Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2010

01-04-2010

Preconditioning and Stem Cell Survival

Authors: Husnain Kh Haider, Muhammad Ashraf

Published in: Journal of Cardiovascular Translational Research | Issue 2/2010

Login to get access

Abstract

The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and “prime” the cells to the “state of readiness” to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.
Literature
1.
go back to reference Abbott, J. D., Huang, Y., et al. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305.PubMedCrossRef Abbott, J. D., Huang, Y., et al. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305.PubMedCrossRef
2.
go back to reference Abdul Kadir, S. H., Ali, N. N., et al. (2009). Embryonic stem cell-derived cardiomyocytes as a model to study fetal arrhythmia related to maternal disease. Journal of Cellular and Molecular Medicine (in press) Abdul Kadir, S. H., Ali, N. N., et al. (2009). Embryonic stem cell-derived cardiomyocytes as a model to study fetal arrhythmia related to maternal disease. Journal of Cellular and Molecular Medicine (in press)
3.
go back to reference Addya, S., Shiroto, K., et al. (2005). Ischemic preconditioning-mediated cardioprotection is disrupted in heterozygous Flt-1 (VEGFR-1) knockout mice. Journal of Molecular and Cellular Cardiology, 38(2), 345–351.PubMedCrossRef Addya, S., Shiroto, K., et al. (2005). Ischemic preconditioning-mediated cardioprotection is disrupted in heterozygous Flt-1 (VEGFR-1) knockout mice. Journal of Molecular and Cellular Cardiology, 38(2), 345–351.PubMedCrossRef
4.
go back to reference Afzal, M. R., Haider, K. H., et al. (2009). Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling. Antioxidants & redox signalling (in press) Afzal, M. R., Haider, K. H., et al. (2009). Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling. Antioxidants & redox signalling (in press)
5.
go back to reference Ahmad, N., Wang, Y., et al. (2006). Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 290(6), H2402–H2408.PubMedCrossRef Ahmad, N., Wang, Y., et al. (2006). Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 290(6), H2402–H2408.PubMedCrossRef
6.
go back to reference Akao, M., Ohler, A., et al. (2001). Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circulation Research, 88(12), 1267–1275.PubMedCrossRef Akao, M., Ohler, A., et al. (2001). Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circulation Research, 88(12), 1267–1275.PubMedCrossRef
7.
go back to reference Akita, T., Murohara, T., et al. (2003). Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Laboratory Investigation, 83(1), 65–73.PubMed Akita, T., Murohara, T., et al. (2003). Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Laboratory Investigation, 83(1), 65–73.PubMed
8.
go back to reference Anversa, P., Leri, A., et al. (2006). Cardiac regeneration. Journal of the American College of Cardiology, 47(9), 1769–1776.PubMedCrossRef Anversa, P., Leri, A., et al. (2006). Cardiac regeneration. Journal of the American College of Cardiology, 47(9), 1769–1776.PubMedCrossRef
9.
go back to reference Asahara, T., Chen, D., et al. (1998). Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circulation Research, 83(3), 233–240.PubMed Asahara, T., Chen, D., et al. (1998). Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circulation Research, 83(3), 233–240.PubMed
10.
go back to reference Askari, A. T., Unzek, S., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697–703.PubMedCrossRef Askari, A. T., Unzek, S., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697–703.PubMedCrossRef
11.
go back to reference Azarnoush, K., Maurel, A., et al. (2005). Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. Journal of Thoracic and Cardiovascular Surgery, 130(1), 173–179.PubMedCrossRef Azarnoush, K., Maurel, A., et al. (2005). Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. Journal of Thoracic and Cardiovascular Surgery, 130(1), 173–179.PubMedCrossRef
12.
go back to reference Baines, C. P., Pass, J. M., et al. (2001). Protein kinases and kinase-modulated effectors in the late phase of ischemic preconditioning. Basic Research in Cardiology, 96(3), 207–218.PubMedCrossRef Baines, C. P., Pass, J. M., et al. (2001). Protein kinases and kinase-modulated effectors in the late phase of ischemic preconditioning. Basic Research in Cardiology, 96(3), 207–218.PubMedCrossRef
13.
go back to reference Baldi, A., Abbate, A., et al. (2002). Apoptosis and post-infarction left ventricular remodeling. Journal of Molecular and Cellular Cardiology, 34(2), 165–174.PubMedCrossRef Baldi, A., Abbate, A., et al. (2002). Apoptosis and post-infarction left ventricular remodeling. Journal of Molecular and Cellular Cardiology, 34(2), 165–174.PubMedCrossRef
14.
go back to reference Bartunek, J., Croissant, J. D., et al. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H1095–H1104.PubMedCrossRef Bartunek, J., Croissant, J. D., et al. (2007). Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology. Heart and Circulatory Physiology, 292(2), H1095–H1104.PubMedCrossRef
15.
go back to reference Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.PubMedCrossRef Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., et al. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204, 405–420.PubMedCrossRef
16.
go back to reference Bellis, A., Castaldo, D., et al. (2009). Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(8), 1207–1212.PubMedCrossRef Bellis, A., Castaldo, D., et al. (2009). Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(8), 1207–1212.PubMedCrossRef
17.
go back to reference Bolli, R. (2000). The late phase of preconditioning. Circulation Research, 87(11), 972–983.PubMed Bolli, R. (2000). The late phase of preconditioning. Circulation Research, 87(11), 972–983.PubMed
18.
