Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2012

01-08-2012

MicroRNAs and Diabetic Complications

Authors: Rama Natarajan, Sumanth Putta, Mitsuo Kato

Published in: Journal of Cardiovascular Translational Research | Issue 4/2012

Login to get access

Abstract

Both Type 1 and Type 2 diabetes can lead to debilitating microvascular complications such as retinopathy, nephropathy and neuropathy, as well as macrovascular complications such as cardiovascular diseases including atherosclerosis and hypertension. Diabetic complications have been attributed to several contributing factors such as hyperglycemia, hyperlipidemia, advanced glycation end products, growth factors, and inflammatory cytokines/chemokines. However, current therapies are not fully efficacious and hence there is an imperative need for a better understanding of the molecular mechanisms underlying diabetic complications in order to identify newer therapeutic targets. microRNAs (miRNAs) are short non-coding RNAs that repress target gene expression via post-transcriptional mechanisms. Emerging evidence shows that they have diverse cellular and biological functions and play key roles in several diseases. In this review, we explore the role of miRNAs in the pathology of diabetic complications and also discuss the potential use of miRNAs as novel diagnostic and therapeutic targets for diabetic complications.
Literature
1.
go back to reference He, Z., & King, G. L. (2004). Microvascular complications of diabetes. Endocrinology and Metabolism Clinics of North America, 33, 215–238. xi-xii.PubMedCrossRef He, Z., & King, G. L. (2004). Microvascular complications of diabetes. Endocrinology and Metabolism Clinics of North America, 33, 215–238. xi-xii.PubMedCrossRef
2.
go back to reference Beckman, J. A., Creager, M. A., & Libby, P. (2002). Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA, 287, 2570–2581.PubMedCrossRef Beckman, J. A., Creager, M. A., & Libby, P. (2002). Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA, 287, 2570–2581.PubMedCrossRef
3.
go back to reference Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625.PubMedCrossRef Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625.PubMedCrossRef
4.
go back to reference King, G. L., Kunisaki, M., Nishio, Y., Inoguchi, T., Shiba, T., & Xia, P. (1996). Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 45(Suppl 3), S105–S108.PubMed King, G. L., Kunisaki, M., Nishio, Y., Inoguchi, T., Shiba, T., & Xia, P. (1996). Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 45(Suppl 3), S105–S108.PubMed
5.
go back to reference Villeneuve, L. M., Reddy, M. A., & Natarajan, R. (2011). Epigenetics: deciphering its role in diabetes and its chronic complications. Clinical and Experimental Pharmacology and Physiology, 38, 401–409.PubMedCrossRef Villeneuve, L. M., Reddy, M. A., & Natarajan, R. (2011). Epigenetics: deciphering its role in diabetes and its chronic complications. Clinical and Experimental Pharmacology and Physiology, 38, 401–409.PubMedCrossRef
6.
go back to reference Cooper, M. E., & El-Osta, A. (2010). Epigenetics: mechanisms and implications for diabetic complications. Circulation Research, 107, 1403–1413.PubMedCrossRef Cooper, M. E., & El-Osta, A. (2010). Epigenetics: mechanisms and implications for diabetic complications. Circulation Research, 107, 1403–1413.PubMedCrossRef
8.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef
9.
go back to reference Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedCrossRef Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.PubMedCrossRef
10.
go back to reference Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10, 704–714.PubMedCrossRef Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10, 704–714.PubMedCrossRef
11.
go back to reference He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMedCrossRef He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5, 522–531.PubMedCrossRef
12.
go back to reference Zamore, P. D., & Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science, 309, 1519–1524.PubMedCrossRef Zamore, P. D., & Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science, 309, 1519–1524.PubMedCrossRef
13.
go back to reference Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.PubMedCrossRef Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.PubMedCrossRef
14.
go back to reference Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.PubMedCrossRef Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.PubMedCrossRef
15.
go back to reference Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9, 102–114.PubMedCrossRef Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics, 9, 102–114.PubMedCrossRef
16.
go back to reference Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9, 219–230.PubMedCrossRef Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9, 219–230.PubMedCrossRef
17.
