Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2010

01-10-2010

Protein Therapeutics for Cardiac Regeneration after Myocardial Infarction

Authors: Vincent F. M. Segers, Richard T. Lee

Published in: Journal of Cardiovascular Translational Research | Issue 5/2010

Login to get access

Abstract

Although most medicines have historically been small molecules, many newly approved drugs are derived from proteins. Protein therapies have been developed for treatment of diseases in almost every organ system, including the heart. Great excitement has now arisen in the field of regenerative medicine, particularly for cardiac regeneration after myocardial infarction. Every year, millions of people suffer from acute myocardial infarction, but the adult mammalian myocardium has limited regeneration potential. Regeneration of the heart after myocardium infarction is therefore an exciting target for protein therapeutics. In this review, we discuss different classes of proteins that have therapeutic potential to regenerate the heart after myocardial infarction. Protein candidates have been described that induce angiogenesis, including fibroblast growth factors and vascular endothelial growth factors, although thus far clinical development has been disappointing. Chemotactic factors that attract stem cells, e.g., hepatocyte growth factor and stromal cell-derived factor-1, may also be useful. Finally, neuregulins and periostin are proteins that induce cell-cycle reentry of cardiomyocytes, and growth factors like IGF-1 can induce growth and differentiation of stem cells. As our knowledge of the biology of regenerative processes and the role of specific proteins in these processes increases, the use of proteins as regenerative drugs could develop as a cardiac therapy.
Literature
1.
go back to reference Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3, e442.CrossRefPubMed Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3, e442.CrossRefPubMed
3.
4.
go back to reference Scott, D. W., & De Groot, A. S. (2010). Can we prevent immunogenicity of human protein drugs? Annals of the Rheumatic Diseases, 69, i72–i76.CrossRefPubMed Scott, D. W., & De Groot, A. S. (2010). Can we prevent immunogenicity of human protein drugs? Annals of the Rheumatic Diseases, 69, i72–i76.CrossRefPubMed
5.
go back to reference Solá, R. J., & Griebenow, K. (2009). Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 98, 1223–1245.CrossRefPubMed Solá, R. J., & Griebenow, K. (2009). Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 98, 1223–1245.CrossRefPubMed
6.
go back to reference Banai, S., Jaklitsch, M., Casscells, W., Shou, M., Shrivastav, S., Correa, R., et al. (1991). Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circulation Research, 69, 76–85.PubMed Banai, S., Jaklitsch, M., Casscells, W., Shou, M., Shrivastav, S., Correa, R., et al. (1991). Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circulation Research, 69, 76–85.PubMed
7.
go back to reference Pearlman, J. D., Hibberd, M. G., Chuang, M. L., Harada, K., Lopez, J. J., Gladstone, S. R., et al. (1995). Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Natural Medicines, 1, 1085–1089.CrossRef Pearlman, J. D., Hibberd, M. G., Chuang, M. L., Harada, K., Lopez, J. J., Gladstone, S. R., et al. (1995). Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Natural Medicines, 1, 1085–1089.CrossRef
8.
go back to reference van der Laan, A. M., Piek, J. J., & van Royen, N. (2009). Targeting angiogenesis to restore the microcirculation after reperfused MI. Nature Reviews Cardiology, 6, 515–523.CrossRefPubMed van der Laan, A. M., Piek, J. J., & van Royen, N. (2009). Targeting angiogenesis to restore the microcirculation after reperfused MI. Nature Reviews Cardiology, 6, 515–523.CrossRefPubMed
9.
go back to reference Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.CrossRefPubMed Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.CrossRefPubMed
10.
go back to reference Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., Kamijo, T., et al. (1992). Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science, 257, 1401–1403.CrossRefPubMed Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., Kamijo, T., et al. (1992). Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science, 257, 1401–1403.CrossRefPubMed
11.
go back to reference Epstein, S. E., Kornowski, R., Fuchs, S., & Dvorak, H. F. (2001). Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation, 104, 115–119.PubMed Epstein, S. E., Kornowski, R., Fuchs, S., & Dvorak, H. F. (2001). Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation, 104, 115–119.PubMed
12.
go back to reference Henry, T. D., Rocha-Singh, K., Isner, J. M., Kereiakes, D. J., Giordano, F. J., Simons, M., et al. (2001). Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. American Heart Journal, 142, 872–880.CrossRefPubMed Henry, T. D., Rocha-Singh, K., Isner, J. M., Kereiakes, D. J., Giordano, F. J., Simons, M., et al. (2001). Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. American Heart Journal, 142, 872–880.CrossRefPubMed
13.
