Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2012

01-08-2012

Enhanced Endothelialization of a New Stent Polymer Through Surface Enhancement and Incorporation of Growth Factor-Delivering Microparticles

Authors: Hao Xu, Kytai T. Nguyen, Emmanouil S. Brilakis, Jian Yang, Eric Fuh, Subhash Banerjee

Published in: Journal of Cardiovascular Translational Research | Issue 4/2012

Login to get access

Abstract

In this study, we sought to develop strategies for improved endothelialization of a new polymer coating for vascular stents. Surface enhancement of the new poly-1,8-octanediol-co-citric acid (POC) polymer was achieved through conjugation of anti-CD34 antibody and incorporation of vascular endothelial growth factor and basic fibroblast growth factor-containing poly-lactic-co-glycolic acid microparticles to improve capture and proliferation of endothelial progenitor cells (EPC) and compared to untreated POC and poly-L-lactic acid (PLLA) polymer. Our results indicate that compared to PLLA, POC coating was more hemocompatible, with less platelet activation (p = 0.01), thrombogenicity (p < 0.05 for 20 and 30 min clot formation), and inflammatory response (IL-1β release, p = 0.0009; TNF-α release, p = 0.004). EPC adhesion and proliferation on POC were significantly improved with surface enhancement and microparticle incorporation compared to untreated POC (p = 0.006) and PLLA (p = 0.003). These results suggest a new strategy for enhancing endothelialization of polymeric coatings of vascular prostheses.
Literature
1.
go back to reference Holmes, D. R., Jr., Kereiakes, D. J., Laskey, W. K., Colombo, A., Ellis, S. G., Henry, T. D., et al. (2007). Thrombosis and drug-eluting stents: an objective appraisal. Journal of the American College of Cardiology, 50(2), 109–118. doi:10.1016/j.jacc.2007.04.032.PubMedCrossRef Holmes, D. R., Jr., Kereiakes, D. J., Laskey, W. K., Colombo, A., Ellis, S. G., Henry, T. D., et al. (2007). Thrombosis and drug-eluting stents: an objective appraisal. Journal of the American College of Cardiology, 50(2), 109–118. doi:10.​1016/​j.​jacc.​2007.​04.​032.PubMedCrossRef
2.
go back to reference Joner, M., Finn, A. V., Farb, A., Mont, E. K., & Virmani, R. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48, 193–202.PubMedCrossRef Joner, M., Finn, A. V., Farb, A., Mont, E. K., & Virmani, R. (2006). Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. Journal of the American College of Cardiology, 48, 193–202.PubMedCrossRef
3.
go back to reference Joner, M., Nakazawa, G., Finn, A. V., Quee, S. C., Coleman, L., Acampado, E., et al. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342. doi:10.1016/j.jacc.2008.04.030.PubMedCrossRef Joner, M., Nakazawa, G., Finn, A. V., Quee, S. C., Coleman, L., Acampado, E., et al. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342. doi:10.​1016/​j.​jacc.​2008.​04.​030.PubMedCrossRef
4.
go back to reference Notaristefano, S., Sbarzaglia, P., & Cavallini, C. (2008). Late stent thrombosis after drug-eluting stent implantation: epidemiological, clinical and pathophysiological aspects. G Ital Cardiol (Rome), 9(10), 674–683. Notaristefano, S., Sbarzaglia, P., & Cavallini, C. (2008). Late stent thrombosis after drug-eluting stent implantation: epidemiological, clinical and pathophysiological aspects. G Ital Cardiol (Rome), 9(10), 674–683.
5.
go back to reference Joner, M., Nakazawa, G., & Fine, A. V. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342.PubMedCrossRef Joner, M., Nakazawa, G., & Fine, A. V. (2008). Endothelial cell recovery between comparator polymer-based drug-eluting stents. Journal of the American College of Cardiology, 52(5), 333–342.PubMedCrossRef
6.
go back to reference Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel citric acid-based biodegradable elastomers for tissue engineering. Advanced Materials, 16, 511–516.CrossRef Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel citric acid-based biodegradable elastomers for tissue engineering. Advanced Materials, 16, 511–516.CrossRef
7.
go back to reference Tinsley-Bown, A. M., Fretwell, R., Dowsett, A. B., Davis, S. L., & Farrar, G. H. (2000). Formulation of poly(D, L-lactic-co-glycolic acid) microparticles for rapid plasmid DNA delivery. Journal of Controlled Release, 66(2–3), 229–241.PubMedCrossRef Tinsley-Bown, A. M., Fretwell, R., Dowsett, A. B., Davis, S. L., & Farrar, G. H. (2000). Formulation of poly(D, L-lactic-co-glycolic acid) microparticles for rapid plasmid DNA delivery. Journal of Controlled Release, 66(2–3), 229–241.PubMedCrossRef
