. The New England journal of medicine, 374(17), 1609–1620.CrossRefPubMed Leon, M. B., Smith, C. R., Mack, M. J., Makkar, R. R., Svensson, L. G., Kodali, S. K., & PARTNER 2 Investigators (2016). Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. The New England journal of medicine, 374(17), 1609–1620.CrossRefPubMed
7.
go back to reference Reardon, M. J., Kleiman, N. S., Adams, D. H., Yakubov, S. J., Coselli, J. S., Deeb, G. M., … Oh, J. K. (2016). Outcomes in the randomized CoreValve US pivotal high-risk trial in patients with a society of thoracic surgeons risk score of 7% or less. JAMA Cardiology. Reardon, M. J., Kleiman, N. S., Adams, D. H., Yakubov, S. J., Coselli, J. S., Deeb, G. M., … Oh, J. K. (2016). Outcomes in the randomized CoreValve US pivotal high-risk trial in patients with a society of thoracic surgeons risk score of 7% or less. JAMA Cardiology.
8.
go back to reference Thourani, V. H., Kodali, S., Makkar, R. R., Herrmann, H. C., Williams, M., Babaliaros, V., & Leon, M. B. (2016). Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. The Lancet, 387(10034), 2218–2225.CrossRef Thourani, V. H., Kodali, S., Makkar, R. R., Herrmann, H. C., Williams, M., Babaliaros, V., & Leon, M. B. (2016). Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. The Lancet, 387(10034), 2218–2225.CrossRef
9.
go back to reference Généreux, P., Head, S. J., Hahn, R., Daneault, B., Kodali, S., Williams, M. R., & Leon, M. B. (2013). Paravalvular leak after transcatheter aortic valve replacement: the new Achilles’ heel? A comprehensive review of the literature. Journal of the American College of Cardiology, 61(11), 1125–1136.CrossRefPubMed Généreux, P., Head, S. J., Hahn, R., Daneault, B., Kodali, S., Williams, M. R., & Leon, M. B. (2013). Paravalvular leak after transcatheter aortic valve replacement: the new Achilles’ heel? A comprehensive review of the literature. Journal of the American College of Cardiology, 61(11), 1125–1136.CrossRefPubMed
10.
go back to reference Athappan, G., Patvardhan, E., Tuzcu, E. M., Svensson, L. G., Lemos, P. A., Fraccaro, C., et al. (2013). Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. Journal of the American College of Cardiology, 61(15), 1585–1595.CrossRefPubMed Athappan, G., Patvardhan, E., Tuzcu, E. M., Svensson, L. G., Lemos, P. A., Fraccaro, C., et al. (2013). Incidence, predictors, and outcomes of aortic regurgitation after transcatheter aortic valve replacement: meta-analysis and systematic review of literature. Journal of the American College of Cardiology, 61(15), 1585–1595.CrossRefPubMed
11.
go back to reference Siontis, G. C. M., Jüni, P., Pilgrim, T., Stortecky, S., Büllesfeld, L., Meier, B., & Windecker, S. (2014). Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR. Journal of the American College of Cardiology, 64(2), 129–140.CrossRefPubMed Siontis, G. C. M., Jüni, P., Pilgrim, T., Stortecky, S., Büllesfeld, L., Meier, B., & Windecker, S. (2014). Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR. Journal of the American College of Cardiology, 64(2), 129–140.CrossRefPubMed
12.
go back to reference Athappan, G., Gajulapalli, R. D., Sengodan, P., Bhardwaj, A., Ellis, S. G., Svensson, L., & Kapadia, S. R. (2014). Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement. Journal of the American College of Cardiology, 63(20), 2101–2110.CrossRefPubMed Athappan, G., Gajulapalli, R. D., Sengodan, P., Bhardwaj, A., Ellis, S. G., Svensson, L., & Kapadia, S. R. (2014). Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement. Journal of the American College of Cardiology, 63(20), 2101–2110.CrossRefPubMed
13.
go back to reference Eggebrecht, H., Schmermund, A., Voigtländer, T., Kahlert, P., Erbel, R., & Mehta, R. H. (2012). Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention, 8(1), 129–138.CrossRefPubMed Eggebrecht, H., Schmermund, A., Voigtländer, T., Kahlert, P., Erbel, R., & Mehta, R. H. (2012). Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention, 8(1), 129–138.CrossRefPubMed
14.