go back to reference Henry, T. D., Annex, B. H., McKendall, G. R., Azrin, M. A., Lopez, J. J., Giordano, F. J., et al. (2003). The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation, 107, 1359–1365.CrossRefPubMed Henry, T. D., Annex, B. H., McKendall, G. R., Azrin, M. A., Lopez, J. J., Giordano, F. J., et al. (2003). The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation, 107, 1359–1365.CrossRefPubMed
14.
go back to reference Lee, R. J., Springer, M. L., Blanco-Bose, W. E., Shaw, R., Ursell, P. C., & Blau, H. M. (2000). VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation, 102, 898–901.PubMed Lee, R. J., Springer, M. L., Blanco-Bose, W. E., Shaw, R., Ursell, P. C., & Blau, H. M. (2000). VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation, 102, 898–901.PubMed
15.
go back to reference Dulak, J., Zagorska, A., Wegiel, B., Loboda, A., & Jozkowicz, A. (2006). New strategies for cardiovascular gene therapy. Cell Biochemistry and Biophysics, 44, 31–42.CrossRefPubMed Dulak, J., Zagorska, A., Wegiel, B., Loboda, A., & Jozkowicz, A. (2006). New strategies for cardiovascular gene therapy. Cell Biochemistry and Biophysics, 44, 31–42.CrossRefPubMed
16.
go back to reference London, N., Whitehead, K., & Li, D. (2009). Endogenous endothelial cell signaling systems maintain vascular stability. Angiogenesis, 12, 149–158.CrossRefPubMed London, N., Whitehead, K., & Li, D. (2009). Endogenous endothelial cell signaling systems maintain vascular stability. Angiogenesis, 12, 149–158.CrossRefPubMed
17.
go back to reference Byrne, A. M., Bouchier-Hayes, D. J., & Harmey, J. H. (2005). Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). Journal of Cellular and Molecular Medicine, 9, 777–794.CrossRefPubMed Byrne, A. M., Bouchier-Hayes, D. J., & Harmey, J. H. (2005). Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). Journal of Cellular and Molecular Medicine, 9, 777–794.CrossRefPubMed
18.
19.
go back to reference Scott, R. C., Rosano, J. M., Ivanov, Z., Wang, B., Chong, P. L.-G., Issekutz, A. C., et al. (2009). Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. The FASEB Journal, 23, 3361–3367.CrossRefPubMed Scott, R. C., Rosano, J. M., Ivanov, Z., Wang, B., Chong, P. L.-G., Issekutz, A. C., et al. (2009). Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. The FASEB Journal, 23, 3361–3367.CrossRefPubMed
20.
go back to reference Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.CrossRefPubMed Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.CrossRefPubMed
21.
go back to reference Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.CrossRefPubMed Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100, 12313–12318.CrossRefPubMed
22.
go back to reference Mouquet, F., Pfister, O., Jain, M., Oikonomopoulos, A., Ngoy, S., Summer, R., et al. (2005). Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circulation Research, 97, 1090–1092.CrossRefPubMed Mouquet, F., Pfister, O., Jain, M., Oikonomopoulos, A., Ngoy, S., Summer, R., et al. (2005). Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circulation Research, 97, 1090–1092.CrossRefPubMed
23.
go back to reference Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Natural Medicines, 13, 970–974.CrossRef Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Natural Medicines, 13, 970–974.CrossRef
24.
go back to reference Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.CrossRefPubMed Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of Sciences of the United States of America, 98, 10344–10349.CrossRefPubMed
25.
go back to reference Ince, H., Petzsch, M., Kleine, H. D., Eckard, H., Rehders, T., Burska, D., et al. (2005). Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: Final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation, 112, I-73–I-80.CrossRef Ince, H., Petzsch, M., Kleine, H. D., Eckard, H., Rehders, T., Burska, D., et al. (2005). Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: Final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation, 112, I-73–I-80.CrossRef
26.
go back to reference Engelmann, M. G., Theiss, H. D., Hennig-Theiss, C., Huber, A., Wintersperger, B. J., Werle-Ruedinger, A.-E., et al. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: Final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. Journal of the American College of Cardiology, 48, 1712–1721.CrossRefPubMed Engelmann, M. G., Theiss, H. D., Hennig-Theiss, C., Huber, A., Wintersperger, B. J., Werle-Ruedinger, A.-E., et al. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: Final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. Journal of the American College of Cardiology, 48, 1712–1721.CrossRefPubMed
27.
