Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2011

01-04-2011

Adult Human Adipose Tissue Contains Several Types of Multipotent Cells

Authors: Tiziano Tallone, Claudio Realini, Andreas Böhmler, Christopher Kornfeld, Giuseppe Vassalli, Tiziano Moccetti, Silvana Bardelli, Gianni Soldati

Published in: Journal of Cardiovascular Translational Research | Issue 2/2011

Login to get access

Abstract

Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria.
Literature
1.
go back to reference Bailey, A. M., Kapur, S., & Katz, A. J. (2010). Characterization of adipose-derived stem cells: an update. Current Stem Cell Research & Therapy, 5(2), 95–102.CrossRef Bailey, A. M., Kapur, S., & Katz, A. J. (2010). Characterization of adipose-derived stem cells: an update. Current Stem Cell Research & Therapy, 5(2), 95–102.CrossRef
2.
go back to reference Da Silva Meirelle, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.CrossRef Da Silva Meirelle, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.CrossRef
3.
go back to reference Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7841–7845.PubMedCrossRef Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7841–7845.PubMedCrossRef
4.
go back to reference Howson, K. M., Aplin, A. C., Gelati, M., Alessandri, G., Prati, E. A., & Nicosia, R. F. (2005). The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. American Journal of Physiology. Cell Physiology, 289, C1396–C1407.PubMedCrossRef Howson, K. M., Aplin, A. C., Gelati, M., Alessandri, G., Prati, E. A., & Nicosia, R. F. (2005). The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. American Journal of Physiology. Cell Physiology, 289, C1396–C1407.PubMedCrossRef
5.
go back to reference De Francesco, F., Tirino, V., Desiderio, V., Ferraro, G., D’Andrea, F., Giuliano, M., et al. (2009). Human CD34+/CD90+ ASCs are capable of growing as spere clusters, producine high levels of VEGF and forming capillaries. PLoS ONE, 4(8), e6537.PubMedCrossRef De Francesco, F., Tirino, V., Desiderio, V., Ferraro, G., D’Andrea, F., Giuliano, M., et al. (2009). Human CD34+/CD90+ ASCs are capable of growing as spere clusters, producine high levels of VEGF and forming capillaries. PLoS ONE, 4(8), e6537.PubMedCrossRef
6.
go back to reference Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.PubMedCrossRef Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.PubMedCrossRef
7.
go back to reference Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.
8.
go back to reference Ho, A. D., Wagner, W., & Franke, W. (2008). Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy, 10(4), 320–330.PubMedCrossRef Ho, A. D., Wagner, W., & Franke, W. (2008). Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy, 10(4), 320–330.PubMedCrossRef
9.
go back to reference Kovacic, J. C., & Boehm, M. (2009). Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Research, 2(1), 2–15.PubMedCrossRef Kovacic, J. C., & Boehm, M. (2009). Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Research, 2(1), 2–15.PubMedCrossRef
10.
go back to reference Klein, D., Hohn, H.-P., Kleff, V., Tilki, D., & Ergün, S. (2010). Vascular wall-resident stem cells. Histology and Histopathology, 25(5), 681–689.PubMed Klein, D., Hohn, H.-P., Kleff, V., Tilki, D., & Ergün, S. (2010). Vascular wall-resident stem cells. Histology and Histopathology, 25(5), 681–689.PubMed
11.
go back to reference Crisan, M., Chen, C.-W., Corselli, M., Andriolo, G., Lazzari, L., & Péault, B. (2009). Perivascular multipotent progenitor cells in human organs. Annals of the New York Academy of Sciences, 1176, 118–123.PubMedCrossRef Crisan, M., Chen, C.-W., Corselli, M., Andriolo, G., Lazzari, L., & Péault, B. (2009). Perivascular multipotent progenitor cells in human organs. Annals of the New York Academy of Sciences, 1176, 118–123.PubMedCrossRef
12.
