Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2011

01-04-2011

Heterogeneity of Human Monocytes: An Optimized Four-Color Flow Cytometry Protocol for Analysis of Monocyte Subsets

Authors: Tiziano Tallone, Giovanna Turconi, Gianni Soldati, Giovanni Pedrazzini, Tiziano Moccetti, Giuseppe Vassalli

Published in: Journal of Cardiovascular Translational Research | Issue 2/2011

Login to get access

Abstract

Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5–conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14+CD16 monocytes (here termed “Mo1” subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX3CR1, whereas “nonclassical” CD14loCD16+ monocytes (Mo3) essentially showed the inverse expression pattern. CD14+CD16+ monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas “nonclassical” monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX3CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Literature
1.
go back to reference Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Reviews in Immunology, 27, 669.CrossRef Auffray, C., Sieweke, M. H., & Geissmann, F. (2009). Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annual Reviews in Immunology, 27, 669.CrossRef
2.
go back to reference Gerrity, R. G. (1981). The role of the monocyte in atherogenesis: I. transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology, 103, 181.PubMed Gerrity, R. G. (1981). The role of the monocyte in atherogenesis: I. transition of blood-borne monocytes into foam cells in fatty lesions. American Journal of Pathology, 103, 181.PubMed
3.
go back to reference Geissmann, F., & Woollard, K. J. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7, 77.PubMedCrossRef Geissmann, F., & Woollard, K. J. (2010). Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 7, 77.PubMedCrossRef
4.
go back to reference Ziegler-Heitbrock, H. W., Strobel, M., Kieper, D., Fingerle, G., Schlunck, T., Petersmann, I., et al. (1992). Differential expression of cytokines in human blood monocyte subpopulations. Blood, 79, 503.PubMed Ziegler-Heitbrock, H. W., Strobel, M., Kieper, D., Fingerle, G., Schlunck, T., Petersmann, I., et al. (1992). Differential expression of cytokines in human blood monocyte subpopulations. Blood, 79, 503.PubMed
5.
go back to reference Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19, 71.PubMedCrossRef Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19, 71.PubMedCrossRef
6.
go back to reference Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al. (2010). Nomenclature of monocytes and dendritic cells in blood. Blood, 116(16), e74–e80.PubMedCrossRef Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., et al. (2010). Nomenclature of monocytes and dendritic cells in blood. Blood, 116(16), e74–e80.PubMedCrossRef
7.
go back to reference Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., et al. (2007). Ly-6 C hi monocytes dominate hypercholesterolemiaassociated monocytosis and give rise to macrophages in atheromata. The Journal of Clinical Investigation, 117, 195.PubMedCrossRef Swirski, F. K., Libby, P., Aikawa, E., Alcaide, P., Luscinskas, F. W., Weissleder, R., et al. (2007). Ly-6 C hi monocytes dominate hypercholesterolemiaassociated monocytosis and give rise to macrophages in atheromata. The Journal of Clinical Investigation, 117, 195.PubMedCrossRef
8.
go back to reference Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037.PubMedCrossRef Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037.PubMedCrossRef
9.
go back to reference Grage-Griebenow, E., Lorenzen, D., Fetting, R., Flad, H.-D., & Ernst, M. (1993). Phenotypical and functional characterization of Fcy receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. European Journal of Immunology, 23, 3126.PubMedCrossRef Grage-Griebenow, E., Lorenzen, D., Fetting, R., Flad, H.-D., & Ernst, M. (1993). Phenotypical and functional characterization of Fcy receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. European Journal of Immunology, 23, 3126.PubMedCrossRef
10.
go back to reference Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. L. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527.PubMed Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. L. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527.PubMed
11.
go back to reference Fingerle, G., Pforte, A., Passlick, B., Blumenstein, M., Ströbel, M., & Ziegler-Heitbrock, H. W. (1993). The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood, 82, 3170.PubMed Fingerle, G., Pforte, A., Passlick, B., Blumenstein, M., Ströbel, M., & Ziegler-Heitbrock, H. W. (1993). The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood, 82, 3170.PubMed