go back to reference Budas, G. R., Churchill, E. N., et al. (2007). Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia–reperfusion injury. Pharmacological Research, 55(6), 523–536.PubMedCrossRef Budas, G. R., Churchill, E. N., et al. (2007). Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia–reperfusion injury. Pharmacological Research, 55(6), 523–536.PubMedCrossRef
19.
go back to reference Busija, D. W., Katakam, P., et al. (2005). Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Research Bulletin, 66(2), 85–90.PubMedCrossRef Busija, D. W., Katakam, P., et al. (2005). Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Research Bulletin, 66(2), 85–90.PubMedCrossRef
20.
go back to reference Camirand, G., Caron, N. J., et al. (2002). Treatment with anti-CD154 antibody and donor-specific transfusion prevents acute rejection of myoblast transplantation. Transplantation, 73(3), 453–461.PubMedCrossRef Camirand, G., Caron, N. J., et al. (2002). Treatment with anti-CD154 antibody and donor-specific transfusion prevents acute rejection of myoblast transplantation. Transplantation, 73(3), 453–461.PubMedCrossRef
21.
go back to reference Chen, M., Xie, H. Q., et al. (2008). Stromal cell-derived factor-1 promotes bone marrow-derived cells differentiation to cardiomyocyte phenotypes in vitro. Cell Proliferation, 41(2), 336–347.PubMedCrossRef Chen, M., Xie, H. Q., et al. (2008). Stromal cell-derived factor-1 promotes bone marrow-derived cells differentiation to cardiomyocyte phenotypes in vitro. Cell Proliferation, 41(2), 336–347.PubMedCrossRef
22.
go back to reference Crisostomo, P. R., Abarbanell, A. M., et al. (2008). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology. Heart and Circulatory Physiology, 295(4), H1726–H1735.PubMedCrossRef Crisostomo, P. R., Abarbanell, A. M., et al. (2008). Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions. American Journal of Physiology. Heart and Circulatory Physiology, 295(4), H1726–H1735.PubMedCrossRef
23.
go back to reference Crosby, M. E., Kulshreshtha, R., et al. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.PubMedCrossRef Crosby, M. E., Kulshreshtha, R., et al. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.PubMedCrossRef
24.
go back to reference Das, R., Jahr, H., et al. (2009). The role of hypoxia in MSCs: Considerations for regenerative medicine approaches. Tissue Engineering Part B Reviews (in press) Das, R., Jahr, H., et al. (2009). The role of hypoxia in MSCs: Considerations for regenerative medicine approaches. Tissue Engineering Part B Reviews (in press)
25.
go back to reference Dawn, B., Abdel-Latif, A., et al. (2009). Cardiac repair with adult bone marrow-derived cells: The clinical evidence. Antioxidants & Redox Signalling, 11, 1865–1882.CrossRef Dawn, B., Abdel-Latif, A., et al. (2009). Cardiac repair with adult bone marrow-derived cells: The clinical evidence. Antioxidants & Redox Signalling, 11, 1865–1882.CrossRef
26.
go back to reference DeBusk, L. M., Hallahan, D. E., et al. (2004). Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Experimental Cell Research, 298(1), 167–177.PubMedCrossRef DeBusk, L. M., Hallahan, D. E., et al. (2004). Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Experimental Cell Research, 298(1), 167–177.PubMedCrossRef
27.
go back to reference Devarajan, E., & Huang, S. (2009). STAT3 as a central regulator of tumor metastases. Current Molecular Medicine, 9(5), 626–633.PubMedCrossRef Devarajan, E., & Huang, S. (2009). STAT3 as a central regulator of tumor metastases. Current Molecular Medicine, 9(5), 626–633.PubMedCrossRef
28.
go back to reference Dzau, V. J., Gnecchi, M., et al. (2005). Enhancing stem cell therapy through genetic modification. Journal of the American College of Cardiology, 46(7), 1351–1353.PubMedCrossRef Dzau, V. J., Gnecchi, M., et al. (2005). Enhancing stem cell therapy through genetic modification. Journal of the American College of Cardiology, 46(7), 1351–1353.PubMedCrossRef
29.
go back to reference Elmadbouh, I., Haider, H., et al. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803.PubMedCrossRef Elmadbouh, I., Haider, H., et al. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. Journal of Molecular and Cellular Cardiology, 42(4), 792–803.PubMedCrossRef
30.
go back to reference Farahmand, P., Lai, T. Y., et al. (2008). Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation, 118(14 Suppl), S130–S137.PubMedCrossRef Farahmand, P., Lai, T. Y., et al. (2008). Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation, 118(14 Suppl), S130–S137.PubMedCrossRef
31.
go back to reference Fasanaro, P., D’Alessandra, Y., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283(23), 15878–15883.PubMedCrossRef Fasanaro, P., D’Alessandra, Y., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283(23), 15878–15883.PubMedCrossRef
32.
go back to reference Gross, G. J., & Auchampach, J. A. (1992). Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circulation Research, 70(2), 223–233.PubMed Gross, G. J., & Auchampach, J. A. (1992). Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circulation Research, 70(2), 223–233.PubMed
33.