go back to reference Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6, 376–385.PubMedCrossRef Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 6, 376–385.PubMedCrossRef
18.
go back to reference Small, E. M., & Olson, E. N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature, 469, 336–342.PubMedCrossRef Small, E. M., & Olson, E. N. (2011). Pervasive roles of microRNAs in cardiovascular biology. Nature, 469, 336–342.PubMedCrossRef
19.
go back to reference Bhatt, K., Mi, Q. S., & Dong, Z. (2011). microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. American Journal of Physiology. Renal Physiology, 300, F602–F610.PubMedCrossRef Bhatt, K., Mi, Q. S., & Dong, Z. (2011). microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. American Journal of Physiology. Renal Physiology, 300, F602–F610.PubMedCrossRef
20.
go back to reference Fernandez-Valverde, S. L., Taft, R. J., & Mattick, J. S. (2011). MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes, 60, 1825–1831.PubMedCrossRef Fernandez-Valverde, S. L., Taft, R. J., & Mattick, J. S. (2011). MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes, 60, 1825–1831.PubMedCrossRef
21.
go back to reference Kato, M., Arce, L., & Natarajan, R. (2009). MicroRNAs and their role in progressive kidney diseases. Clinical Journal of the American Society of Nephrology, 4, 1255–1266.PubMedCrossRef Kato, M., Arce, L., & Natarajan, R. (2009). MicroRNAs and their role in progressive kidney diseases. Clinical Journal of the American Society of Nephrology, 4, 1255–1266.PubMedCrossRef
22.
go back to reference Zhang, C. (2010). MicroRNAs in vascular biology and vascular disease. Journal of Cardiovascular Translational Research, 3, 235–240.PubMedCrossRef Zhang, C. (2010). MicroRNAs in vascular biology and vascular disease. Journal of Cardiovascular Translational Research, 3, 235–240.PubMedCrossRef
23.
go back to reference Kempen, J. H., O’Colmain, B. J., Leske, M. C., Haffner, S. M., Klein, R., Moss, S. E., et al. (2004). The prevalence of diabetic retinopathy among adults in the United States. Archives of Ophthalmology, 122, 552–563.PubMedCrossRef Kempen, J. H., O’Colmain, B. J., Leske, M. C., Haffner, S. M., Klein, R., Moss, S. E., et al. (2004). The prevalence of diabetic retinopathy among adults in the United States. Archives of Ophthalmology, 122, 552–563.PubMedCrossRef
24.
go back to reference Saaddine, J. B., Honeycutt, A. A., Narayan, K. M., Zhang, X., Klein, R., & Boyle, J. P. (2008). Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Archives of Ophthalmology, 126, 1740–1747.PubMedCrossRef Saaddine, J. B., Honeycutt, A. A., Narayan, K. M., Zhang, X., Klein, R., & Boyle, J. P. (2008). Projection of diabetic retinopathy and other major eye diseases among people with diabetes mellitus: United States, 2005–2050. Archives of Ophthalmology, 126, 1740–1747.PubMedCrossRef
25.
go back to reference Kovacs, B., Lumayag, S., Cowan, C., & Xu, S. (2011). MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science, 52, 4402–4409.CrossRef Kovacs, B., Lumayag, S., Cowan, C., & Xu, S. (2011). MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investigative Ophthalmology & Visual Science, 52, 4402–4409.CrossRef
26.
go back to reference Feng, B., Chen, S., McArthur, K., Wu, Y., Sen, S., Ding, Q., et al. (2011). miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 60, 2975–2984.PubMedCrossRef Feng, B., Chen, S., McArthur, K., Wu, Y., Sen, S., Ding, Q., et al. (2011). miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 60, 2975–2984.PubMedCrossRef
27.
go back to reference McArthur, K., Feng, B., Wu, Y., Chen, S., & Chakrabarti, S. (2011). MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes, 60, 1314–1323.PubMedCrossRef McArthur, K., Feng, B., Wu, Y., Chen, S., & Chakrabarti, S. (2011). MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes, 60, 1314–1323.PubMedCrossRef
28.