8.
go back to reference Markowicz, M., Koellensperger, E., Neuss, S., Koenigschulte, S., Bindler, C., & Pallua, N. (2006). Human bone marrow mesenchumal stem cell seeded on modified collagen improved dermal regenration in vivo. Cell Transplantation, 15(8-9), 723–732.PubMedCrossRef Markowicz, M., Koellensperger, E., Neuss, S., Koenigschulte, S., Bindler, C., & Pallua, N. (2006). Human bone marrow mesenchumal stem cell seeded on modified collagen improved dermal regenration in vivo. Cell Transplantation, 15(8-9), 723–732.PubMedCrossRef
9.
11.
go back to reference Tamada, Y., Kulik, E. A., & Ikada, Y. (1995). Simple method for platelet counting. Biomaterials, 16(3), 259–261.PubMedCrossRef Tamada, Y., Kulik, E. A., & Ikada, Y. (1995). Simple method for platelet counting. Biomaterials, 16(3), 259–261.PubMedCrossRef
12.
go back to reference Choudhury, A., Chung, I., Blann, A. D., & Lip, G. Y. (2007). Platelet surface CD62P and CD63, mean platelet volume, and soluble/platelet P-selectin as indexes of platelet function in atrial fibrillation: a comparison of "healthy control subjects" and "disease control subjects" in sinus rhythm. Journal of the American College of Cardiology, 49(19), 1957–1964. doi:10.1016/j.jacc.2007.02.038.PubMedCrossRef Choudhury, A., Chung, I., Blann, A. D., & Lip, G. Y. (2007). Platelet surface CD62P and CD63, mean platelet volume, and soluble/platelet P-selectin as indexes of platelet function in atrial fibrillation: a comparison of "healthy control subjects" and "disease control subjects" in sinus rhythm. Journal of the American College of Cardiology, 49(19), 1957–1964. doi:10.​1016/​j.​jacc.​2007.​02.​038.PubMedCrossRef
13.
go back to reference Huang, N., Yang, P., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2003). Hemocompatibility of titanium oxide films. Biomaterials, 24(13), 2177–2187.PubMedCrossRef Huang, N., Yang, P., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., et al. (2003). Hemocompatibility of titanium oxide films. Biomaterials, 24(13), 2177–2187.PubMedCrossRef
16.
go back to reference Eggermann, J., Kliche, S., Jarmy, G., Hoffmann, K., Mayr-Beyrle, U., Debatin, K. M., et al. (2003). Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovascular Research, 58(2), 478–486.PubMedCrossRef Eggermann, J., Kliche, S., Jarmy, G., Hoffmann, K., Mayr-Beyrle, U., Debatin, K. M., et al. (2003). Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovascular Research, 58(2), 478–486.PubMedCrossRef
17.
go back to reference Caron, A., Theoret, J. F., Mousa, S. A., & Merhi, Y. (2002). Anti-platelet effects of GPIIb/IIIa and P-selectin antagonism, platelet activation, and binding to neutrophils. Journal of Cardiovascular Pharmacology, 40(2), 296–306.PubMedCrossRef Caron, A., Theoret, J. F., Mousa, S. A., & Merhi, Y. (2002). Anti-platelet effects of GPIIb/IIIa and P-selectin antagonism, platelet activation, and binding to neutrophils. Journal of Cardiovascular Pharmacology, 40(2), 296–306.PubMedCrossRef
18.
go back to reference Virmani, R., Kolodgie, F. D., Farb, A., & Lafont, A. (2003). Drug eluting stents: are human and animal studies comparable? Heart, 89(2), 133–138.PubMedCrossRef Virmani, R., Kolodgie, F. D., Farb, A., & Lafont, A. (2003). Drug eluting stents: are human and animal studies comparable? Heart, 89(2), 133–138.PubMedCrossRef
19.
go back to reference Finn, A. V., Nakazawa, G., & Joner, M. (2007). Vascular responses to drug eluting stents: importance of delayed healing. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(7), 1500–1510.PubMedCrossRef Finn, A. V., Nakazawa, G., & Joner, M. (2007). Vascular responses to drug eluting stents: importance of delayed healing. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(7), 1500–1510.PubMedCrossRef
20.
go back to reference Padfiled, G. J., Newby, D. E., & Mills, N. L. (2010). Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. Journal of the American College of Cardiology, 55(15), 1553–1565.CrossRef Padfiled, G. J., Newby, D. E., & Mills, N. L. (2010). Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. Journal of the American College of Cardiology, 55(15), 1553–1565.CrossRef
21.