go back to reference Makkar, R. R., Fontana, G., Jilaihawi, H., Chakravarty, T., Kofoed, K. F., de Backer, O., et al. (2015). Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. New England Journal of Medicine, 373(21), 2015–2024.CrossRefPubMed Makkar, R. R., Fontana, G., Jilaihawi, H., Chakravarty, T., Kofoed, K. F., de Backer, O., et al. (2015). Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. New England Journal of Medicine, 373(21), 2015–2024.CrossRefPubMed
15.
go back to reference Gauvin, R., Marinov, G., Mehri, Y., Klein, J., Li, B., Larouche, D., et al. (2013). A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants. Journal of biomaterials applications, 28(4), 552–565.CrossRefPubMed Gauvin, R., Marinov, G., Mehri, Y., Klein, J., Li, B., Larouche, D., et al. (2013). A comparative study of bovine and porcine pericardium to highlight their potential advantages to manufacture percutaneous cardiovascular implants. Journal of biomaterials applications, 28(4), 552–565.CrossRefPubMed
16.
go back to reference Arsalan, M., & Walther, T. (2016). Durability of prostheses for transcatheter aortic valve implantation. Nature Reviews Cardiology, 13(6), 360–367.CrossRefPubMed Arsalan, M., & Walther, T. (2016). Durability of prostheses for transcatheter aortic valve implantation. Nature Reviews Cardiology, 13(6), 360–367.CrossRefPubMed
17.
go back to reference Généreux, P., Head, S. J., Wood, D. A., Kodali, S. K., Williams, M. R., Paradis, J., & Leon, M. B. (2012). Transcatheter aortic valve implantation 10-year anniversary: review of current evidence and clinical implications. European heart journal, 33(19), 2399–2402.CrossRefPubMed Généreux, P., Head, S. J., Wood, D. A., Kodali, S. K., Williams, M. R., Paradis, J., & Leon, M. B. (2012). Transcatheter aortic valve implantation 10-year anniversary: review of current evidence and clinical implications. European heart journal, 33(19), 2399–2402.CrossRefPubMed
18.
go back to reference Reardon, M. J., & Kleiman, N. S. (2015). Watching a procedure evolve: sequential findings from the TVT registry. Journal of the American College of Cardiology, 66(25), 2824–2826.CrossRefPubMed Reardon, M. J., & Kleiman, N. S. (2015). Watching a procedure evolve: sequential findings from the TVT registry. Journal of the American College of Cardiology, 66(25), 2824–2826.CrossRefPubMed
19.
go back to reference Amahzoune, B., Bruneval, P., Allam, B., Lafont, A., Fabiani, J.-N., & Zegdi, R. (2013). Traumatic leaflet injury during the use of percutaneous valves: a comparative study of balloon- and self-expandable valved stents. European Journal of Cardio-Thoracic Surgery, 43(3), 488–493.CrossRefPubMed Amahzoune, B., Bruneval, P., Allam, B., Lafont, A., Fabiani, J.-N., & Zegdi, R. (2013). Traumatic leaflet injury during the use of percutaneous valves: a comparative study of balloon- and self-expandable valved stents. European Journal of Cardio-Thoracic Surgery, 43(3), 488–493.CrossRefPubMed
20.
go back to reference Al-Attar, N., Himbert, D., Vahanian, A., & Nataf, P. (2011). Severe intraprosthetic regurgitation by immobile leaflet after trans-catheter aortic valve implantation. European Journal of Cardio-Thoracic Surgery, 39(4), 591–592.CrossRefPubMed Al-Attar, N., Himbert, D., Vahanian, A., & Nataf, P. (2011). Severe intraprosthetic regurgitation by immobile leaflet after trans-catheter aortic valve implantation. European Journal of Cardio-Thoracic Surgery, 39(4), 591–592.CrossRefPubMed
21.
go back to reference Khoffi, F., & Heim, F. (2015). Mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment. Journal of the Mechanical Behavior of Biomedical Materials, 44, 71–75.CrossRefPubMed Khoffi, F., & Heim, F. (2015). Mechanical degradation of biological heart valve tissue induced by low diameter crimping: an early assessment. Journal of the Mechanical Behavior of Biomedical Materials, 44, 71–75.CrossRefPubMed
22.