go back to reference Silva, V. A., Polesskaya, A., Sousa, T. A., Correa, V. M., Andre, N. D., Reis, R. I., et al. (2011). Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Molecular Vision, 17, 2228–2240.PubMed Silva, V. A., Polesskaya, A., Sousa, T. A., Correa, V. M., Andre, N. D., Reis, R. I., et al. (2011). Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats. Molecular Vision, 17, 2228–2240.PubMed
29.
go back to reference Kato, M., Park, J. T., & Natarajan, R. (2012) MicroRNAs and the glomerulus. Experimental Cell Research, 318, 993–1000. Kato, M., Park, J. T., & Natarajan, R. (2012) MicroRNAs and the glomerulus. Experimental Cell Research, 318, 993–1000.
30.
go back to reference Ziyadeh, F. N., & Sharma, K. (2003). Overview: combating diabetic nephropathy. Journal of the American Society of Nephrology, 14, 1355–1357.PubMedCrossRef Ziyadeh, F. N., & Sharma, K. (2003). Overview: combating diabetic nephropathy. Journal of the American Society of Nephrology, 14, 1355–1357.PubMedCrossRef
31.
go back to reference Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104, 3432–3437.PubMedCrossRef Kato, M., Zhang, J., Wang, M., Lanting, L., Yuan, H., Rossi, J. J., et al. (2007). MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proceedings of the National Academy of Sciences of the United States of America, 104, 3432–3437.PubMedCrossRef
32.
go back to reference Sharma, K., & Ziyadeh, F. N. (1995). Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes, 44, 1139–1146.PubMedCrossRef Sharma, K., & Ziyadeh, F. N. (1995). Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes, 44, 1139–1146.PubMedCrossRef
33.
go back to reference Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., & Border, W. A. (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 90, 1814–1818.PubMedCrossRef Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., & Border, W. A. (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 90, 1814–1818.PubMedCrossRef
34.
go back to reference Kato, M., Wang, L., Putta, S., Wang, M., Yuan, H., Sun, G., et al. (2010). Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. Journal of Biological Chemistry, 285, 34004–34015.PubMedCrossRef Kato, M., Wang, L., Putta, S., Wang, M., Yuan, H., Sun, G., et al. (2010). Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. Journal of Biological Chemistry, 285, 34004–34015.PubMedCrossRef
35.
go back to reference Kato, M., Arce, L., Wang, M., Putta, S., Lanting, L., & Natarajan, R. (2011). A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney International, 80, 358–368.PubMedCrossRef Kato, M., Arce, L., Wang, M., Putta, S., Lanting, L., & Natarajan, R. (2011). A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney International, 80, 358–368.PubMedCrossRef
36.
go back to reference Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., et al. (2009). TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biology, 11, 881–889.PubMedCrossRef Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., et al. (2009). TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biology, 11, 881–889.PubMedCrossRef
37.
go back to reference Kato, M., & Natarajan, R. (2009). microRNA cascade in diabetic kidney disease: big impact initiated by a small RNA. Cell Cycle, 8, 3613–3614.PubMedCrossRef Kato, M., & Natarajan, R. (2009). microRNA cascade in diabetic kidney disease: big impact initiated by a small RNA. Cell Cycle, 8, 3613–3614.PubMedCrossRef
38.
go back to reference Wang, Q., Wang, Y., Minto, A. W., Wang, J., Shi, Q., Li, X., et al. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. The FASEB Journal, 22, 4126–4135.CrossRef Wang, Q., Wang, Y., Minto, A. W., Wang, J., Shi, Q., Li, X., et al. (2008). MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. The FASEB Journal, 22, 4126–4135.CrossRef
39.
go back to reference Wang, X. X., Jiang, T., Shen, Y., Caldas, Y., Miyazaki-Anzai, S., Santamaria, H., et al. (2010). Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes, 59, 2916–2927.PubMedCrossRef Wang, X. X., Jiang, T., Shen, Y., Caldas, Y., Miyazaki-Anzai, S., Santamaria, H., et al. (2010). Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes, 59, 2916–2927.PubMedCrossRef
40.
go back to reference Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2010). Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. Journal of Biological Chemistry, 285, 23457–23465.PubMedCrossRef Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2010). Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. Journal of Biological Chemistry, 285, 23457–23465.PubMedCrossRef
41.