go back to reference Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.PubMedCrossRef Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.PubMedCrossRef
24.
go back to reference Shirota, T., Yasui, H., Shimokawa, H., & Matsuda, T. (2003). Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials, 24(13), 2295–2302.PubMedCrossRef Shirota, T., Yasui, H., Shimokawa, H., & Matsuda, T. (2003). Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials, 24(13), 2295–2302.PubMedCrossRef
25.
go back to reference Rotmans, J. I., Heyligers, J. M., Verhagen, H. J., Velema, E., Nagtegaal, M. M., de Kleijn, D. P., et al. (2005). In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation, 112(1), 12–18. doi:10.1161/CIRCULATIONAHA.104.504407.PubMedCrossRef Rotmans, J. I., Heyligers, J. M., Verhagen, H. J., Velema, E., Nagtegaal, M. M., de Kleijn, D. P., et al. (2005). In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation, 112(1), 12–18. doi:10.​1161/​CIRCULATIONAHA.​104.​504407.PubMedCrossRef
26.
go back to reference Markway, B. D., McCarty, O. J., Marzec, U. M., Courtman, D. W., Hanson, S. R., & Hinds, M. T. (2008). Capture of flowing endothelial cells using surface-immobilized anti-kinase insert domain receptor antibody. Tissue Engineering. Part C, Methods, 14(2), 97–105. doi:10.1089/tec.2007.0300.PubMedCrossRef Markway, B. D., McCarty, O. J., Marzec, U. M., Courtman, D. W., Hanson, S. R., & Hinds, M. T. (2008). Capture of flowing endothelial cells using surface-immobilized anti-kinase insert domain receptor antibody. Tissue Engineering. Part C, Methods, 14(2), 97–105. doi:10.​1089/​tec.​2007.​0300.PubMedCrossRef
27.
go back to reference Blindt, R., Vogt, F., Astafieva, I., Fach, C., Hristov, M., Krott, N., et al. (2006). A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology, 47(9), 1786–1795. doi:10.1016/j.jacc.2005.11.081.PubMedCrossRef Blindt, R., Vogt, F., Astafieva, I., Fach, C., Hristov, M., Krott, N., et al. (2006). A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Journal of the American College of Cardiology, 47(9), 1786–1795. doi:10.​1016/​j.​jacc.​2005.​11.​081.PubMedCrossRef
28.
go back to reference Taite, L. J., Yang, P., Jun, H. W., & West, J. L. (2008). Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 84(1), 108–116. doi:10.1002/jbm.b.30850.PubMedCrossRef Taite, L. J., Yang, P., Jun, H. W., & West, J. L. (2008). Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 84(1), 108–116. doi:10.​1002/​jbm.​b.​30850.PubMedCrossRef
30.
go back to reference Hoffmann, J., Paul, A., Harwardt, M., Groll, J., Reeswinkel, T., Klee, D., et al. (2008). Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. Journal of Biomedical Materials Research. Part A, 84(3), 614–621. doi:10.1002/jbm.a.31309.PubMedCrossRef Hoffmann, J., Paul, A., Harwardt, M., Groll, J., Reeswinkel, T., Klee, D., et al. (2008). Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. Journal of Biomedical Materials Research. Part A, 84(3), 614–621. doi:10.​1002/​jbm.​a.​31309.PubMedCrossRef
31.
go back to reference Aoki, J., Serruys, P. W., van Beusekom, H., Ong, A. T., McFadden, E. P., Sianos, G., et al. (2005). Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. Journal of the American College of Cardiology, 45(10), 1574–1579.PubMedCrossRef Aoki, J., Serruys, P. W., van Beusekom, H., Ong, A. T., McFadden, E. P., Sianos, G., et al. (2005). Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. Journal of the American College of Cardiology, 45(10), 1574–1579.PubMedCrossRef
32.
go back to reference Granada, J. F., Inami, S., Aboodi, M. S., Tellez, A., Milewski, K., Wallace-Bradley, D., et al. (2010). Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circulation. Cardiovascular Interventions, 3(3), 257–266. doi:10.1161/CIRCINTERVENTIONS.109.919936.PubMedCrossRef Granada, J. F., Inami, S., Aboodi, M. S., Tellez, A., Milewski, K., Wallace-Bradley, D., et al. (2010). Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circulation. Cardiovascular Interventions, 3(3), 257–266. doi:10.​1161/​CIRCINTERVENTION​S.​109.​919936.PubMedCrossRef
35.
go back to reference Hirota, K., Hasegawa, T., Nakajima, T., & Terada, H. (2010). Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. Journal of Controlled Release, 142(3), 339–346.PubMedCrossRef Hirota, K., Hasegawa, T., Nakajima, T., & Terada, H. (2010). Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. Journal of Controlled Release, 142(3), 339–346.PubMedCrossRef