go back to reference Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.PubMedCrossRef Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.PubMedCrossRef
13.
go back to reference Chen, C.-W., Montelatici, E., Crisan, M., Corselli, M., Huard, J., Lazzari, L., et al. (2009). Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine & Growth Factor Reviews, 20(5–6), 429–434.CrossRef Chen, C.-W., Montelatici, E., Crisan, M., Corselli, M., Huard, J., Lazzari, L., et al. (2009). Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine & Growth Factor Reviews, 20(5–6), 429–434.CrossRef
14.
go back to reference Zimmerlin, L., Donnenberg, V. S., Pfeifer, M. E., Meyer, E. M., Péault, B., Rubin, J. P., et al. (2010). Stromal vascular progenitors in adult human adipose tissue. Cytometry. Part A, 77(1), 22–30. Zimmerlin, L., Donnenberg, V. S., Pfeifer, M. E., Meyer, E. M., Péault, B., Rubin, J. P., et al. (2010). Stromal vascular progenitors in adult human adipose tissue. Cytometry. Part A, 77(1), 22–30.
15.
go back to reference Pacilli, A., & Pasquinelli, G. (2009). Vascular wall progenitor cells. A review. Experimental Cell Research, 315(6), 901–914.PubMedCrossRef Pacilli, A., & Pasquinelli, G. (2009). Vascular wall progenitor cells. A review. Experimental Cell Research, 315(6), 901–914.PubMedCrossRef
16.
go back to reference Diaz-Florez, L., Gutiérrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Perycytes. Morphofunction, interactions, pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969. Diaz-Florez, L., Gutiérrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Perycytes. Morphofunction, interactions, pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969.
17.
go back to reference Andreeva, E. R., Pugach, I. M., Gordon, D., & Orekhov, A. N. (1998). Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue & Cell, 30(1), 127–135.CrossRef Andreeva, E. R., Pugach, I. M., Gordon, D., & Orekhov, A. N. (1998). Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue & Cell, 30(1), 127–135.CrossRef
18.
go back to reference Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102(1), 77–85.PubMedCrossRef Traktuev, D. O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap, W., Pasqualini, R., et al. (2008). A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 102(1), 77–85.PubMedCrossRef
19.
go back to reference Morikawa, S., Mabuchi, Y., Kubota, Y., Nagai, Y., Niibe, K., Hiratsu, E., et al. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. The Journal of Experimental Medicine, 206(11), 2483–2496.PubMedCrossRef Morikawa, S., Mabuchi, Y., Kubota, Y., Nagai, Y., Niibe, K., Hiratsu, E., et al. (2009). Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. The Journal of Experimental Medicine, 206(11), 2483–2496.PubMedCrossRef
20.
go back to reference Lin, G., Garcia, M., Ning, H., Banie, L., Guo, Y.-L., Lue, T. F., et al. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053–1063.PubMedCrossRef Lin, G., Garcia, M., Ning, H., Banie, L., Guo, Y.-L., Lue, T. F., et al. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053–1063.PubMedCrossRef
21.
go back to reference Suga, H., Matsumoto, D., Eto, H., Inoue, K., Aoi, N., Kato, H., et al. (2009). Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells and Development, 18(8), 1201–1210.PubMedCrossRef Suga, H., Matsumoto, D., Eto, H., Inoue, K., Aoi, N., Kato, H., et al. (2009). Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells and Development, 18(8), 1201–1210.PubMedCrossRef
22.
go back to reference Lin, C.-S., Xin, Z.-C., Deng, C.-H., Ning, H., Lin, G., & Lue, T. F. (2010). Defining adipose tissue-derived stem cells in tissue and culture. Histology and Histopathology, 25(6), 807–815.PubMed Lin, C.-S., Xin, Z.-C., Deng, C.-H., Ning, H., Lin, G., & Lue, T. F. (2010). Defining adipose tissue-derived stem cells in tissue and culture. Histology and Histopathology, 25(6), 807–815.PubMed
23.