go back to reference Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2011). MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. Journal of Biological Chemistry, 286, 11837–11848.PubMedCrossRef Long, J., Wang, Y., Wang, W., Chang, B. H., & Danesh, F. R. (2011). MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. Journal of Biological Chemistry, 286, 11837–11848.PubMedCrossRef
42.
go back to reference Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. Journal of the American Society of Nephrology, 23, 252–265.PubMedCrossRef Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. Journal of the American Society of Nephrology, 23, 252–265.PubMedCrossRef
43.
go back to reference Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A., & Fraser, D. (2010). Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. Journal of the American Society of Nephrology, 21, 438–447.PubMedCrossRef Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A., & Fraser, D. (2010). Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. Journal of the American Society of Nephrology, 21, 438–447.PubMedCrossRef
44.
go back to reference Wang, B., Herman-Edelstein, M., Koh, P., Burns, W., Jandeleit-Dahm, K., Watson, A., et al. (2010). E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes, 59, 1794–1802.PubMedCrossRef Wang, B., Herman-Edelstein, M., Koh, P., Burns, W., Jandeleit-Dahm, K., Watson, A., et al. (2010). E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes, 59, 1794–1802.PubMedCrossRef
45.
go back to reference Wang, B., Koh, P., Winbanks, C., Coughlan, M. T., McClelland, A., Watson, A., et al. (2011). miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes, 60, 280–287.PubMedCrossRef Wang, B., Koh, P., Winbanks, C., Coughlan, M. T., McClelland, A., Watson, A., et al. (2011). miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes, 60, 280–287.PubMedCrossRef
46.
go back to reference Dey, N., Das, F., Mariappan, M. M., Mandal, C. C., Ghosh-Choudhury, N., Kasinath, B. S., et al. (2011). MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. Journal of Biological Chemistry, 286, 25586–25603.PubMedCrossRef Dey, N., Das, F., Mariappan, M. M., Mandal, C. C., Ghosh-Choudhury, N., Kasinath, B. S., et al. (2011). MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. Journal of Biological Chemistry, 286, 25586–25603.PubMedCrossRef
47.
go back to reference Zhang, Z., Peng, H., Chen, J., Chen, X., Han, F., Xu, X., et al. (2009). MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Letters, 583, 2009–2014.PubMedCrossRef Zhang, Z., Peng, H., Chen, J., Chen, X., Han, F., Xu, X., et al. (2009). MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Letters, 583, 2009–2014.PubMedCrossRef
48.
go back to reference Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., et al. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. American Journal of Nephrology, 32, 581–589.PubMedCrossRef Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., et al. (2010). Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. American Journal of Nephrology, 32, 581–589.PubMedCrossRef
49.
go back to reference Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G. B., Addis, R., et al. (2010). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 123, 282–291.CrossRef Caporali, A., Meloni, M., Vollenkle, C., Bonci, D., Sala-Newby, G. B., Addis, R., et al. (2010). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 123, 282–291.CrossRef
50.
go back to reference Natarajan, R., & Nadler, J. L. (2004). Lipid inflammatory mediators in diabetic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1542–1548.PubMedCrossRef Natarajan, R., & Nadler, J. L. (2004). Lipid inflammatory mediators in diabetic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1542–1548.PubMedCrossRef
51.
go back to reference Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820.PubMedCrossRef Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820.PubMedCrossRef
52.
go back to reference Devaraj, S., Dasu, M. R., & Jialal, I. (2010). Diabetes is a proinflammatory state: a translational perspective. Expert Review of Endocrinology and Metabolism, 5, 19–28.PubMed Devaraj, S., Dasu, M. R., & Jialal, I. (2010). Diabetes is a proinflammatory state: a translational perspective. Expert Review of Endocrinology and Metabolism, 5, 19–28.PubMed
53.
go back to reference Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.PubMedCrossRef Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.PubMedCrossRef
54.