36.
go back to reference Xanthe, M. L., Eileen, T. D., Ann, L. D., Nancy, L., & Jeffery, L. C. (2000). Sustained release of recombinant human insulin-like growth factor-1 for treatment of diabetes. Journal of Controlled Release, 67, 281–292.CrossRef Xanthe, M. L., Eileen, T. D., Ann, L. D., Nancy, L., & Jeffery, L. C. (2000). Sustained release of recombinant human insulin-like growth factor-1 for treatment of diabetes. Journal of Controlled Release, 67, 281–292.CrossRef
37.
go back to reference Mayo, A. S., Ambati, B. K., & Kompella, U. B. (2010). Gene delivery nanoparticles fabricated by supercritical fluoid extraction of emulsions. International Journal of Pharmaceutics, 387(1–2), 275–285. Mayo, A. S., Ambati, B. K., & Kompella, U. B. (2010). Gene delivery nanoparticles fabricated by supercritical fluoid extraction of emulsions. International Journal of Pharmaceutics, 387(1–2), 275–285.
38.
go back to reference Giteau, A., Venier-Juilenne, M. C., Aubert-Pouessel, A., & Benoit, J. P. (2008). How to achieve sustained and complete protein release from PLGA-based microparticles? International Journal of Pharmaceutics, 350(1–2), 14–26.PubMedCrossRef Giteau, A., Venier-Juilenne, M. C., Aubert-Pouessel, A., & Benoit, J. P. (2008). How to achieve sustained and complete protein release from PLGA-based microparticles? International Journal of Pharmaceutics, 350(1–2), 14–26.PubMedCrossRef
39.
40.
go back to reference Yang, J., Webb, A. R., Pickerill, S. J., Hageman, G., & Ameer, G. A. (2006). Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials, 27(9), 1889–1898.PubMedCrossRef Yang, J., Webb, A. R., Pickerill, S. J., Hageman, G., & Ameer, G. A. (2006). Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials, 27(9), 1889–1898.PubMedCrossRef
42.
go back to reference Chin-Quee, S. L., Hsu, S. H., Nguyen-Ehrenreich, K. L., Tai, J. T., Abraham, G. M., Pacetti, S. D., et al. (2010). Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials, 31(4), 648–657. doi:10.1016/j.biomaterials.2009.09.079.PubMedCrossRef Chin-Quee, S. L., Hsu, S. H., Nguyen-Ehrenreich, K. L., Tai, J. T., Abraham, G. M., Pacetti, S. D., et al. (2010). Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials, 31(4), 648–657. doi:10.​1016/​j.​biomaterials.​2009.​09.​079.PubMedCrossRef
43.
go back to reference Vedantham, K., Chaterji, S., Kim, S. W., & Park, K. (2012). Development of a probucol-releasing antithrombogenic drug eluting stent. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. doi:10.1002/jbm.b.32672. Vedantham, K., Chaterji, S., Kim, S. W., & Park, K. (2012). Development of a probucol-releasing antithrombogenic drug eluting stent. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. doi:10.​1002/​jbm.​b.​32672.
45.
go back to reference Jia, H., Liu, H., Kong, J., Hou, J., Wu, J., Zhang, M., et al. (2011). A novel polymer-free paclitaxel-eluting stent with a nanoporous surface for rapid endothelialization and inhibition of intimal hyperplasia: comparison with a polymer-based sirolimus-eluting stent and bare metal stent in a porcine model. Journal of Biomedical Materials Research. Part A, 98(4), 629–637. doi:10.1002/jbm.a.33151.PubMedCrossRef Jia, H., Liu, H., Kong, J., Hou, J., Wu, J., Zhang, M., et al. (2011). A novel polymer-free paclitaxel-eluting stent with a nanoporous surface for rapid endothelialization and inhibition of intimal hyperplasia: comparison with a polymer-based sirolimus-eluting stent and bare metal stent in a porcine model. Journal of Biomedical Materials Research. Part A, 98(4), 629–637. doi:10.​1002/​jbm.​a.​33151.PubMedCrossRef
46.
go back to reference Ramchandani, M., & Robinson, D. (1998). In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. Journal of Controlled Release, 54(2), 167–175.PubMedCrossRef Ramchandani, M., & Robinson, D. (1998). In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. Journal of Controlled Release, 54(2), 167–175.PubMedCrossRef
Metadata
Title
Enhanced Endothelialization of a New Stent Polymer Through Surface Enhancement and Incorporation of Growth Factor-Delivering Microparticles
Authors
Hao Xu
Kytai T. Nguyen
Emmanouil S. Brilakis
Jian Yang
Eric Fuh
Subhash Banerjee
Publication date
01-08-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9381-8

Other articles of this Issue 4/2012

Journal of Cardiovascular Translational Research 4/2012 Go to the issue