go back to reference Gesta, S., Tseng, Y.-H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131(10), 242–256.PubMedCrossRef Gesta, S., Tseng, Y.-H., & Kahn, C. R. (2007). Developmental origin of fat: tracking obesity to its source. Cell, 131(10), 242–256.PubMedCrossRef
24.
go back to reference Sengenès, C., Lolmède, K., Zakaroff-Girard, A., Busse, R., & Bouloumié, A. (2005). Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205(1), 114–122.PubMedCrossRef Sengenès, C., Lolmède, K., Zakaroff-Girard, A., Busse, R., & Bouloumié, A. (2005). Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205(1), 114–122.PubMedCrossRef
25.
go back to reference Rodeheffer, M., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135(10), 240–249.PubMedCrossRef Rodeheffer, M., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135(10), 240–249.PubMedCrossRef
26.
go back to reference Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., et al. (2008). White fat progenitors reside in the adipose vasculature. Science, 322, 583–586.PubMedCrossRef Tang, W., Zeve, D., Suh, J. M., Bosnakovski, D., Kyba, M., Hammer, R. E., et al. (2008). White fat progenitors reside in the adipose vasculature. Science, 322, 583–586.PubMedCrossRef
27.
go back to reference Zeve, D., Tang, W., & Graff, J. (2009). Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell, 5(11), 472–481.PubMedCrossRef Zeve, D., Tang, W., & Graff, J. (2009). Fighting fat with fat: the expanding field of adipose stem cells. Cell Stem Cell, 5(11), 472–481.PubMedCrossRef
28.
go back to reference Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7, 885–896.PubMedCrossRef Rosen, E. D., & MacDougald, O. A. (2006). Adipocyte differentiation from the inside out. Nature Reviews. Molecular Cell Biology, 7, 885–896.PubMedCrossRef
29.
go back to reference Billon, N., Monteiro, M. C., & Dani, C. (2008). Developmental origin of adipocytes: new insights into a pending question. Biology of the Cell, 100(10), 563–575.PubMedCrossRef Billon, N., Monteiro, M. C., & Dani, C. (2008). Developmental origin of adipocytes: new insights into a pending question. Biology of the Cell, 100(10), 563–575.PubMedCrossRef
30.
go back to reference Billon, N., Iannarelli, P., Monteiro, M. C., Glavieux-Pardanaud, C., Richardson, W. D., Kessaris, N., et al. (2007). The generation of adipocytes by the neural crest. Development, 134(12), 2283–2292.PubMedCrossRef Billon, N., Iannarelli, P., Monteiro, M. C., Glavieux-Pardanaud, C., Richardson, W. D., Kessaris, N., et al. (2007). The generation of adipocytes by the neural crest. Development, 134(12), 2283–2292.PubMedCrossRef
31.
go back to reference Majka, S. M., Fox, K. E., Psilas, J. C., Helm, K. M., Childs, C. R., Acosta, A. S., et al. (2010). De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14781–14786.PubMedCrossRef Majka, S. M., Fox, K. E., Psilas, J. C., Helm, K. M., Childs, C. R., Acosta, A. S., et al. (2010). De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14781–14786.PubMedCrossRef
32.
go back to reference Seale, P., Bjork, B., Yang, W., Kajimura, S., Kuang, S., Scime, A., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454, 961–967.PubMedCrossRef Seale, P., Bjork, B., Yang, W., Kajimura, S., Kuang, S., Scime, A., et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454, 961–967.PubMedCrossRef
33.
go back to reference Crisan, M., Casteilla, L., Lehr, L., Carmona, M., Paoloni-Giacobino, A., Yap, S., et al. (2008). A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cell, 26, 2425–2433.CrossRef Crisan, M., Casteilla, L., Lehr, L., Carmona, M., Paoloni-Giacobino, A., Yap, S., et al. (2008). A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cell, 26, 2425–2433.CrossRef
34.