go back to reference Haider, H., & Ashraf, M. (2008). Strategies to promote donor cell survival: Combining preconditioning approach with stem cell transplantation. Journal of Molecular and Cellular Cardiology, 45(4), 554–566.PubMedCrossRef Haider, H., & Ashraf, M. (2008). Strategies to promote donor cell survival: Combining preconditioning approach with stem cell transplantation. Journal of Molecular and Cellular Cardiology, 45(4), 554–566.PubMedCrossRef
34.
go back to reference Haider, H., Jiang, S. J., et al. (2004). Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. Transplantation Proceedings, 36(1), 232–235.PubMedCrossRef Haider, H., Jiang, S. J., et al. (2004). Effectiveness of transient immunosuppression using cyclosporine for xenomyoblast transplantation for cardiac repair. Transplantation Proceedings, 36(1), 232–235.PubMedCrossRef
35.
go back to reference Haider, H., Jiang, S., et al. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.PubMedCrossRef Haider, H., Jiang, S., et al. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.PubMedCrossRef
36.
go back to reference Haider, H., Tan, A. C., et al. (2004). Myoblast transplantation for cardiac repair: A clinical perspective. Molecular Therapy, 9(1), 14–23.PubMedCrossRef Haider, H., Tan, A. C., et al. (2004). Myoblast transplantation for cardiac repair: A clinical perspective. Molecular Therapy, 9(1), 14–23.PubMedCrossRef
37.
go back to reference Hausenloy, D. J., & Yellon, D. M. (2006). Survival kinases in ischemic preconditioning and postconditioning. Cardiovascular Research, 70(2), 240–253.PubMedCrossRef Hausenloy, D. J., & Yellon, D. M. (2006). Survival kinases in ischemic preconditioning and postconditioning. Cardiovascular Research, 70(2), 240–253.PubMedCrossRef
38.
go back to reference Heads, R. J., Yellon, D. M., et al. (1995). Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. Journal of Molecular and Cellular Cardiology, 27(8), 1669–1678.PubMedCrossRef Heads, R. J., Yellon, D. M., et al. (1995). Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. Journal of Molecular and Cellular Cardiology, 27(8), 1669–1678.PubMedCrossRef
39.
go back to reference Hiasa, K., Ishibashi, M., et al. (2004). Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: Next-generation chemokine therapy for therapeutic neovascularization. Circulation, 109(20), 2454–2461.PubMedCrossRef Hiasa, K., Ishibashi, M., et al. (2004). Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: Next-generation chemokine therapy for therapeutic neovascularization. Circulation, 109(20), 2454–2461.PubMedCrossRef
40.
go back to reference Hodgetts, S. I., Beilharz, M. W., et al. (2000). Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplantation, 9(4), 489–502.PubMed Hodgetts, S. I., Beilharz, M. W., et al. (2000). Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplantation, 9(4), 489–502.PubMed
41.
go back to reference Hodgetts, S. I., & Grounds, M. D. (2001). Complement and myoblast transfer therapy: Donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5. Immunology and Cell Biology, 79(3), 231–239.PubMedCrossRef Hodgetts, S. I., & Grounds, M. D. (2001). Complement and myoblast transfer therapy: Donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5. Immunology and Cell Biology, 79(3), 231–239.PubMedCrossRef
42.
go back to reference Hu, X., Dai, S., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: Role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663.PubMedCrossRef Hu, X., Dai, S., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: Role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663.PubMedCrossRef
43.
go back to reference Hu, X., Yu, S. P., et al. (2008). Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. Journal of Thoracic and Cardiovascular Surgery, 135(4), 799–808.PubMedCrossRef Hu, X., Yu, S. P., et al. (2008). Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. Journal of Thoracic and Cardiovascular Surgery, 135(4), 799–808.PubMedCrossRef
44.
go back to reference Huangfu, D., Osafune, K., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.PubMedCrossRef Huangfu, D., Osafune, K., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.PubMedCrossRef
45.
go back to reference Ii, M., Nishimura, H., et al. (2005). Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation, 111(9), 1114–1120.PubMedCrossRef Ii, M., Nishimura, H., et al. (2005). Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation, 111(9), 1114–1120.PubMedCrossRef
46.
go back to reference Ivan, M., Harris, A. L., et al. (2008). Hypoxia response and microRNAs: No longer two separate worlds. Journal of Cellular and Molecular Medicine, 12(5A), 1426–1431.PubMedCrossRef Ivan, M., Harris, A. L., et al. (2008). Hypoxia response and microRNAs: No longer two separate worlds. Journal of Cellular and Molecular Medicine, 12(5A), 1426–1431.PubMedCrossRef
47.
go back to reference Jiang, S., Haider, H., et al. (2006). Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circulation Research, 99(7), 776–784.PubMedCrossRef Jiang, S., Haider, H., et al. (2006). Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circulation Research, 99(7), 776–784.PubMedCrossRef
48.
go back to reference Kamota, T., Li, T. S., et al. (2009). Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. Journal of the American College of Cardiology, 53(19), 1814–1822.PubMedCrossRef Kamota, T., Li, T. S., et al. (2009). Ischemic pre-conditioning enhances the mobilization and recruitment of bone marrow stem cells to protect against ischemia/reperfusion injury in the late phase. Journal of the American College of Cardiology, 53(19), 1814–1822.PubMedCrossRef
49.