go back to reference Shan, Z. X., Lin, Q. X., Deng, C. Y., Zhu, J. N., Mai, L. P., Liu, J. L., et al. (2010). miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Letters, 584, 3592–3600.PubMedCrossRef Shan, Z. X., Lin, Q. X., Deng, C. Y., Zhu, J. N., Mai, L. P., Liu, J. L., et al. (2010). miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Letters, 584, 3592–3600.PubMedCrossRef
55.
go back to reference Katare, R., Caporali, A., Zentilin, L., Avolio, E., Sala-Newby, G., Oikawa, A., et al. (2011). Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circulation Research, 108, 1238–1251.PubMedCrossRef Katare, R., Caporali, A., Zentilin, L., Avolio, E., Sala-Newby, G., Oikawa, A., et al. (2011). Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circulation Research, 108, 1238–1251.PubMedCrossRef
56.
go back to reference Wang, X. H., Qian, R. Z., Zhang, W., Chen, S. F., Jin, H. M., & Hu, R. M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clinical and Experimental Pharmacology and Physiology, 36, 181–188.PubMedCrossRef Wang, X. H., Qian, R. Z., Zhang, W., Chen, S. F., Jin, H. M., & Hu, R. M. (2009). MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clinical and Experimental Pharmacology and Physiology, 36, 181–188.PubMedCrossRef
57.
go back to reference Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.PubMedCrossRef
58.
go back to reference Feng, B., Chen, S., George, B., Feng, Q., & Chakrabarti, S. (2010). miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism Research and Reviews, 26, 40–49.PubMedCrossRef Feng, B., Chen, S., George, B., Feng, Q., & Chakrabarti, S. (2010). miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism Research and Reviews, 26, 40–49.PubMedCrossRef
59.
go back to reference Shen, E., Diao, X., Wang, X., Chen, R., & Hu, B. (2011). MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. American Journal of Pathology, 179, 639–650.PubMedCrossRef Shen, E., Diao, X., Wang, X., Chen, R., & Hu, B. (2011). MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. American Journal of Pathology, 179, 639–650.PubMedCrossRef
60.
go back to reference Greco, S., Fasanaro, P., Castelvecchio, S., D’Alessandra, Y., Arcelli, D., Di Donato, M., et al. (2012). MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes (in press). Greco, S., Fasanaro, P., Castelvecchio, S., D’Alessandra, Y., Arcelli, D., Di Donato, M., et al. (2012). MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes (in press).
61.
go back to reference van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.PubMedCrossRef van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.PubMedCrossRef
62.
go back to reference Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104, 170–178. 176p following 178.PubMedCrossRef Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104, 170–178. 176p following 178.PubMedCrossRef
63.
go back to reference Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.PubMedCrossRef Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.PubMedCrossRef
64.
go back to reference Reddy, M. A., & Natarajan, R. (2011). Epigenetic mechanisms in diabetic vascular complications. Cardiovascular Research, 90, 421–429.PubMedCrossRef Reddy, M. A., & Natarajan, R. (2011). Epigenetic mechanisms in diabetic vascular complications. Cardiovascular Research, 90, 421–429.PubMedCrossRef
65.
go back to reference Shanmugam, N., Reddy, M. A., & Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. Journal of Biological Chemistry, 283, 36221–36233.PubMedCrossRef Shanmugam, N., Reddy, M. A., & Natarajan, R. (2008). Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products. Journal of Biological Chemistry, 283, 36221–36233.PubMedCrossRef
66.
go back to reference Villeneuve, L. M., Reddy, M. A., Lanting, L. L., Wang, M., Meng, L., & Natarajan, R. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9047–9052.PubMedCrossRef Villeneuve, L. M., Reddy, M. A., Lanting, L. L., Wang, M., Meng, L., & Natarajan, R. (2008). Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9047–9052.PubMedCrossRef
67.
go back to reference Villeneuve, L. M., Kato, M., Reddy, M. A., Wang, M., Lanting, L., & Natarajan, R. (2010). Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes, 59, 2904–2915.PubMedCrossRef Villeneuve, L. M., Kato, M., Reddy, M. A., Wang, M., Lanting, L., & Natarajan, R. (2010). Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes, 59, 2904–2915.PubMedCrossRef
68.