go back to reference Tchkonia, T., Lenburg, M., Thomou, T., Giorgadze, N., Frampton, G., Pirtskhalava, T., et al. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology. Endocrinology and Metabolism, 292(1), E298–E307.PubMedCrossRef Tchkonia, T., Lenburg, M., Thomou, T., Giorgadze, N., Frampton, G., Pirtskhalava, T., et al. (2007). Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology. Endocrinology and Metabolism, 292(1), E298–E307.PubMedCrossRef
35.
go back to reference Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRef Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRef
36.
go back to reference Alessandri, G., Girelli, M., Taccagni, G., Colombo, A., Nicosia, R., Caruso, A., et al. (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of progenitors. Laboratory Investigation, 81(6), 875–885.PubMed Alessandri, G., Girelli, M., Taccagni, G., Colombo, A., Nicosia, R., Caruso, A., et al. (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of progenitors. Laboratory Investigation, 81(6), 875–885.PubMed
37.
go back to reference Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104(9), 2752–2760.PubMedCrossRef Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104(9), 2752–2760.PubMedCrossRef
38.
go back to reference Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105(7), 2783–2786.PubMedCrossRef Ingram, D. A., Mead, L. E., Moore, D. B., Woodard, W., Fenoglio, A., & Yoder, M. C. (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105(7), 2783–2786.PubMedCrossRef
39.
go back to reference Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8), 1543–1551.PubMedCrossRef Zengin, E., Chalajour, F., Gehling, U. M., Ito, W. D., Treede, H., Lauke, H., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8), 1543–1551.PubMedCrossRef
40.
go back to reference Ergün, S., Tilki, D., Hohn, H.-P., Gehling, U., & Kilin, N. (2007). Potential implications of vascular wall resident endothelial progenitor cells. Thrombosis and Haemostasis, 98(5), 930–939.PubMed Ergün, S., Tilki, D., Hohn, H.-P., Gehling, U., & Kilin, N. (2007). Potential implications of vascular wall resident endothelial progenitor cells. Thrombosis and Haemostasis, 98(5), 930–939.PubMed
41.
go back to reference Cousin, B., André, M., Arnaud, E., Pénicaud, L., & Casteilla, L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and Biophysical Research Communications, 301, 1016–1022.PubMedCrossRef Cousin, B., André, M., Arnaud, E., Pénicaud, L., & Casteilla, L. (2003). Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and Biophysical Research Communications, 301, 1016–1022.PubMedCrossRef
42.
go back to reference Varma, M. J., Breuls, R. G., Schouten, T. E., Jurgens, W. J., Bontkes, H. J., Schuurhuis, G. J., et al. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development, 16(1), 91–104.PubMedCrossRef Varma, M. J., Breuls, R. G., Schouten, T. E., Jurgens, W. J., Bontkes, H. J., Schuurhuis, G. J., et al. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development, 16(1), 91–104.PubMedCrossRef
43.
go back to reference Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodelling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201.PubMedCrossRef Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodelling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201.PubMedCrossRef
44.
go back to reference Da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt11), 2204–2213.PubMedCrossRef Da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt11), 2204–2213.PubMedCrossRef
45.
go back to reference Prunet-Marcassus, B., Cousin, B., Caton, D., André, M., Pénicaud, L., & Casteilla, L. (2006). From heterogeneity to plasticity in adipose tissue: site-specific differences. Experimental Cell Research, 312, 727–736.PubMedCrossRef Prunet-Marcassus, B., Cousin, B., Caton, D., André, M., Pénicaud, L., & Casteilla, L. (2006). From heterogeneity to plasticity in adipose tissue: site-specific differences. Experimental Cell Research, 312, 727–736.PubMedCrossRef
46.