go back to reference Abdel-Latif, A., Bolli, R., Zuba-Surma, E. K., Tleyjeh, I. M., Hornung, C. A., & Dawn, B. (2008). Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 156, 216–226. e219.CrossRefPubMed Abdel-Latif, A., Bolli, R., Zuba-Surma, E. K., Tleyjeh, I. M., Hornung, C. A., & Dawn, B. (2008). Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: A systematic review and meta-analysis of randomized controlled trials. American Heart Journal, 156, 216–226. e219.CrossRefPubMed
28.
go back to reference Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Natural Medicines, 11, 305–311.CrossRef Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Natural Medicines, 11, 305–311.CrossRef
29.
go back to reference Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., et al. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature, 342, 440–443.CrossRefPubMed Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., et al. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature, 342, 440–443.CrossRefPubMed
30.
go back to reference Boros, P., & Miller, C. M. (1995). Hepatocyte growth factor: a multifunctional cytokine. Lancet, 345, 293–295.CrossRefPubMed Boros, P., & Miller, C. M. (1995). Hepatocyte growth factor: a multifunctional cytokine. Lancet, 345, 293–295.CrossRefPubMed
31.
go back to reference Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., & Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 106, 1511–1519.CrossRefPubMed Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., & Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 106, 1511–1519.CrossRefPubMed
32.
go back to reference Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., De Angelis, A., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97, 663–673.CrossRefPubMed Urbanek, K., Rota, M., Cascapera, S., Bearzi, C., Nascimbene, A., De Angelis, A., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97, 663–673.CrossRefPubMed
33.
go back to reference Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology, 37, 1041–1052.CrossRefPubMed Wang, Y., Ahmad, N., Wani, M. A., & Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. Journal of Molecular and Cellular Cardiology, 37, 1041–1052.CrossRefPubMed
34.
go back to reference Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185, 111–120.CrossRefPubMed Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185, 111–120.CrossRefPubMed
35.
go back to reference Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.CrossRefPubMed Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.CrossRefPubMed
36.
go back to reference Zou, Y.-R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–599.CrossRefPubMed Zou, Y.-R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393, 595–599.CrossRefPubMed
37.
go back to reference J-i, Y., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.CrossRef J-i, Y., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.CrossRef
38.
go back to reference Pillarisetti, K., & Gupta, S. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25, 293–300.CrossRefPubMed Pillarisetti, K., & Gupta, S. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25, 293–300.CrossRefPubMed
39.
go back to reference Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.CrossRefPubMed Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362, 697–703.CrossRefPubMed
40.
go back to reference McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., et al. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. The Journal of Biological Chemistry, 276, 43503–43508.CrossRefPubMed McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., et al. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. The Journal of Biological Chemistry, 276, 43503–43508.CrossRefPubMed
41.
go back to reference Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116, 1683–1692.CrossRefPubMed Segers, V. F., Tokunou, T., Higgins, L. J., MacGillivray, C., Gannon, J., & Lee, R. T. (2007). Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 116, 1683–1692.CrossRefPubMed
42.
go back to reference Schenk, S., Mal, N., Finan, A., Zhang, M., Kiedrowski, M., Popovic, Z., et al. (2007). Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 25, 245–251.CrossRefPubMed Schenk, S., Mal, N., Finan, A., Zhang, M., Kiedrowski, M., Popovic, Z., et al. (2007). Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells, 25, 245–251.CrossRefPubMed
43.
go back to reference Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefPubMed Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefPubMed
44.
go back to reference Murry, C. E., & Lee, R. T. (2009). Development biology. Turnover after the fallout. Science, 324, 47–48.CrossRefPubMed Murry, C. E., & Lee, R. T. (2009). Development biology. Turnover after the fallout. Science, 324, 47–48.CrossRefPubMed
45.
go back to reference Borchardt, T., & Braun, T. (2007). Cardiovascular regeneration in non-mammalian model systems: What are the differences between newts and man? Thrombosis and Haemostasis, 98, 311–318.PubMed Borchardt, T., & Braun, T. (2007). Cardiovascular regeneration in non-mammalian model systems: What are the differences between newts and man? Thrombosis and Haemostasis, 98, 311–318.PubMed
46.