go back to reference Kanemitsu, N., Tambara, K., et al. (2006). Insulin-like growth factor-1 enhances the efficacy of myoblast transplantation with its multiple functions in the chronic myocardial infarction rat model. Journal of Heart and Lung Transplantation, 25(10), 1253–1262.PubMedCrossRef Kanemitsu, N., Tambara, K., et al. (2006). Insulin-like growth factor-1 enhances the efficacy of myoblast transplantation with its multiple functions in the chronic myocardial infarction rat model. Journal of Heart and Lung Transplantation, 25(10), 1253–1262.PubMedCrossRef
50.
go back to reference Kharbanda, R. K., Mortensen, U. M., et al. (2002). Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation, 106(23), 2881–2883.PubMedCrossRef Kharbanda, R. K., Mortensen, U. M., et al. (2002). Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation, 106(23), 2881–2883.PubMedCrossRef
51.
go back to reference Khoynezhad, A., Jalali, Z., et al. (2004). Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Annals of Thoracic Surgery, 78(3), 1109–1118.PubMedCrossRef Khoynezhad, A., Jalali, Z., et al. (2004). Apoptosis: Pathophysiology and therapeutic implications for the cardiac surgeon. Annals of Thoracic Surgery, 78(3), 1109–1118.PubMedCrossRef
52.
go back to reference Kicinska, A., & Szewczyk, A. (2003). Protective effects of the potassium channel opener-diazoxide against injury in neonatal rat ventricular myocytes. General Physiology and Biophysics, 22(3), 383–395.PubMed Kicinska, A., & Szewczyk, A. (2003). Protective effects of the potassium channel opener-diazoxide against injury in neonatal rat ventricular myocytes. General Physiology and Biophysics, 22(3), 383–395.PubMed
53.
go back to reference Kim, H. W., Haider, H. K., et al. (2009). Ischemic preconditioning augments survival of stem cells via MIR-210 expression by targeting caspase-8 associated protein 2. Journal of Biological Chemistry, 284, 33161–33168.CrossRef Kim, H. W., Haider, H. K., et al. (2009). Ischemic preconditioning augments survival of stem cells via MIR-210 expression by targeting caspase-8 associated protein 2. Journal of Biological Chemistry, 284, 33161–33168.CrossRef
54.
go back to reference Kim, I., Kim, H. G., et al. (2000). Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circulation Research, 86(9), 952–959.PubMed Kim, I., Kim, H. G., et al. (2000). Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circulation Research, 86(9), 952–959.PubMed
55.
go back to reference Kis, B., Nagy, K., et al. (2004). The mitochondrial K(ATP) channel opener BMS-191095 induces neuronal preconditioning. NeuroReport, 15(2), 345–349.PubMedCrossRef Kis, B., Nagy, K., et al. (2004). The mitochondrial K(ATP) channel opener BMS-191095 induces neuronal preconditioning. NeuroReport, 15(2), 345–349.PubMedCrossRef
56.
go back to reference Kofidis, T., de Bruin, J. L., et al. (2004). Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 22(7), 1239–1245.PubMedCrossRef Kofidis, T., de Bruin, J. L., et al. (2004). Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 22(7), 1239–1245.PubMedCrossRef
57.
go back to reference Koh, G. Y., Klug, M. G., et al. (1993). Differentiation and long-term survival of C2C12 myoblast grafts in heart. Journal of Clinical Investigation, 92(3), 1548–1554.PubMedCrossRef Koh, G. Y., Klug, M. G., et al. (1993). Differentiation and long-term survival of C2C12 myoblast grafts in heart. Journal of Clinical Investigation, 92(3), 1548–1554.PubMedCrossRef
58.
go back to reference Koh, G. Y., Soonpaa, M. H., et al. (1993). Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. American Journal of Physiology, 264(5 Pt 2), H1727–H1733.PubMed Koh, G. Y., Soonpaa, M. H., et al. (1993). Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. American Journal of Physiology, 264(5 Pt 2), H1727–H1733.PubMed
59.
go back to reference Kolossov, E., Bostani, T., et al. (2006). Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. Journal of Experimental Medicine, 203(10), 2315–2327.PubMedCrossRef Kolossov, E., Bostani, T., et al. (2006). Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. Journal of Experimental Medicine, 203(10), 2315–2327.PubMedCrossRef
60.
go back to reference Konstantinov, I. E., Arab, S., et al. (2005). The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1326–1332.PubMedCrossRef Konstantinov, I. E., Arab, S., et al. (2005). The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1326–1332.PubMedCrossRef
61.
go back to reference Kubo, M., Li, T. S., et al. (2008). Hypoxic preconditioning increases survival and angiogenic potency of peripheral blood mononuclear cells via oxidative stress resistance. American Journal of Physiology. Heart and Circulatory Physiology, 294(2), H590–H595.PubMedCrossRef Kubo, M., Li, T. S., et al. (2008). Hypoxic preconditioning increases survival and angiogenic potency of peripheral blood mononuclear cells via oxidative stress resistance. American Journal of Physiology. Heart and Circulatory Physiology, 294(2), H590–H595.PubMedCrossRef
62.
go back to reference Kudo, M., Wang, Y., et al. (2002). Adenosine A(1) receptor mediates late preconditioning via activation of PKC-delta signaling pathway. American Journal of Physiology. Heart and Circulatory Physiology, 283(1), H296–H301.PubMed Kudo, M., Wang, Y., et al. (2002). Adenosine A(1) receptor mediates late preconditioning via activation of PKC-delta signaling pathway. American Journal of Physiology. Heart and Circulatory Physiology, 283(1), H296–H301.PubMed
63.