go back to reference Miñana, M.-D., Carbonell-Uberos, F., Mirabet, V., Marin, S., & Encabo, A. (2008). IFATS collection: identification of hemangioblasts in the adult human adipose tissue. Stem Cells, 26, 2696–2704.PubMedCrossRef Miñana, M.-D., Carbonell-Uberos, F., Mirabet, V., Marin, S., & Encabo, A. (2008). IFATS collection: identification of hemangioblasts in the adult human adipose tissue. Stem Cells, 26, 2696–2704.PubMedCrossRef
47.
go back to reference Han, J., Koh, Y. J., Moon, H. R., Ryoo, H. G., Cho, C.-H., Kim, I., et al. (2010). Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood, 115(5), 957–964.PubMedCrossRef Han, J., Koh, Y. J., Moon, H. R., Ryoo, H. G., Cho, C.-H., Kim, I., et al. (2010). Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood, 115(5), 957–964.PubMedCrossRef
48.
go back to reference Kuwana, M., Okazaki, Y., Kodama, H., Izumi, K., Yasuoka, H., Ogawa, Y., et al. (2003). Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. Journal of Leukocyte Biology, 74, 833–845.PubMedCrossRef Kuwana, M., Okazaki, Y., Kodama, H., Izumi, K., Yasuoka, H., Ogawa, Y., et al. (2003). Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. Journal of Leukocyte Biology, 74, 833–845.PubMedCrossRef
49.
go back to reference Zhao, Y., Glasne, D., & Huberman, E. (2003). A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2426–2431.PubMedCrossRef Zhao, Y., Glasne, D., & Huberman, E. (2003). A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2426–2431.PubMedCrossRef
50.
go back to reference Seta, N., & Kuwana, M. (2007). Human circulating monocytes as multipotential progenitors. The Keio Journal of Medicine, 56(2), 41–47.PubMedCrossRef Seta, N., & Kuwana, M. (2007). Human circulating monocytes as multipotential progenitors. The Keio Journal of Medicine, 56(2), 41–47.PubMedCrossRef
51.
go back to reference Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A. G., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.PubMedCrossRef Takashima, Y., Era, T., Nakao, K., Kondo, S., Kasuga, M., Smith, A. G., et al. (2007). Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell, 129, 1377–1388.PubMedCrossRef
52.
go back to reference Vodyanik, M. A., Yu, J., Zhang, X., Tian, S., Stewart, R., Thomson, J. A., et al. (2010). A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell, 7, 718–729.PubMedCrossRef Vodyanik, M. A., Yu, J., Zhang, X., Tian, S., Stewart, R., Thomson, J. A., et al. (2010). A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell, 7, 718–729.PubMedCrossRef
53.
go back to reference Murfee, W. L., Skalak, T. C., & Peirce, S. M. (2005). Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation, 12(2), 151–160.PubMedCrossRef Murfee, W. L., Skalak, T. C., & Peirce, S. M. (2005). Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation, 12(2), 151–160.PubMedCrossRef
54.
go back to reference Murfee, W. L., Rehorn, M. R., Peirce, S. M., & Skalak, T. C. (2006). Perivascular cells along venules upregulate NG2 expression during microvasculature remodelling. Microcirculation, 13, 261–273.PubMedCrossRef Murfee, W. L., Rehorn, M. R., Peirce, S. M., & Skalak, T. C. (2006). Perivascular cells along venules upregulate NG2 expression during microvasculature remodelling. Microcirculation, 13, 261–273.PubMedCrossRef
55.
go back to reference Sobiesiak, M., Sivasubramaniyan, K., Herman, C., Tan, C., Örgel, M., Treml, S., et al. (2010). The Mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells and Development, 19(5), 669–677.PubMedCrossRef Sobiesiak, M., Sivasubramaniyan, K., Herman, C., Tan, C., Örgel, M., Treml, S., et al. (2010). The Mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cells and Development, 19(5), 669–677.PubMedCrossRef
56.