go back to reference Poss, K. D. (2007). Getting to the heart of regeneration in zebrafish. Seminars in Cell & Developmental Biology, 18, 36–45.CrossRef Poss, K. D. (2007). Getting to the heart of regeneration in zebrafish. Seminars in Cell & Developmental Biology, 18, 36–45.CrossRef
47.
go back to reference Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y.-S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.CrossRef Kuhn, B., del Monte, F., Hajjar, R. J., Chang, Y.-S., Lebeche, D., Arab, S., et al. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Natural Medicines, 13, 962–969.CrossRef
48.
go back to reference Bersell, K., Arab, S., Haring, B., & Kühn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.CrossRefPubMed Bersell, K., Arab, S., Haring, B., & Kühn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.CrossRefPubMed
49.
go back to reference Yan, W., & Shao, R. (2006). Transduction of a Mesenchyme-specific gene periostin into 293 T cells induces cell invasive activity through epithelial-mesenchymal transformation. The Journal of Biological Chemistry, 281, 19700–19708.CrossRefPubMed Yan, W., & Shao, R. (2006). Transduction of a Mesenchyme-specific gene periostin into 293 T cells induces cell invasive activity through epithelial-mesenchymal transformation. The Journal of Biological Chemistry, 281, 19700–19708.CrossRefPubMed
50.
go back to reference Butcher, J. T., Norris, R. A., Hoffman, S., Mjaatvedt, C. H., & Markwald, R. R. (2007). Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Developmental Biology, 302, 256–266.CrossRefPubMed Butcher, J. T., Norris, R. A., Hoffman, S., Mjaatvedt, C. H., & Markwald, R. R. (2007). Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Developmental Biology, 302, 256–266.CrossRefPubMed
51.
go back to reference Conway, S. J., & Molkentin, J. D. (2008). Periostin as a heterofunctional regulator of cardiac development and disease. Current Genomics, 9, 548–555.CrossRefPubMed Conway, S. J., & Molkentin, J. D. (2008). Periostin as a heterofunctional regulator of cardiac development and disease. Current Genomics, 9, 548–555.CrossRefPubMed
52.
go back to reference Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101, 313–321.CrossRefPubMed Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101, 313–321.CrossRefPubMed
53.
go back to reference Lorts, A., Schwanekamp, J. A., Elrod, J. W., Sargent, M. A., & Molkentin, J. D. (2009). Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circulation Research, 104, e1–e7.CrossRefPubMed Lorts, A., Schwanekamp, J. A., Elrod, J. W., Sargent, M. A., & Molkentin, J. D. (2009). Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circulation Research, 104, e1–e7.CrossRefPubMed
54.
go back to reference Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2007). Role of Neuregulin-1/ErbB signaling in cardiovascular physiology and disease: Implications for therapy of heart failure. Circulation, 116, 954–960.CrossRefPubMed Lemmens, K., Doggen, K., & De Keulenaer, G. W. (2007). Role of Neuregulin-1/ErbB signaling in cardiovascular physiology and disease: Implications for therapy of heart failure. Circulation, 116, 954–960.CrossRefPubMed
55.
go back to reference Lemmens, K., Segers, V. F. M., Demolder, M., & De Keulenaer, G. W. (2006). Role of Neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. The Journal of Biological Chemistry, 281, 19469–19477.CrossRefPubMed Lemmens, K., Segers, V. F. M., Demolder, M., & De Keulenaer, G. W. (2006). Role of Neuregulin-1/ErbB2 signaling in endothelium-cardiomyocyte cross-talk. The Journal of Biological Chemistry, 281, 19469–19477.CrossRefPubMed
56.
go back to reference Mourkioti, F., & Rosenthal, N. (2005). IGF-1, inflammation and stem cells: Interactions during muscle regeneration. Trends in Immunology, 26, 535–542.CrossRefPubMed Mourkioti, F., & Rosenthal, N. (2005). IGF-1, inflammation and stem cells: Interactions during muscle regeneration. Trends in Immunology, 26, 535–542.CrossRefPubMed
57.
go back to reference Fazio, S., Palmieri, E., Biondi, B., Cittadini, A., & Sacca, L. (2000). The role of the GH-IGF-I axis in the regulation of myocardial growth: from experimental models to human evidence. European Journal of Endocrinology, 142, 211–216.CrossRefPubMed Fazio, S., Palmieri, E., Biondi, B., Cittadini, A., & Sacca, L. (2000). The role of the GH-IGF-I axis in the regulation of myocardial growth: from experimental models to human evidence. European Journal of Endocrinology, 142, 211–216.CrossRefPubMed
58.