go back to reference Kudo, M., Wang, Y., et al. (2003). Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. Journal of Molecular and Cellular Cardiology, 35(9), 1113–1119.PubMedCrossRef Kudo, M., Wang, Y., et al. (2003). Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. Journal of Molecular and Cellular Cardiology, 35(9), 1113–1119.PubMedCrossRef
64.
go back to reference Kulshreshtha, R., Davuluri, R. V., et al. (2008). A microRNA component of the hypoxic response. Cell Death and Differentiation, 15(4), 667–671.PubMedCrossRef Kulshreshtha, R., Davuluri, R. V., et al. (2008). A microRNA component of the hypoxic response. Cell Death and Differentiation, 15(4), 667–671.PubMedCrossRef
65.
go back to reference Kulshreshtha, R., Ferracin, M., et al. (2007). Regulation of microRNA expression: the hypoxic component. Cell Cycle, 6(12), 1426–1431.PubMed Kulshreshtha, R., Ferracin, M., et al. (2007). Regulation of microRNA expression: the hypoxic component. Cell Cycle, 6(12), 1426–1431.PubMed
66.
go back to reference Kutschka, I., Chen, I. Y., et al. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation, 114(1 Suppl), I167–I173.PubMed Kutschka, I., Chen, I. Y., et al. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation, 114(1 Suppl), I167–I173.PubMed
67.
go back to reference Kutschka, I., Kofidis, T., et al. (2006). Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation, 114(1 Suppl), I174–I180.PubMed Kutschka, I., Kofidis, T., et al. (2006). Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation, 114(1 Suppl), I174–I180.PubMed
68.
go back to reference Laflamme, M. A., Chen, K. Y., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.PubMedCrossRef Laflamme, M. A., Chen, K. Y., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.PubMedCrossRef
69.
go back to reference Lataillade, J. J., Domenech, J., et al. (2004). Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: Survival, cell cycling and trafficking. European Cytokine Network, 15(3), 177–188.PubMed Lataillade, J. J., Domenech, J., et al. (2004). Stromal cell-derived factor-1 (SDF-1)\CXCR4 couple plays multiple roles on haematopoietic progenitors at the border between the old cytokine and new chemokine worlds: Survival, cell cycling and trafficking. European Cytokine Network, 15(3), 177–188.PubMed
70.
go back to reference Li, W., Ma, N., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25(8), 2118–2127.PubMedCrossRef Li, W., Ma, N., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25(8), 2118–2127.PubMedCrossRef
71.
go back to reference Liu, T. B., Fedak, P. W., et al. (2004). Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. American Journal of Physiology. Heart and Circulatory Physiology, 287(6), H2840–H2849.PubMedCrossRef Liu, T. B., Fedak, P. W., et al. (2004). Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. American Journal of Physiology. Heart and Circulatory Physiology, 287(6), H2840–H2849.PubMedCrossRef
72.
go back to reference Logue, S. E., Gustafsson, A. B., et al. (2005). Ischemia/reperfusion injury at the intersection with cell death. Journal of Molecular and Cellular Cardiology, 38(1), 21–33.PubMedCrossRef Logue, S. E., Gustafsson, A. B., et al. (2005). Ischemia/reperfusion injury at the intersection with cell death. Journal of Molecular and Cellular Cardiology, 38(1), 21–33.PubMedCrossRef
73.
go back to reference Lu, G., Haider, H. K., et al. (2009). Sca-1+ stem cell survival and engraftment in the infarcted heart: Dual role for preconditioning-induced connexin-43. Circulation, 119(19), 2587–2596.PubMedCrossRef Lu, G., Haider, H. K., et al. (2009). Sca-1+ stem cell survival and engraftment in the infarcted heart: Dual role for preconditioning-induced connexin-43. Circulation, 119(19), 2587–2596.PubMedCrossRef
74.
go back to reference Mahboubi, K., Biedermann, B. C., et al. (2000). IL-11 activates human endothelial cells to resist immune-mediated injury. Journal of Immunology, 164(7), 3837–3846. Mahboubi, K., Biedermann, B. C., et al. (2000). IL-11 activates human endothelial cells to resist immune-mediated injury. Journal of Immunology, 164(7), 3837–3846.
75.
go back to reference Makkar, R. R., Price, M. J., et al. (2005). Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. Journal of Cardiovascular Pharmacology Therapy, 10(4), 225–233.CrossRef Makkar, R. R., Price, M. J., et al. (2005). Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. Journal of Cardiovascular Pharmacology Therapy, 10(4), 225–233.CrossRef
76.
go back to reference Mangi, A. A., Noiseux, N., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.PubMedCrossRef Mangi, A. A., Noiseux, N., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.PubMedCrossRef
77.
go back to reference Matsui, T., Tao, J., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330–335.PubMed Matsui, T., Tao, J., et al. (2001). Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation, 104(3), 330–335.PubMed
78.
go back to reference Matsumoto, R., Omura, T., et al. (2005). Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(6), 1168–1173.PubMedCrossRef Matsumoto, R., Omura, T., et al. (2005). Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(6), 1168–1173.PubMedCrossRef
79.
go back to reference Muller-Ehmsen, J., Whittaker, P., et al. (2002). Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. Journal of Molecular and Cellular Cardiology, 34(2), 107–116.PubMedCrossRef Muller-Ehmsen, J., Whittaker, P., et al. (2002). Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. Journal of Molecular and Cellular Cardiology, 34(2), 107–116.PubMedCrossRef
80.