go back to reference Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone morrow sinusoid can organize a hematopoietic microenvironment. Cell, 131(2), 324–336.PubMedCrossRef Sacchetti, B., Funari, A., Michienzi, S., Di Cesare, S., Piersanti, S., Saggio, I., et al. (2007). Self-renewing osteoprogenitors in bone morrow sinusoid can organize a hematopoietic microenvironment. Cell, 131(2), 324–336.PubMedCrossRef
57.
go back to reference Quirici, N., Scavullo, C., de Girolamo, L., Lopa, S., Arrigoni, E., Deliliers, G. L., et al. (2010). Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells and Development, 19(6), 915–925.PubMedCrossRef Quirici, N., Scavullo, C., de Girolamo, L., Lopa, S., Arrigoni, E., Deliliers, G. L., et al. (2010). Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue. Stem Cells and Development, 19(6), 915–925.PubMedCrossRef
58.
go back to reference Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. (1996). CD34: structure, biology, and clinical utility. Blood, 87(1), 1–13.PubMed Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. (1996). CD34: structure, biology, and clinical utility. Blood, 87(1), 1–13.PubMed
59.
go back to reference Gangenahalli, G. U., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, R. K., Chandra, R., et al. (2006). Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells and Development, 15(3), 305–313.PubMedCrossRef Gangenahalli, G. U., Singh, V. K., Verma, Y. K., Gupta, P., Sharma, R. K., Chandra, R., et al. (2006). Hematopoietic stem cell antigen CD34: role in adhesion or homing. Stem Cells and Development, 15(3), 305–313.PubMedCrossRef
60.
go back to reference Nielsen, J. S., & McNagny, K. M. (2008). Novel functions of the CD34 family. Journal of Cell Science, 121(22), 3683–3692.PubMedCrossRef Nielsen, J. S., & McNagny, K. M. (2008). Novel functions of the CD34 family. Journal of Cell Science, 121(22), 3683–3692.PubMedCrossRef
61.
go back to reference Ieronimakis, N., Balasundaram, G., Rainey, S., Srirangam, K., Yablonka-Reuveni, Z., & Reyes, M. (2010). Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS ONE, 5(6), e10920.PubMedCrossRef Ieronimakis, N., Balasundaram, G., Rainey, S., Srirangam, K., Yablonka-Reuveni, Z., & Reyes, M. (2010). Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS ONE, 5(6), e10920.PubMedCrossRef
62.
go back to reference Russell, K. C., Phinney, D. G., Lacey, M. R., Barrilleaux, B. L., Meyertholen, K. E., & O’Connor, K. C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28(4), 788–798.PubMedCrossRef Russell, K. C., Phinney, D. G., Lacey, M. R., Barrilleaux, B. L., Meyertholen, K. E., & O’Connor, K. C. (2010). In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells, 28(4), 788–798.PubMedCrossRef
63.
go back to reference Cerletti, M., Molloy, M. J., Tomaczak, K. K., Yoon, S., Ramoni, M. F., Kho, A. T., et al. (2006). Melanoma cell adhesion molecule is a novel marker for human fetal myogenic cells and affects myoblast fusion. Journal of Cell Science, 119(15), 3117–3127.PubMedCrossRef Cerletti, M., Molloy, M. J., Tomaczak, K. K., Yoon, S., Ramoni, M. F., Kho, A. T., et al. (2006). Melanoma cell adhesion molecule is a novel marker for human fetal myogenic cells and affects myoblast fusion. Journal of Cell Science, 119(15), 3117–3127.PubMedCrossRef
64.
go back to reference Elshal, M. F., Khan, S. S., Takahashi, Y., Solomon, M. A., & McCay, J. P., Jr. (2005). CD146 (Mel-CAM), an adhesion marker of endothelial cells, ia a novel marker of lymphocyte subset activation in normal peripheral blood. Blood, 106(8), 2923–2929.PubMedCrossRef Elshal, M. F., Khan, S. S., Takahashi, Y., Solomon, M. A., & McCay, J. P., Jr. (2005). CD146 (Mel-CAM), an adhesion marker of endothelial cells, ia a novel marker of lymphocyte subset activation in normal peripheral blood. Blood, 106(8), 2923–2929.PubMedCrossRef
65.