go back to reference Kiefer, P., Gruenwald, F., Kempfert, J., Aupperle, H., Seeburger, J., Mohr, F. W., & Walther, T. (2011). Crimping may affect the durability of transcatheter valves: an experimental analysis. The Annals of Thoracic Surgery, 92(1), 155–160.CrossRefPubMed Kiefer, P., Gruenwald, F., Kempfert, J., Aupperle, H., Seeburger, J., Mohr, F. W., & Walther, T. (2011). Crimping may affect the durability of transcatheter valves: an experimental analysis. The Annals of Thoracic Surgery, 92(1), 155–160.CrossRefPubMed
23.
go back to reference Hamed Alavi, S., Elliott, M., & Groves, A. K. (2014). The effects of transcatheter valve crimping on pericardial leaflets. The Annals of Thoracic Surgery, 97(4), 1260–1266.CrossRefPubMed Hamed Alavi, S., Elliott, M., & Groves, A. K. (2014). The effects of transcatheter valve crimping on pericardial leaflets. The Annals of Thoracic Surgery, 97(4), 1260–1266.CrossRefPubMed
24.
go back to reference Rodés-Cabau, J., Webb, J. G., Cheung, A., Ye, J., Dumont, E., Osten, M., & Horlick, E. (2012). Long-term outcomes after transcatheter aortic valve implantation: Insights on prognostic factors and valve durability from the Canadian Multicenter Experience. Journal of the American College of Cardiology, 60(19), 1864–1875.CrossRefPubMed Rodés-Cabau, J., Webb, J. G., Cheung, A., Ye, J., Dumont, E., Osten, M., & Horlick, E. (2012). Long-term outcomes after transcatheter aortic valve implantation: Insights on prognostic factors and valve durability from the Canadian Multicenter Experience. Journal of the American College of Cardiology, 60(19), 1864–1875.CrossRefPubMed
25.
go back to reference de Buhr, W., Pfeifer, S., Slotta-Huspenina, J., Wintermantel, E., Lutter, G., & Goetz, W. A. (2012). Impairment of pericardial leaflet structure from balloon-expanded valved stents. The Journal of Thoracic and Cardiovascular Surgery, 143(6), 1417–1421.CrossRefPubMed de Buhr, W., Pfeifer, S., Slotta-Huspenina, J., Wintermantel, E., Lutter, G., & Goetz, W. A. (2012). Impairment of pericardial leaflet structure from balloon-expanded valved stents. The Journal of Thoracic and Cardiovascular Surgery, 143(6), 1417–1421.CrossRefPubMed
26.
go back to reference Zegdi, R., Bruneval, P., Blanchard, D., & Fabiani, J.-N. (2011). Evidence of leaflet injury during percutaneous aortic valve deployment. European Journal of Cardio-Thoracic Surgery, 40(1), 257–259.CrossRefPubMed Zegdi, R., Bruneval, P., Blanchard, D., & Fabiani, J.-N. (2011). Evidence of leaflet injury during percutaneous aortic valve deployment. European Journal of Cardio-Thoracic Surgery, 40(1), 257–259.CrossRefPubMed
27.
go back to reference Claiborne, T. E., Slepian, M. J., Hossainy, S., & Bluestein, D. (2012). Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Review of Medical Devices, 9(1745–2422), 577–594.CrossRefPubMedCentralPubMed Claiborne, T. E., Slepian, M. J., Hossainy, S., & Bluestein, D. (2012). Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Review of Medical Devices, 9(1745–2422), 577–594.CrossRefPubMedCentralPubMed
28.
go back to reference Kutting, M., Roggenkamp, J., Urban, U., Schmitz-Rode, T., & Steinseifer, U. (2011). Polyurethane heart valves: past, present and future. Expert Review of Medical Devices, 8(2), 227–233.CrossRefPubMed Kutting, M., Roggenkamp, J., Urban, U., Schmitz-Rode, T., & Steinseifer, U. (2011). Polyurethane heart valves: past, present and future. Expert Review of Medical Devices, 8(2), 227–233.CrossRefPubMed
29.