go back to reference Mummery, C., van der Heyden, M. A., et al. (2007). Cardiomyocytes from human and mouse embryonic stem cells. Methods in Molecular Medicine, 140, 249–272.PubMedCrossRef Mummery, C., van der Heyden, M. A., et al. (2007). Cardiomyocytes from human and mouse embryonic stem cells. Methods in Molecular Medicine, 140, 249–272.PubMedCrossRef
81.
go back to reference Murry, C. E., Jennings, R. B., et al. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124–1136.PubMed Murry, C. E., Jennings, R. B., et al. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124–1136.PubMed
82.
go back to reference Nadal-Ginard, B., Anversa, P., et al. (2005). Cardiac stem cells and myocardial regeneration. Novartis Foundation Symposium, 265, 142–154.PubMedCrossRef Nadal-Ginard, B., Anversa, P., et al. (2005). Cardiac stem cells and myocardial regeneration. Novartis Foundation Symposium, 265, 142–154.PubMedCrossRef
83.
go back to reference Nakamura, T., & Schneider, M. D. (2003). The way to a human’s heart is through the stomach: Visceral endoderm-like cells drive human embryonic stem cells to a cardiac fate. Circulation, 107(21), 2638–2639.PubMedCrossRef Nakamura, T., & Schneider, M. D. (2003). The way to a human’s heart is through the stomach: Visceral endoderm-like cells drive human embryonic stem cells to a cardiac fate. Circulation, 107(21), 2638–2639.PubMedCrossRef
84.
go back to reference Nakamura, Y., Yasuda, T., et al. (2006). Enhanced cell transplantation: Preventing apoptosis increases cell survival and ventricular function. American Journal of Physiology. Heart and Circulatory Physiology, 291(2), H939–H947.PubMedCrossRef Nakamura, Y., Yasuda, T., et al. (2006). Enhanced cell transplantation: Preventing apoptosis increases cell survival and ventricular function. American Journal of Physiology. Heart and Circulatory Physiology, 291(2), H939–H947.PubMedCrossRef
85.
go back to reference Nanduri, J., Yuan, G., et al. (2008). Transcriptional responses to intermittent hypoxia. Respiratory Physiology and Neurobiology, 164(1–2), 277–281.PubMedCrossRef Nanduri, J., Yuan, G., et al. (2008). Transcriptional responses to intermittent hypoxia. Respiratory Physiology and Neurobiology, 164(1–2), 277–281.PubMedCrossRef
86.
go back to reference Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.PubMedCrossRef Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.PubMedCrossRef
87.
go back to reference Niagara, M. I., Haider, H., et al. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100(4), 545–555.PubMedCrossRef Niagara, M. I., Haider, H., et al. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100(4), 545–555.PubMedCrossRef
88.
go back to reference Okita, K., Nakagawa, M., et al. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.PubMedCrossRef Okita, K., Nakagawa, M., et al. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.PubMedCrossRef
89.
go back to reference O’Sullivan, J. C., Yao, X. L., et al. (2007). Diazoxide, as a postconditioning and delayed preconditioning trigger, increases HSP25 and HSP70 in the central nervous system following combined cerebral stroke and hemorrhagic shock. Journal of Neurotrauma, 24(3), 532–546.PubMedCrossRef O’Sullivan, J. C., Yao, X. L., et al. (2007). Diazoxide, as a postconditioning and delayed preconditioning trigger, increases HSP25 and HSP70 in the central nervous system following combined cerebral stroke and hemorrhagic shock. Journal of Neurotrauma, 24(3), 532–546.PubMedCrossRef
90.
go back to reference Pagani, F. D., DerSimonian, H., et al. (2003). Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology, 41(5), 879–888.PubMedCrossRef Pagani, F. D., DerSimonian, H., et al. (2003). Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology, 41(5), 879–888.PubMedCrossRef
91.
go back to reference Pasha, Z., Wang, Y., et al. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovascular Research, 77(1), 134–142.PubMedCrossRef Pasha, Z., Wang, Y., et al. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovascular Research, 77(1), 134–142.PubMedCrossRef
92.
go back to reference Patel, H. H., Gross, E. R., et al. (2005). Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats. American Journal of Physiology. Heart and Circulatory Physiology, 288(1), H445–H447.PubMedCrossRef Patel, H. H., Gross, E. R., et al. (2005). Sarcolemmal KATP channel triggers delayed ischemic preconditioning in rats. American Journal of Physiology. Heart and Circulatory Physiology, 288(1), H445–H447.PubMedCrossRef
93.
go back to reference Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293–300.PubMedCrossRef Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293–300.PubMedCrossRef
94.
go back to reference Qu, Z., Balkir, L., et al. (1998). Development of approaches to improve cell survival in myoblast transfer therapy. Journal of Cell Biology, 142(5), 1257–1267.PubMedCrossRef Qu, Z., Balkir, L., et al. (1998). Development of approaches to improve cell survival in myoblast transfer therapy. Journal of Cell Biology, 142(5), 1257–1267.PubMedCrossRef
95.
go back to reference Rajapakse, N., Kis, B., et al. (2003). Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity. Journal of Neuroscience Research, 73(2), 206–214.PubMedCrossRef Rajapakse, N., Kis, B., et al. (2003). Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity. Journal of Neuroscience Research, 73(2), 206–214.PubMedCrossRef
96.