go back to reference Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F., Esposito, G., Tokunou, T., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120, 876–887.CrossRefPubMed Padin-Iruegas, M. E., Misao, Y., Davis, M. E., Segers, V. F., Esposito, G., Tokunou, T., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120, 876–887.CrossRefPubMed
59.
go back to reference Rota, M., Padin-Iruegas, M. E., Misao, Y., De Angelis, A., Maestroni, S., Ferreira-Martins, J., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.CrossRefPubMed Rota, M., Padin-Iruegas, M. E., Misao, Y., De Angelis, A., Maestroni, S., Ferreira-Martins, J., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107–116.CrossRefPubMed
60.
go back to reference Tulloch, N. L., Pabon, L., & Murry, C. E. (2008). Get with the (Re)program: Cardiovascular potential of skin-derived induced pluripotent stem cells. Circulation, 118, 472–475.CrossRefPubMed Tulloch, N. L., Pabon, L., & Murry, C. E. (2008). Get with the (Re)program: Cardiovascular potential of skin-derived induced pluripotent stem cells. Circulation, 118, 472–475.CrossRefPubMed
61.
go back to reference Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRefPubMed Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRefPubMed
62.
go back to reference Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118, 498–506.CrossRefPubMed Narazaki, G., Uosaki, H., Teranishi, M., Okita, K., Kim, B., Matsuoka, S., et al. (2008). Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 118, 498–506.CrossRefPubMed
63.
go back to reference Filipczyk, A., Passier, R., Rochat, A., & Mummery, C. (2007). Cardiovascular development: Towards biomedical applicability. Cellular and Molecular Life Sciences, 64, 704–718.CrossRefPubMed Filipczyk, A., Passier, R., Rochat, A., & Mummery, C. (2007). Cardiovascular development: Towards biomedical applicability. Cellular and Molecular Life Sciences, 64, 704–718.CrossRefPubMed
64.
go back to reference Klocke, R., Kuhlmann, M. T., Scobioala, S., Schabitz, W. R., & Nikol, S. (2008). Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Current Medicinal Chemistry, 15, 968–977.CrossRefPubMed Klocke, R., Kuhlmann, M. T., Scobioala, S., Schabitz, W. R., & Nikol, S. (2008). Granulocyte colony-stimulating factor (G-CSF) for cardio- and cerebrovascular regenerative applications. Current Medicinal Chemistry, 15, 968–977.CrossRefPubMed
65.
go back to reference Kang, J. S., DeLuca, P. P., & Lee, K. C. (2009). Emerging PEGylated drugs. Expert Opinion on Emerging Drugs, 14, 363–380.CrossRefPubMed Kang, J. S., DeLuca, P. P., & Lee, K. C. (2009). Emerging PEGylated drugs. Expert Opinion on Emerging Drugs, 14, 363–380.CrossRefPubMed
66.
go back to reference Obana, M., Maeda, M., Takeda, K., Hayama, A., Mohri, T., Yamashita, T., et al. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by Interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 121, 684–691.CrossRefPubMed Obana, M., Maeda, M., Takeda, K., Hayama, A., Mohri, T., Yamashita, T., et al. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by Interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 121, 684–691.CrossRefPubMed
67.
go back to reference Seki, K., Sanada, S., Kudinova, A. Y., Steinhauser, M. L., Handa, V., Gannon, J., et al. (2009). Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail, 2, 684–691.CrossRefPubMed Seki, K., Sanada, S., Kudinova, A. Y., Steinhauser, M. L., Handa, V., Gannon, J., et al. (2009). Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail, 2, 684–691.CrossRefPubMed
68.
go back to reference Kondo, K., Shibata, R., Unno, K., Shimano, M., Ishii, M., Tetsutaro, K., et al. (2010). Impact of a single intracoronary administration of adiponectin on myocardial ischemia/reperfusion injury in a pig model. Circ Cardiovasc Interv, 3(2), 166–173.CrossRefPubMed Kondo, K., Shibata, R., Unno, K., Shimano, M., Ishii, M., Tetsutaro, K., et al. (2010). Impact of a single intracoronary administration of adiponectin on myocardial ischemia/reperfusion injury in a pig model. Circ Cardiovasc Interv, 3(2), 166–173.CrossRefPubMed
69.