go back to reference Reddy, M. A., Jin, W., Villeneuve, L., Wang, M., Lanting, L., Todorov, I., et al. (2012). Pro-inflammatory role of MicroRNA-200 in vascular smooth muscle cells from diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 721–729.PubMedCrossRef Reddy, M. A., Jin, W., Villeneuve, L., Wang, M., Lanting, L., Todorov, I., et al. (2012). Pro-inflammatory role of MicroRNA-200 in vascular smooth muscle cells from diabetic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 721–729.PubMedCrossRef
69.
go back to reference Jin, W., Reddy, M. A., Chen, Z., Putta, S., Lanting, L., Kato, M., et al. (2012). Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. Journal of Biological Chemistry (in press). Jin, W., Reddy, M. A., Chen, Z., Putta, S., Lanting, L., Kato, M., et al. (2012). Small RNA sequencing reveals microRNAs that modulate angiotensin II effects in vascular smooth muscle cells. Journal of Biological Chemistry (in press).
70.
go back to reference Thomas, M. C., Groop, P. H., & Tryggvason, K. (2012). Towards understanding the inherited susceptibility for nephropathy in diabetes. Current Opinion in Nephrology and Hypertension, 21, 195–202.PubMedCrossRef Thomas, M. C., Groop, P. H., & Tryggvason, K. (2012). Towards understanding the inherited susceptibility for nephropathy in diabetes. Current Opinion in Nephrology and Hypertension, 21, 195–202.PubMedCrossRef
71.
go back to reference Bruno, A. E., Li, L., Kalabus, J. L., Pan, Y., Yu, A., & Hu, Z. (2012). miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics, 13, 44.PubMedCrossRef Bruno, A. E., Li, L., Kalabus, J. L., Pan, Y., Yu, A., & Hu, Z. (2012). miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′UTRs of human genes. BMC Genomics, 13, 44.PubMedCrossRef
72.
go back to reference Sun, G., Yan, J., Noltner, K., Feng, J., Li, H., Sarkis, D. A., et al. (2009). SNPs in human miRNA genes affect biogenesis and function. RNA, 15, 1640–1651.PubMedCrossRef Sun, G., Yan, J., Noltner, K., Feng, J., Li, H., Sarkis, D. A., et al. (2009). SNPs in human miRNA genes affect biogenesis and function. RNA, 15, 1640–1651.PubMedCrossRef
73.
go back to reference Miao, F., Chen, Z., Zhang, L., Liu, Z., Wu, X., Yuan, Y. C. et al. (2012). Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry (in press). Miao, F., Chen, Z., Zhang, L., Liu, Z., Wu, X., Yuan, Y. C. et al. (2012). Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry (in press).
74.
go back to reference Sapienza, C., Lee, J., Powell, J., Erinle, O., Yafai, F., Reichert, J., et al. (2011). DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics, 6, 20–28.PubMedCrossRef Sapienza, C., Lee, J., Powell, J., Erinle, O., Yafai, F., Reichert, J., et al. (2011). DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics, 6, 20–28.PubMedCrossRef
75.
go back to reference Farazi, T. A., Spitzer, J. I., Morozov, P., & Tuschl, T. (2011). miRNAs in human cancer. The Journal of Pathology, 223, 102–115.PubMedCrossRef Farazi, T. A., Spitzer, J. I., Morozov, P., & Tuschl, T. (2011). miRNAs in human cancer. The Journal of Pathology, 223, 102–115.PubMedCrossRef
76.
go back to reference Fabbri, M. (2010). miRNAs as molecular biomarkers of cancer. Expert Review of Molecular Diagnostics, 10, 435–444.PubMedCrossRef Fabbri, M. (2010). miRNAs as molecular biomarkers of cancer. Expert Review of Molecular Diagnostics, 10, 435–444.PubMedCrossRef
77.
go back to reference Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., et al. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proceedings of the National Academy of Sciences of the United States of America, 106, 4402–4407.PubMedCrossRef Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., et al. (2009). Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proceedings of the National Academy of Sciences of the United States of America, 106, 4402–4407.PubMedCrossRef
78.
go back to reference Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedCrossRef Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedCrossRef
79.