go back to reference Shih, I. M. (1999). The role of CD146 (Mel-CAM) in biology and pathology. The Journal of Pathology, 189(1), 4–11.PubMedCrossRef Shih, I. M. (1999). The role of CD146 (Mel-CAM) in biology and pathology. The Journal of Pathology, 189(1), 4–11.PubMedCrossRef
66.
go back to reference Ouhtit, A., Gaur, R. L., Abd Elmageed, Z. Y., Fernando, A., Thouta, R., Trappey, A. K., et al. (2009). Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146. Biochemical and Biophysical Acta, 1795(2), 130–136. Ouhtit, A., Gaur, R. L., Abd Elmageed, Z. Y., Fernando, A., Thouta, R., Trappey, A. K., et al. (2009). Towards understanding the mode of action of the multifaceted cell adhesion receptor CD146. Biochemical and Biophysical Acta, 1795(2), 130–136.
67.
go back to reference Chen, W., Cao, G., & Zhang, S. L. (2010). Is CD146 pivotal in neoplasm invasion and bastocyst embedding? Med Hypotheses (in press). Chen, W., Cao, G., & Zhang, S. L. (2010). Is CD146 pivotal in neoplasm invasion and bastocyst embedding? Med Hypotheses (in press).
68.
go back to reference Bühring, H.-J., Battula, V. L., Treml, S., Schewe, B., Kanz, L., & Vogel, W. (2007). Novel markers for the prospective isolation of human MSC. Annals of the New York Academy of Sciences, 1106, 262–271.PubMedCrossRef Bühring, H.-J., Battula, V. L., Treml, S., Schewe, B., Kanz, L., & Vogel, W. (2007). Novel markers for the prospective isolation of human MSC. Annals of the New York Academy of Sciences, 1106, 262–271.PubMedCrossRef
69.
go back to reference Battula, V. L., Treml, S., Bareiss, P. M., Gieseke, F., Roelofs, H., de Zwart, P., et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94(2), 173–184.PubMedCrossRef Battula, V. L., Treml, S., Bareiss, P. M., Gieseke, F., Roelofs, H., de Zwart, P., et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94(2), 173–184.PubMedCrossRef
70.
go back to reference Bühring, H.-J., Treml, S., Cerabona, F., de Zwart, P., Kanz, L., & Sobiesiak, M. (2009). Phenotypic characterization of distinct human bone marrow-derived MSC subsets. Annals of the New York Academy of Sciences, 1176, 124–134.PubMedCrossRef Bühring, H.-J., Treml, S., Cerabona, F., de Zwart, P., Kanz, L., & Sobiesiak, M. (2009). Phenotypic characterization of distinct human bone marrow-derived MSC subsets. Annals of the New York Academy of Sciences, 1176, 124–134.PubMedCrossRef
71.
go back to reference Zheng, B., Cao, B., Crisan, M., Sun, B., Li, G., Logar, A., et al. (2007). Prospective identification of myogenic endothelial cells in human skeletal muscle. Nature Biotechnology, 25(9), 1025–1034.PubMedCrossRef Zheng, B., Cao, B., Crisan, M., Sun, B., Li, G., Logar, A., et al. (2007). Prospective identification of myogenic endothelial cells in human skeletal muscle. Nature Biotechnology, 25(9), 1025–1034.PubMedCrossRef
72.
go back to reference Turnovcova, K., Ruzickova, K., Vanecek, V., Sykova, E., & Jendelova, P. (2009). Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy, 11(7), 874–885.PubMedCrossRef Turnovcova, K., Ruzickova, K., Vanecek, V., Sykova, E., & Jendelova, P. (2009). Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy, 11(7), 874–885.PubMedCrossRef
73.