go back to reference Ghanbari, H., Viatge, H., Kidane, A. G., Burriesci, G., Tavakoli, M., & Seifalian, A. M. (2009). Polymeric heart valves: new materials, emerging hopes. Trends in Biotechnology, 27(0167–7799), 359–367.CrossRefPubMed Ghanbari, H., Viatge, H., Kidane, A. G., Burriesci, G., Tavakoli, M., & Seifalian, A. M. (2009). Polymeric heart valves: new materials, emerging hopes. Trends in Biotechnology, 27(0167–7799), 359–367.CrossRefPubMed
30.
go back to reference Kheradvar, A., Groves, E. M., Dasi, L. P., Alavi, S. H., Tranquillo, R. T., Grande-Allen, K. J., Simmons, C. A., Griffith, B. E., Falahatpisheh, A., Goergen, C. J., Mofrad, M. R. K., Baaijens, F. P. T., Little, S. H., & Canic, S. (2015). Emerging trends in heart valve engineering: part I. Solutions for future. Annals of Biomedical Engineering, 43(4), 833–843.CrossRefPubMed Kheradvar, A., Groves, E. M., Dasi, L. P., Alavi, S. H., Tranquillo, R. T., Grande-Allen, K. J., Simmons, C. A., Griffith, B. E., Falahatpisheh, A., Goergen, C. J., Mofrad, M. R. K., Baaijens, F. P. T., Little, S. H., & Canic, S. (2015). Emerging trends in heart valve engineering: part I. Solutions for future. Annals of Biomedical Engineering, 43(4), 833–843.CrossRefPubMed
31.
go back to reference Rahmani, B., Tzamtzis, S., Sheridan, R., Mullen, M. J., Yap, J., & Seifalian, A. M. (2016). A new transcatheter heart valve concept ( the TRISKELE ): feasibility in an acute preclinical model. EuroIntervention, 12(7), 901–908.CrossRefPubMed Rahmani, B., Tzamtzis, S., Sheridan, R., Mullen, M. J., Yap, J., & Seifalian, A. M. (2016). A new transcatheter heart valve concept ( the TRISKELE ): feasibility in an acute preclinical model. EuroIntervention, 12(7), 901–908.CrossRefPubMed
32.
go back to reference Burriesci, G., Marincola, F. C., & Zervides, C. (2010). Design of a novel polymeric heart valve. Journal of Medical Engineering & Technology, 34(1), 7–22.CrossRef Burriesci, G., Marincola, F. C., & Zervides, C. (2010). Design of a novel polymeric heart valve. Journal of Medical Engineering & Technology, 34(1), 7–22.CrossRef
33.
go back to reference Kannan, R. Y., Salacinski, H. J., Ghanavi, J. E., Narula, A., Odlyha, M., Peirovi, H., & Seifalian, A. M. (2007). Silsesquioxane nanocomposites as tissue implants. Plastic and reconstructive surgery, 119(6), 1653–1662.CrossRefPubMed Kannan, R. Y., Salacinski, H. J., Ghanavi, J. E., Narula, A., Odlyha, M., Peirovi, H., & Seifalian, A. M. (2007). Silsesquioxane nanocomposites as tissue implants. Plastic and reconstructive surgery, 119(6), 1653–1662.CrossRefPubMed
34.
go back to reference Kannan, R. Y., Salacinski, H. J., Sales, K. M., Butler, P. E., & Seifalian, A. M. (2006). The endothelialization of polyhedral oligomeric silsesquioxane nanocomposites: an in vitro study. Cell Biochemistry and Biophysics, 45(2), 129–136.CrossRefPubMed Kannan, R. Y., Salacinski, H. J., Sales, K. M., Butler, P. E., & Seifalian, A. M. (2006). The endothelialization of polyhedral oligomeric silsesquioxane nanocomposites: an in vitro study. Cell Biochemistry and Biophysics, 45(2), 129–136.CrossRefPubMed
35.
go back to reference Kannan, R. Y., Salacinski, H. J., De, G. J., Clatworthy, I., Bozec, L., Horton, M., et al. (2006). The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules, 7(1), 215–223.CrossRefPubMed Kannan, R. Y., Salacinski, H. J., De, G. J., Clatworthy, I., Bozec, L., Horton, M., et al. (2006). The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules, 7(1), 215–223.CrossRefPubMed
36.
go back to reference Kidane, A. G., Burriesci, G., Edirisinghe, M., Ghanbari, H., Bonhoeffer, P., & Seifalian, A. M. (2009). A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomaterialia, 5(7), 2409–2417.CrossRefPubMed Kidane, A. G., Burriesci, G., Edirisinghe, M., Ghanbari, H., Bonhoeffer, P., & Seifalian, A. M. (2009). A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomaterialia, 5(7), 2409–2417.CrossRefPubMed
37.