12.
go back to reference Belge, K. U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., et al. (2002). The proinflammatory CD14 + CD16 + DR++ monocytes are a major source of TNF. Journal of Immunology, 168, 3536. Belge, K. U., Dayyani, F., Horelt, A., Siedlar, M., Frankenberger, M., Frankenberger, B., et al. (2002). The proinflammatory CD14 + CD16 + DR++ monocytes are a major source of TNF. Journal of Immunology, 168, 3536.
13.
go back to reference Strauss-Ayali, D., Conrad, S. M., & Mosser, D. M. (2007). Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 82, 244.PubMedCrossRef Strauss-Ayali, D., Conrad, S. M., & Mosser, D. M. (2007). Monocyte subpopulations and their differentiation patterns during infection. Journal of Leukocyte Biology, 82, 244.PubMedCrossRef
14.
go back to reference Grage-Griebenow, E., Zawatzky, R., Kahlert, H., Brade, L., Flad, H., & Ernst, M. (2001). Identification of a novel dendritic cell-like subset of CD64(+)/CD16(+) blood monocytes. European Journal of Immunology, 31, 48.PubMedCrossRef Grage-Griebenow, E., Zawatzky, R., Kahlert, H., Brade, L., Flad, H., & Ernst, M. (2001). Identification of a novel dendritic cell-like subset of CD64(+)/CD16(+) blood monocytes. European Journal of Immunology, 31, 48.PubMedCrossRef
15.
go back to reference Heron, M., Grutters, J. C., van Velzen-Blad, H., Veltkamp, M., Claessen, A. M., & van den Bosch, J. M. (2008). Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest, 134, 1001.PubMedCrossRef Heron, M., Grutters, J. C., van Velzen-Blad, H., Veltkamp, M., Claessen, A. M., & van den Bosch, J. M. (2008). Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest, 134, 1001.PubMedCrossRef
16.
go back to reference Weiner, L. M., Li, W., Holmes, M., Catalano, R. B., Dovnarsky, M., Padavic, K., et al. (1994). Phase I trial of recombinant macrophage colony-stimulating factor and recombinant gamma-interferon: toxicity, monocytosis, and clinical effects. Cancer Research, 54, 4084.PubMed Weiner, L. M., Li, W., Holmes, M., Catalano, R. B., Dovnarsky, M., Padavic, K., et al. (1994). Phase I trial of recombinant macrophage colony-stimulating factor and recombinant gamma-interferon: toxicity, monocytosis, and clinical effects. Cancer Research, 54, 4084.PubMed
17.
go back to reference Hristov, M., Schmitz, S., Schuhmann, C., Leyendecker, T., von Hundelshausen, P., Krötz, F., et al. (2009). An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry. Part A, 75A, 848.CrossRef Hristov, M., Schmitz, S., Schuhmann, C., Leyendecker, T., von Hundelshausen, P., Krötz, F., et al. (2009). An optimized flow cytometry protocol for analysis of angiogenic monocytes and endothelial progenitor cells in peripheral blood. Cytometry. Part A, 75A, 848.CrossRef
18.
go back to reference Ziegler-Heitbrock, L. (2007). The CD14+ CD16+ blood monocytes: their role in infection and inflammation. Journal of Leukocyte Biology, 81, 584.PubMedCrossRef Ziegler-Heitbrock, L. (2007). The CD14+ CD16+ blood monocytes: their role in infection and inflammation. Journal of Leukocyte Biology, 81, 584.PubMedCrossRef
19.
go back to reference Ancuta, P., Rao, R., Moses, A., Mehle, A., Shaw, S. K., Luscinskas, F. W., et al. (2003). Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. The Journal of Experimental Medicine, 197, 1701.PubMedCrossRef Ancuta, P., Rao, R., Moses, A., Mehle, A., Shaw, S. K., Luscinskas, F. W., et al. (2003). Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. The Journal of Experimental Medicine, 197, 1701.PubMedCrossRef
20.
go back to reference Thomas, R., Davis, L. S., & Lipsky, P. E. (1993). Isolation and characterization of human peripheral blood dendritic cells. Journal of Immunology, 150, 821. Thomas, R., Davis, L. S., & Lipsky, P. E. (1993). Isolation and characterization of human peripheral blood dendritic cells. Journal of Immunology, 150, 821.
21.
go back to reference Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., & Muller, W. A. (1998). Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science, 282, 480.PubMedCrossRef Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M., & Muller, W. A. (1998). Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science, 282, 480.PubMedCrossRef
22.
go back to reference Wildgruber, M., Lee, H., Chudnovskiy, A., Yoon, T.-J., Etzrodt, M., Pittet, M. J., et al. (2009). Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS ONE, 4, e5663.PubMedCrossRef Wildgruber, M., Lee, H., Chudnovskiy, A., Yoon, T.-J., Etzrodt, M., Pittet, M. J., et al. (2009). Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nano-sensors. PLoS ONE, 4, e5663.PubMedCrossRef