go back to reference Ravingerova, T., Matejikova, J., et al. (2007). Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Molecular and Cellular Biochemistry, 297(1–2), 111–120.PubMedCrossRef Ravingerova, T., Matejikova, J., et al. (2007). Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Molecular and Cellular Biochemistry, 297(1–2), 111–120.PubMedCrossRef
97.
go back to reference Rosova, I., Dao, M., et al. (2008). Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 26(8), 2173–2182.PubMedCrossRef Rosova, I., Dao, M., et al. (2008). Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells, 26(8), 2173–2182.PubMedCrossRef
98.
go back to reference Rothwarf, D. M., & Karin, M. (1999). The NF-kappa B activation pathway: A paradigm in information transfer from membrane to nucleus. Science’s STKE: Signal Transduction Knowledge Environment, 1999(5), RE1.PubMed Rothwarf, D. M., & Karin, M. (1999). The NF-kappa B activation pathway: A paradigm in information transfer from membrane to nucleus. Science’s STKE: Signal Transduction Knowledge Environment, 1999(5), RE1.PubMed
99.
go back to reference Saito, T., Kuang, J. Q., et al. (2002). Xenotransplant cardiac chimera: Immune tolerance of adult stem cells. Annals of Thoracic Surgery, 74(1), 19–24. discussion 24.PubMedCrossRef Saito, T., Kuang, J. Q., et al. (2002). Xenotransplant cardiac chimera: Immune tolerance of adult stem cells. Annals of Thoracic Surgery, 74(1), 19–24. discussion 24.PubMedCrossRef
100.
go back to reference Sato, T., Li, Y., et al. (2004). Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection. British Journal of Pharmacology, 141(2), 360–366.PubMedCrossRef Sato, T., Li, Y., et al. (2004). Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection. British Journal of Pharmacology, 141(2), 360–366.PubMedCrossRef
101.
go back to reference Shimizu, M., Tropak, M., et al. (2009). Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: Evidence suggesting cross-species protection. Clinical Science (London), 117(5), 191–200.CrossRef Shimizu, M., Tropak, M., et al. (2009). Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: Evidence suggesting cross-species protection. Clinical Science (London), 117(5), 191–200.CrossRef
102.
go back to reference Shintani, S., Kusano, K., et al. (2006). Synergistic effect of combined intramyocardial CD34+ cells and VEGF2 gene therapy after MI. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S123–S128.PubMedCrossRef Shintani, S., Kusano, K., et al. (2006). Synergistic effect of combined intramyocardial CD34+ cells and VEGF2 gene therapy after MI. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S123–S128.PubMedCrossRef
103.
go back to reference Shmelkov, S. V., Meeus, S., et al. (2005). Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation, 111(9), 1175–1183.PubMedCrossRef Shmelkov, S. V., Meeus, S., et al. (2005). Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation, 111(9), 1175–1183.PubMedCrossRef
104.
go back to reference Shyu, W. C., Lin, S. Z., et al. (2008). Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. Journal of Pharmacology and Experimental Therapeutics, 324(2), 834–849.PubMedCrossRef Shyu, W. C., Lin, S. Z., et al. (2008). Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. Journal of Pharmacology and Experimental Therapeutics, 324(2), 834–849.PubMedCrossRef
105.
go back to reference Singla, D. K. (2009). Embryonic stem cells in cardiac repair and regeneration. Antioxidants & Redox Signalling, 11, 1857–1863.CrossRef Singla, D. K. (2009). Embryonic stem cells in cardiac repair and regeneration. Antioxidants & Redox Signalling, 11, 1857–1863.CrossRef
106.
go back to reference Sommer, C. A., Stadtfeld, M., et al. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.PubMedCrossRef Sommer, C. A., Stadtfeld, M., et al. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.PubMedCrossRef
107.
go back to reference Stein, A. B., Bolli, R., et al. (2007). The late phase of ischemic preconditioning induces a prosurvival genetic program that results in marked attenuation of apoptosis. Journal of Molecular and Cellular Cardiology, 42(6), 1075–1085.PubMedCrossRef Stein, A. B., Bolli, R., et al. (2007). The late phase of ischemic preconditioning induces a prosurvival genetic program that results in marked attenuation of apoptosis. Journal of Molecular and Cellular Cardiology, 42(6), 1075–1085.PubMedCrossRef
108.
go back to reference Strauer, B. E., Ott, G., et al. (2009). Bone marrow cells to improve ventricular function. Heart, 95(2), 98–99.PubMedCrossRef Strauer, B. E., Ott, G., et al. (2009). Bone marrow cells to improve ventricular function. Heart, 95(2), 98–99.PubMedCrossRef
109.
go back to reference Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRef Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRef
110.
go back to reference Takashi, E., Wang, Y., et al. (1999). Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circulation Research, 85(12), 1146–1153.PubMed Takashi, E., Wang, Y., et al. (1999). Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circulation Research, 85(12), 1146–1153.PubMed
111.
go back to reference Tang, Y. L., Zhu, W., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.PubMedCrossRef Tang, Y. L., Zhu, W., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209–1216.PubMedCrossRef
112.