go back to reference Desai, M., Bakhshi, R., Zhou, X., Odlyha, M., You, Z., Seifalian, A. M., & Hamilton, G. (2012). A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model. Journal of Endovascular Therapy, 19(3), 415–427.CrossRefPubMed Desai, M., Bakhshi, R., Zhou, X., Odlyha, M., You, Z., Seifalian, A. M., & Hamilton, G. (2012). A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model. Journal of Endovascular Therapy, 19(3), 415–427.CrossRefPubMed
38.
go back to reference Ghanbari, H., Kidane, A. G., Burriesci, G., Ramesh, B., Darbyshire, A., & Seifalian, A. M. (2010). The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomaterialia, 6(11), 4249–4260.CrossRefPubMed Ghanbari, H., Kidane, A. G., Burriesci, G., Ramesh, B., Darbyshire, A., & Seifalian, A. M. (2010). The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomaterialia, 6(11), 4249–4260.CrossRefPubMed
39.
go back to reference BS EN ISO 5840–3:2013, Cardiovascular implants—cardiac valve prostheses, part 3: heart valve substitutes implanted by transcatheter techniques. (2013). BS EN ISO 5840–3:2013, Cardiovascular implants—cardiac valve prostheses, part 3: heart valve substitutes implanted by transcatheter techniques. (2013).
40.
go back to reference Swanson, W. M., & Clark, R. E. (1974). Dimensions and geometric relationships of the human aortic value as a function of pressure. Circulation Research, 35, 871–882.CrossRefPubMed Swanson, W. M., & Clark, R. E. (1974). Dimensions and geometric relationships of the human aortic value as a function of pressure. Circulation Research, 35, 871–882.CrossRefPubMed
41.
go back to reference Thubrikar, M. (1990). The aortic valve. Boca Raton, FL: CRC Press. Thubrikar, M. (1990). The aortic valve. Boca Raton, FL: CRC Press.
42.
go back to reference BS EN ISO 5840–1:2015, Cardiovascular implants. Cardiac valve prostheses. General requirements. (2015). BS EN ISO 5840–1:2015, Cardiovascular implants. Cardiac valve prostheses. General requirements. (2015).
43.
go back to reference Garcia, D., & Kadem, L. (2006). What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? The Journal of Heart Valve Disease, 15, 601–608.PubMed Garcia, D., & Kadem, L. (2006). What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? The Journal of Heart Valve Disease, 15, 601–608.PubMed
44.
go back to reference Gorlin, R., & Gorlin, S. G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. American Heart Journal, 41(1), 1–29.CrossRefPubMed Gorlin, R., & Gorlin, S. G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. American Heart Journal, 41(1), 1–29.CrossRefPubMed
45.
go back to reference Akins, C. W., Travis, B., & Yoganathan, A. P. (2008). Energy loss for evaluating heart valve performance. The Journal of Thoracic and Cardiovascular Surgery, 136(4), 820–833.CrossRefPubMed Akins, C. W., Travis, B., & Yoganathan, A. P. (2008). Energy loss for evaluating heart valve performance. The Journal of Thoracic and Cardiovascular Surgery, 136(4), 820–833.CrossRefPubMed
46.
go back to reference Kuetting, M., Sedaghat, A., Utzenrath, M., Sinning, J. M., Schmitz, C., Roggenkamp, J., & Steinseifer, U. (2014). In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. Journal of Biomechanics, 47(5), 957–965.CrossRefPubMed Kuetting, M., Sedaghat, A., Utzenrath, M., Sinning, J. M., Schmitz, C., Roggenkamp, J., & Steinseifer, U. (2014). In vitro assessment of the influence of aortic annulus ovality on the hydrodynamic performance of self-expanding transcatheter heart valve prostheses. Journal of Biomechanics, 47(5), 957–965.CrossRefPubMed
47.
go back to reference Simonato, M., Webb, J., Kornowski, R., Vahanian, A., Frerker, C., Nissen, H., et al. (2016). Transcatheter replacement of failed bioprosthetic valves: large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circulation: Cardiovascular Interventions, 9(6), 1–11. Simonato, M., Webb, J., Kornowski, R., Vahanian, A., Frerker, C., Nissen, H., et al. (2016). Transcatheter replacement of failed bioprosthetic valves: large multicenter assessment of the effect of implantation depth on hemodynamics after aortic valve-in-valve. Circulation: Cardiovascular Interventions, 9(6), 1–11.