go back to reference Bock-Marquette, I., Saxena, A., White, M. D., Michael DiMaio, J., & Srivastava, D. (2004). Thymosin [beta]4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature, 432, 466–472.CrossRefPubMed Bock-Marquette, I., Saxena, A., White, M. D., Michael DiMaio, J., & Srivastava, D. (2004). Thymosin [beta]4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature, 432, 466–472.CrossRefPubMed
70.
go back to reference Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1; improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49, 966–971.CrossRefPubMed Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1; improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49, 966–971.CrossRefPubMed
71.
go back to reference Saxena, A., Fish, J. E., White, M. D., Yu, S., Smyth, J. W. P., Shaw, R. M., et al. (2008). Stromal cell-derived factor-1{alpha} is cardioprotective after myocardial infarction. Circulation, 117, 2224–2231.CrossRefPubMed Saxena, A., Fish, J. E., White, M. D., Yu, S., Smyth, J. W. P., Shaw, R. M., et al. (2008). Stromal cell-derived factor-1{alpha} is cardioprotective after myocardial infarction. Circulation, 117, 2224–2231.CrossRefPubMed
72.
go back to reference Hsieh, P. C. H., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of Clinical Investigation, 116, 237–248.CrossRefPubMed Hsieh, P. C. H., Davis, M. E., Gannon, J., MacGillivray, C., & Lee, R. T. (2006). Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. The Journal of Clinical Investigation, 116, 237–248.CrossRefPubMed
73.
go back to reference Zaruba, M.-M., Huber, B. C., Brunner, S., Deindl, E., David, R., Fischer, R., et al. (2008). Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovascular Research, 77, 722–731.CrossRefPubMed Zaruba, M.-M., Huber, B. C., Brunner, S., Deindl, E., David, R., Fischer, R., et al. (2008). Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovascular Research, 77, 722–731.CrossRefPubMed
74.
go back to reference Sugano, Y., Anzai, T., Yoshikawa, T., Maekawa, Y., Kohno, T., Mahara, K., et al. (2005). Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovascular Research, 65, 446–456.CrossRefPubMed Sugano, Y., Anzai, T., Yoshikawa, T., Maekawa, Y., Kohno, T., Mahara, K., et al. (2005). Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovascular Research, 65, 446–456.CrossRefPubMed
75.
go back to reference Hasegawa, H., Takano, H., Iwanaga, K., Ohtsuka, M., Qin, Y., Niitsuma, Y., et al. (2006). Cardioprotective effects of granulocyte colony-stimulating factor in swine with chronic myocardial ischemia. Journal of the American College of Cardiology, 47, 842–849.CrossRefPubMed Hasegawa, H., Takano, H., Iwanaga, K., Ohtsuka, M., Qin, Y., Niitsuma, Y., et al. (2006). Cardioprotective effects of granulocyte colony-stimulating factor in swine with chronic myocardial ischemia. Journal of the American College of Cardiology, 47, 842–849.CrossRefPubMed
76.
go back to reference van der Meer, P., Lipsic, E., Henning, R. H., Boddeus, K., van der Velden, J., Voors, A. A., et al. (2005). Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. Journal of the American College of Cardiology, 46, 125–133.CrossRefPubMed van der Meer, P., Lipsic, E., Henning, R. H., Boddeus, K., van der Velden, J., Voors, A. A., et al. (2005). Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. Journal of the American College of Cardiology, 46, 125–133.CrossRefPubMed
77.
go back to reference Battler, A., Scheinowitz, M., Bor, A., Hasdai, D., Vered, Z., Di Segni, E., et al. (1993). Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. Journal of the American College of Cardiology, 22, 2001–2006.CrossRefPubMed Battler, A., Scheinowitz, M., Bor, A., Hasdai, D., Vered, Z., Di Segni, E., et al. (1993). Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. Journal of the American College of Cardiology, 22, 2001–2006.CrossRefPubMed
Metadata
Title
Protein Therapeutics for Cardiac Regeneration after Myocardial Infarction
Authors
Vincent F. M. Segers
Richard T. Lee
Publication date
01-10-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9207-5

Other articles of this Issue 5/2010

Journal of Cardiovascular Translational Research 5/2010 Go to the issue