23.
go back to reference Steppich, B., Dayyani, F., Gruber, R., Lorenz, R., Mack, M., & Ziegler-Heitbrock, H. W. L. (2000). Selective mobilization of CD14 + CD16+ monocytes by exercise. American Journal of Physiology. Cell Physiology, 279, C578.PubMed Steppich, B., Dayyani, F., Gruber, R., Lorenz, R., Mack, M., & Ziegler-Heitbrock, H. W. L. (2000). Selective mobilization of CD14 + CD16+ monocytes by exercise. American Journal of Physiology. Cell Physiology, 279, C578.PubMed
24.
go back to reference Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., et al. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317, 666.PubMedCrossRef Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., et al. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317, 666.PubMedCrossRef
25.
go back to reference Jakubzick, C., Tacke, F., Ginhoux, F., Wagers, A. J., van Rooijen, N., Mack, M., et al. (2008). Blood monocyte subsets differentially give rise to CD103+ and CD103– pulmonary dendritic cell populations. Journal of Immunology, 180, 3019. Jakubzick, C., Tacke, F., Ginhoux, F., Wagers, A. J., van Rooijen, N., Mack, M., et al. (2008). Blood monocyte subsets differentially give rise to CD103+ and CD103 pulmonary dendritic cell populations. Journal of Immunology, 180, 3019.
26.
go back to reference Combadiere, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., et al. (2008). Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 117, 1649.PubMedCrossRef Combadiere, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., et al. (2008). Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation, 117, 1649.PubMedCrossRef
27.
go back to reference Saederup, N., Chan, L., Lira, S. A., & Charo, I. F. (2008). Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2–/– mice: evidence for independent chemokine functions in atherogenesis. Circulation, 117, 1642.PubMedCrossRef Saederup, N., Chan, L., Lira, S. A., & Charo, I. F. (2008). Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2–/– mice: evidence for independent chemokine functions in atherogenesis. Circulation, 117, 1642.PubMedCrossRef
28.
go back to reference Tacke, F., Alvarez, D., Kaplan, T. J., Jakubzick, C., Spanbroek, R., Llodra, J., et al. (2007). Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. The Journal of Clinical Investigation, 117, 185.PubMedCrossRef Tacke, F., Alvarez, D., Kaplan, T. J., Jakubzick, C., Spanbroek, R., Llodra, J., et al. (2007). Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. The Journal of Clinical Investigation, 117, 185.PubMedCrossRef
29.
go back to reference Gautier, E. L., Jakubzick, C., & Randolph, G. J. (2009). Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1412.PubMedCrossRef Gautier, E. L., Jakubzick, C., & Randolph, G. J. (2009). Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1412.PubMedCrossRef
30.
go back to reference An, G., Wang, H., Tang, R., Yago, T., McDaniel, J. M., McGee, S., et al. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation, 117, 3227.PubMedCrossRef An, G., Wang, H., Tang, R., Yago, T., McDaniel, J. M., McGee, S., et al. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation, 117, 3227.PubMedCrossRef
31.
go back to reference Kashiwagi, M., Imanishi, T., Tsujioka, H., Ikejima, H., Kuroi, A., Ozaki, Y., et al. (2010). Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis, 212, 171.PubMedCrossRef Kashiwagi, M., Imanishi, T., Tsujioka, H., Ikejima, H., Kuroi, A., Ozaki, Y., et al. (2010). Association of monocyte subsets with vulnerability characteristics of coronary plaques as assessed by 64-slice multidetector computed tomography in patients with stable angina pectoris. Atherosclerosis, 212, 171.PubMedCrossRef
32.
go back to reference Rogacev, K. S., Seiler, S., Zawada, A. M., Reichart, B., Herath, E., Roth, D., et al. (2011). CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. European Heart Journal, 32, 84.PubMedCrossRef Rogacev, K. S., Seiler, S., Zawada, A. M., Reichart, B., Herath, E., Roth, D., et al. (2011). CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. European Heart Journal, 32, 84.PubMedCrossRef
Metadata
Title
Heterogeneity of Human Monocytes: An Optimized Four-Color Flow Cytometry Protocol for Analysis of Monocyte Subsets
Authors
Tiziano Tallone
Giovanna Turconi
Gianni Soldati
Giovanni Pedrazzini
Tiziano Moccetti
Giuseppe Vassalli
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2011
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9256-4

Other articles of this Issue 2/2011

Journal of Cardiovascular Translational Research 2/2011 Go to the issue