48.
go back to reference Tang, G. H. L., Lansman, S. L., Cohen, M., Spielvogel, D., Cuomo, L., Ahmad, H., & Dutta, T. (2013). Transcatheter aortic valve replacement: current developments, ongoing issues, future outlook. Cardiology in Review, 21(2), 55–76.CrossRefPubMed Tang, G. H. L., Lansman, S. L., Cohen, M., Spielvogel, D., Cuomo, L., Ahmad, H., & Dutta, T. (2013). Transcatheter aortic valve replacement: current developments, ongoing issues, future outlook. Cardiology in Review, 21(2), 55–76.CrossRefPubMed
49.
go back to reference Tzamtzis, S., Viquerat, J., Yap, J., Mullen, M. J., & Burriesci, G. (2013). Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering & Physics, 35(1), 125–130.CrossRef Tzamtzis, S., Viquerat, J., Yap, J., Mullen, M. J., & Burriesci, G. (2013). Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering & Physics, 35(1), 125–130.CrossRef
50.
go back to reference Abdel-Wahab, M., Zahn, R., Horack, M., Gerckens, U., Schuler, G., Sievert, H., et al. (2011). Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart, 97(11), 899–906.CrossRefPubMed Abdel-Wahab, M., Zahn, R., Horack, M., Gerckens, U., Schuler, G., Sievert, H., et al. (2011). Aortic regurgitation after transcatheter aortic valve implantation: incidence and early outcome. Results from the German transcatheter aortic valve interventions registry. Heart, 97(11), 899–906.CrossRefPubMed
51.
go back to reference Lerakis, S., Hayek, S. S., & Douglas, P. S. (2013). Paravalvular aortic leak after transcatheter aortic valve replacement: current knowledge. Circulation, 127(3), 397–407.CrossRefPubMed Lerakis, S., Hayek, S. S., & Douglas, P. S. (2013). Paravalvular aortic leak after transcatheter aortic valve replacement: current knowledge. Circulation, 127(3), 397–407.CrossRefPubMed
52.
go back to reference Walther, T., Falk, V., Clavel, M.-A., Webb, J. G., Pibarot, P., Altwegg, L., et al. (2009). Comparison of the hemodynamic performance of percutaneous and surgical bioprostheses for the treatment of severe aortic stenosis. Journal of the American College of Cardiology, 53(20), 1883–1891.CrossRef Walther, T., Falk, V., Clavel, M.-A., Webb, J. G., Pibarot, P., Altwegg, L., et al. (2009). Comparison of the hemodynamic performance of percutaneous and surgical bioprostheses for the treatment of severe aortic stenosis. Journal of the American College of Cardiology, 53(20), 1883–1891.CrossRef
53.
go back to reference Tseng, E., Wisneski, A., Azadani, A., & Ge, L. (2013). Engineering perspective on transcatheter aortic valve implantation. Interventional Cardiology, 5(1), 53–70.CrossRef Tseng, E., Wisneski, A., Azadani, A., & Ge, L. (2013). Engineering perspective on transcatheter aortic valve implantation. Interventional Cardiology, 5(1), 53–70.CrossRef
54.
go back to reference Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., & Leon, M. B. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(1524–4539), 3006–3008.CrossRefPubMed Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., & Leon, M. B. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(1524–4539), 3006–3008.CrossRefPubMed
55.
go back to reference Laborde, J. C., Borenstein, N., Behr, L., Farah, B., & Fajadet, J. (2005). Percutaneous implantation of an aortic valve prosthesis. Catheterization and Cardiovascular Interventions, 65(2), 171–174.CrossRefPubMed Laborde, J. C., Borenstein, N., Behr, L., Farah, B., & Fajadet, J. (2005). Percutaneous implantation of an aortic valve prosthesis. Catheterization and Cardiovascular Interventions, 65(2), 171–174.CrossRefPubMed
56.