go back to reference Tijsen, A. J., Creemers, E. E., Moerland, P. D., de Windt, L. J., van der Wal, A. C., Kok, W. E., et al. (2010). MiR423-5p as a circulating biomarker for heart failure. Circulation Research, 106, 1035–1039.PubMedCrossRef Tijsen, A. J., Creemers, E. E., Moerland, P. D., de Windt, L. J., van der Wal, A. C., Kok, W. E., et al. (2010). MiR423-5p as a circulating biomarker for heart failure. Circulation Research, 106, 1035–1039.PubMedCrossRef
80.
go back to reference Wang, G., Kwan, B. C., Lai, F. M., Chow, K. M., Kam-Tao Li, P., & Szeto, C. C. (2010). Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Disease Markers, 28, 79–86.PubMed Wang, G., Kwan, B. C., Lai, F. M., Chow, K. M., Kam-Tao Li, P., & Szeto, C. C. (2010). Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Disease Markers, 28, 79–86.PubMed
81.
go back to reference Neal, C. S., Michael, M. Z., Pimlott, L. K., Yong, T. Y., Li, J. Y., & Gleadle, J. M. (2011). Circulating microRNA expression is reduced in chronic kidney disease. Nephrology, Dialysis, Transplantation, 26, 3794–3802.PubMedCrossRef Neal, C. S., Michael, M. Z., Pimlott, L. K., Yong, T. Y., Li, J. Y., & Gleadle, J. M. (2011). Circulating microRNA expression is reduced in chronic kidney disease. Nephrology, Dialysis, Transplantation, 26, 3794–3802.PubMedCrossRef
82.
go back to reference Starkey Lewis, P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G., Antoine, D. J., et al. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology, 54, 1767–1776.PubMedCrossRef Starkey Lewis, P. J., Dear, J., Platt, V., Simpson, K. J., Craig, D. G., Antoine, D. J., et al. (2011). Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology, 54, 1767–1776.PubMedCrossRef
83.
go back to reference Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.PubMedCrossRef Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.PubMedCrossRef
84.
go back to reference Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.PubMedCrossRef Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438, 685–689.PubMedCrossRef
85.
go back to reference Putta, S., Lanting, L., Sun, G., Lawson, G., Kato, M., & Natarajan, R. (2012). Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Journal of the American Society of Nephrology, 23, 458–469.PubMedCrossRef Putta, S., Lanting, L., Sun, G., Lawson, G., Kato, M., & Natarajan, R. (2012). Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. Journal of the American Society of Nephrology, 23, 458–469.PubMedCrossRef
86.
go back to reference Sun, L., Zhang, D., Liu, F., Xiang, X., Ling, G., Xiao, L., et al. (2011). Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. The Journal of Pathology, 225, 364–377.PubMedCrossRef Sun, L., Zhang, D., Liu, F., Xiang, X., Ling, G., Xiao, L., et al. (2011). Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. The Journal of Pathology, 225, 364–377.PubMedCrossRef
87.
go back to reference Snove, O., Jr., & Rossi, J. J. (2006). Expressing short hairpin RNAs in vivo. Nature Methods, 3, 689–695.PubMedCrossRef Snove, O., Jr., & Rossi, J. J. (2006). Expressing short hairpin RNAs in vivo. Nature Methods, 3, 689–695.PubMedCrossRef
88.
go back to reference Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4, 721–726.PubMedCrossRef Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4, 721–726.PubMedCrossRef
89.
go back to reference Chung, A. C., Huang, X. R., Meng, X., & Lan, H. Y. (2010). miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. Journal of the American Society of Nephrology, 21, 1317–1325.PubMedCrossRef Chung, A. C., Huang, X. R., Meng, X., & Lan, H. Y. (2010). miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. Journal of the American Society of Nephrology, 21, 1317–1325.PubMedCrossRef
Metadata
Title
MicroRNAs and Diabetic Complications
Authors
Rama Natarajan
Sumanth Putta
Mitsuo Kato
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9368-5

Other articles of this Issue 4/2012

Journal of Cardiovascular Translational Research 4/2012 Go to the issue