go back to reference Tateishi, K., Takehara, N., et al. (2008). Stemming heart failure with cardiac- or reprogrammed-stem cells. Journal of Cellular and Molecular Medicine, 12(6A), 2217–2232.PubMedCrossRef Tateishi, K., Takehara, N., et al. (2008). Stemming heart failure with cardiac- or reprogrammed-stem cells. Journal of Cellular and Molecular Medicine, 12(6A), 2217–2232.PubMedCrossRef
113.
go back to reference Theus, M. H., Wei, L., et al. (2008). In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Experimental Neurology, 210(2), 656–670.PubMedCrossRef Theus, M. H., Wei, L., et al. (2008). In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Experimental Neurology, 210(2), 656–670.PubMedCrossRef
114.
go back to reference Toma, C., Pittenger, M. F., et al. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.PubMedCrossRef Toma, C., Pittenger, M. F., et al. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.PubMedCrossRef
115.
go back to reference Wang, Y., & Ashraf, M. (1999). Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium. Circulation Research, 84(10), 1156–1165.PubMed Wang, Y., & Ashraf, M. (1999). Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium. Circulation Research, 84(10), 1156–1165.PubMed
116.
go back to reference Wang, Y., Takashi, E., et al. (2001). Downregulation of protein kinase C inhibits activation of mitochondrial K(ATP) channels by diazoxide. Circulation, 104(1), 85–90.PubMedCrossRef Wang, Y., Takashi, E., et al. (2001). Downregulation of protein kinase C inhibits activation of mitochondrial K(ATP) channels by diazoxide. Circulation, 104(1), 85–90.PubMedCrossRef
117.
go back to reference Waxman, A. B., Mahboubi, K., et al. (2003). Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. American Journal of Respiratory Cell and Molecular Biology, 29(4), 513–522.PubMedCrossRef Waxman, A. B., Mahboubi, K., et al. (2003). Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. American Journal of Respiratory Cell and Molecular Biology, 29(4), 513–522.PubMedCrossRef
118.
go back to reference Winkler, J., Hescheler, J., et al. (2005). Embryonic stem cells for basic research and potential clinical applications in cardiology. Biochimica et Biophysica Acta, 1740(2), 240–248.PubMed Winkler, J., Hescheler, J., et al. (2005). Embryonic stem cells for basic research and potential clinical applications in cardiology. Biochimica et Biophysica Acta, 1740(2), 240–248.PubMed
119.
go back to reference Xu, M., Wang, Y., et al. (2001). Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. American Journal of Physiology. Heart and Circulatory Physiology, 281(3), H1295–H1303.PubMed Xu, M., Wang, Y., et al. (2001). Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. American Journal of Physiology. Heart and Circulatory Physiology, 281(3), H1295–H1303.PubMed
120.
go back to reference Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49.PubMedCrossRef Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49.PubMedCrossRef
121.
go back to reference Yamaoka, M., Yamaguchi, S., et al. (2000). Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. Journal of Molecular and Cellular Cardiology, 32(6), 881–889.PubMedCrossRef Yamaoka, M., Yamaguchi, S., et al. (2000). Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. Journal of Molecular and Cellular Cardiology, 32(6), 881–889.PubMedCrossRef
122.
go back to reference Yao, K., Huang, R., et al. (2008). Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart, 94(9), 1147–1153.PubMedCrossRef Yao, K., Huang, R., et al. (2008). Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart, 94(9), 1147–1153.PubMedCrossRef
123.
go back to reference Yau, T. M., Kim, C., et al. (2005). Increasing transplanted cell survival with cell-based angiogenic gene therapy. Annals of Thoracic Surgery, 80(5), 1779–1786.PubMedCrossRef Yau, T. M., Kim, C., et al. (2005). Increasing transplanted cell survival with cell-based angiogenic gene therapy. Annals of Thoracic Surgery, 80(5), 1779–1786.PubMedCrossRef
124.
go back to reference Yu, H. M., Zhi, J. L., et al. (2006). Role of the JAK–STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Apoptosis, 11(6), 931–941.PubMedCrossRef Yu, H. M., Zhi, J. L., et al. (2006). Role of the JAK–STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Apoptosis, 11(6), 931–941.PubMedCrossRef
125.
go back to reference Yuan, G., Nanduri, J., et al. (2008). Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. Journal of Cellular Physiology, 217(3), 674–685.PubMedCrossRef Yuan, G., Nanduri, J., et al. (2008). Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. Journal of Cellular Physiology, 217(3), 674–685.PubMedCrossRef
126.
go back to reference Zemani, F., Silvestre, J. S., et al. (2008). Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 644–650.PubMedCrossRef Zemani, F., Silvestre, J. S., et al. (2008). Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 644–650.PubMedCrossRef
127.
go back to reference Zhao, Z. Q., & Vinten-Johansen, J. (2006). Postconditioning: Reduction of reperfusion-induced injury. Cardiovascular Research, 70(2), 200–211.PubMedCrossRef Zhao, Z. Q., & Vinten-Johansen, J. (2006). Postconditioning: Reduction of reperfusion-induced injury. Cardiovascular Research, 70(2), 200–211.PubMedCrossRef
Metadata
Title
Preconditioning and Stem Cell Survival
Authors
Husnain Kh Haider
Muhammad Ashraf
Publication date
01-04-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-009-9161-2

Other articles of this Issue 2/2010

Journal of Cardiovascular Translational Research 2/2010 Go to the issue

OriginalPaper

Stem Cell Biobanks