go back to reference Rahmani, B., Tzamtzis, S., Ghanbari, H., Burriesci, G., & Seifalian, A. M. (2012). Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. Journal of Biomechanics, 45(7), 1205–1211.CrossRefPubMed Rahmani, B., Tzamtzis, S., Ghanbari, H., Burriesci, G., & Seifalian, A. M. (2012). Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. Journal of Biomechanics, 45(7), 1205–1211.CrossRefPubMed
57.
go back to reference McGregor, C. G. A., Carpentier, A., Lila, N., Logan, J. S., & Byrne, G. W. (2011). Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. The Journal of Thoracic and Cardiovascular Surgery, 141(1), 269–275.CrossRefPubMed McGregor, C. G. A., Carpentier, A., Lila, N., Logan, J. S., & Byrne, G. W. (2011). Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. The Journal of Thoracic and Cardiovascular Surgery, 141(1), 269–275.CrossRefPubMed
58.
go back to reference Lila, N., McGregor, C. G. A., Carpentier, S., Rancic, J., Byrne, G. W., & Carpentier, A. (2010). Gal knockout pig pericardium: new source of material for heart valve bioprostheses. Journal of Heart and Lung Transplantation, 29(5), 538–543.CrossRefPubMed Lila, N., McGregor, C. G. A., Carpentier, S., Rancic, J., Byrne, G. W., & Carpentier, A. (2010). Gal knockout pig pericardium: new source of material for heart valve bioprostheses. Journal of Heart and Lung Transplantation, 29(5), 538–543.CrossRefPubMed
59.
go back to reference Wenaweser, P., Stortecky, S., Schwander, S., Heg, D., Huber, C., Pilgrim, T., & Windecker, S. (2013). Clinical outcomes of patients with estimated low or intermediate surgical risk undergoing transcatheter aortic valve implantation. European Heart Journal, 34(25), 1894–1905.CrossRefPubMed Wenaweser, P., Stortecky, S., Schwander, S., Heg, D., Huber, C., Pilgrim, T., & Windecker, S. (2013). Clinical outcomes of patients with estimated low or intermediate surgical risk undergoing transcatheter aortic valve implantation. European Heart Journal, 34(25), 1894–1905.CrossRefPubMed
60.
go back to reference Pohl, M., Wendt, M. O., Werner, S., Koch, B., & Lerche, D. (1996). In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids. Artificial Organs, 20(1), 37–46.CrossRefPubMed Pohl, M., Wendt, M. O., Werner, S., Koch, B., & Lerche, D. (1996). In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids. Artificial Organs, 20(1), 37–46.CrossRefPubMed
61.
go back to reference Kuehnel, R. U., Puchner, R., Pohl, A., Wendt, M. O., Hartrumpf, M., Pohl, M., & Albes, J. M. (2005). Characteristic resistance curves of aortic valve substitutes facilitate individualized decision for a particular type. European Journal of Cardio-Thoracic Surgery, 27(3), 450–455.CrossRefPubMed Kuehnel, R. U., Puchner, R., Pohl, A., Wendt, M. O., Hartrumpf, M., Pohl, M., & Albes, J. M. (2005). Characteristic resistance curves of aortic valve substitutes facilitate individualized decision for a particular type. European Journal of Cardio-Thoracic Surgery, 27(3), 450–455.CrossRefPubMed
62.
go back to reference Amat-Santos, I. J., Dahou, A., Webb, J., Dvir, D., Dumesnil, J. G., Allende, R., et al. (2014). Comparison of hemodynamic performance of the balloon-expandable SAPIEN 3 versus SAPIEN XT transcatheter valve. American Journal of Cardiology, 114(7), 1075–1082.CrossRefPubMed Amat-Santos, I. J., Dahou, A., Webb, J., Dvir, D., Dumesnil, J. G., Allende, R., et al. (2014). Comparison of hemodynamic performance of the balloon-expandable SAPIEN 3 versus SAPIEN XT transcatheter valve. American Journal of Cardiology, 114(7), 1075–1082.CrossRefPubMed
Metadata
Title
In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE)
Authors
Benyamin Rahmani
Spyros Tzamtzis
Rose Sheridan
Michael J Mullen
John Yap
Alexander M. Seifalian
Gaetano Burriesci
Publication date
01-04-2017
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2017
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-016-9722-0

Other articles of this Issue 2/2017

Journal of Cardiovascular Translational Research 2/2017 Go to the issue