go back to reference Lindroos, B., Boucher, S., Chase, L., Kuokkanen, H., Huhtala, H., Haataja, R., et al. (2009). Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy, 11(7), 958–72.PubMedCrossRef Lindroos, B., Boucher, S., Chase, L., Kuokkanen, H., Huhtala, H., Haataja, R., et al. (2009). Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy, 11(7), 958–72.PubMedCrossRef
74.
go back to reference Mitchell, J. B., McIntosh, K., Zvonic, S., Garret, S., Floyd, E., Kloster, A., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.PubMedCrossRef Mitchell, J. B., McIntosh, K., Zvonic, S., Garret, S., Floyd, E., Kloster, A., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.PubMedCrossRef
75.
go back to reference Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., et al. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631–2635.PubMedCrossRef Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., et al. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631–2635.PubMedCrossRef
76.
go back to reference Martinez, C., Hofman, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245–4248.PubMedCrossRef Martinez, C., Hofman, T. J., Marino, R., Dominici, M., & Horwitz, E. M. (2007). Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 109(10), 4245–4248.PubMedCrossRef
77.
go back to reference Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbelical cord blood. Experimental Hematology, 33, 1402–1416.PubMedCrossRef Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., et al. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbelical cord blood. Experimental Hematology, 33, 1402–1416.PubMedCrossRef
78.
go back to reference Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blod, or adipose tissue. Stem Cells, 24(5), 1294–1301.PubMedCrossRef Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blod, or adipose tissue. Stem Cells, 24(5), 1294–1301.PubMedCrossRef
79.
go back to reference Estes, B. T., Wu, A. W., & Guilak, F. (2006). Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenic protein 6. Arthritis and Rheumatism, 54(4), 1222–1232.PubMedCrossRef Estes, B. T., Wu, A. W., & Guilak, F. (2006). Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenic protein 6. Arthritis and Rheumatism, 54(4), 1222–1232.PubMedCrossRef
80.
81.
go back to reference Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209.PubMedCrossRef Ankrum, J., & Karp, J. M. (2010). Mesenchymal stem cell therapy: two steps forward, one step back. Trends in Molecular Medicine, 16(5), 203–209.PubMedCrossRef
82.
go back to reference Haasters, F., Prall, W. C., Anz, D., Bourquin, C., Pautke, C., Endres, S., et al. (2009). Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 214, 759–767.PubMedCrossRef Haasters, F., Prall, W. C., Anz, D., Bourquin, C., Pautke, C., Endres, S., et al. (2009). Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 214, 759–767.PubMedCrossRef
83.
go back to reference Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E., & Stallcup, W. B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Developmental Dynamics, 222(2), 218–227.PubMedCrossRef Ozerdem, U., Grako, K. A., Dahlin-Huppe, K., Monosov, E., & Stallcup, W. B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Developmental Dynamics, 222(2), 218–227.PubMedCrossRef
84.
go back to reference Bardin, B., George, F., Mutin, M., Brisson, C., Horschowski, N., Francès, V., et al. (1996). S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen. Tissue Antigens, 48(5), 531–539.PubMedCrossRef Bardin, B., George, F., Mutin, M., Brisson, C., Horschowski, N., Francès, V., et al. (1996). S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen. Tissue Antigens, 48(5), 531–539.PubMedCrossRef
Metadata
Title
Adult Human Adipose Tissue Contains Several Types of Multipotent Cells
Authors
Tiziano Tallone
Claudio Realini
Andreas Böhmler
Christopher Kornfeld
Giuseppe Vassalli
Tiziano Moccetti
Silvana Bardelli
Gianni Soldati
Publication date
01-04-2011
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2011
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9257-3

Other articles of this Issue 2/2011

Journal of Cardiovascular Translational Research 2/2011 Go to the issue