Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2010

01-04-2010

Stem Cell Therapy for Chronic Myocardial Infarction

Authors: Manuel Mazo, Beatriz Pelacho, Felipe Prósper

Published in: Journal of Cardiovascular Translational Research | Issue 2/2010

Login to get access

Abstract

Although recent advances for the treatment of myocardial infarction have dramatically increased the rate of survival after the ischemic event, this has also led to a rise in the number of chronic patients, making the finding of a suitable therapy a compulsory subject for modern medicine. Over the last decade, stem cells have been a promise for the cure of several diseases not only due to their plasticity but also to their capacity to act in a paracrine manner and influence the affected tissue, prompting the launching of several clinical trials. In spite of the knowledge already acquired, stem cell application to chronically infarcted hearts has been much less approached than its acute counterpart. Through this review, we will focus in stem cell therapy in animal models of chronic myocardial infarction: cell types employed, functional results, mechanisms analyzed, and questions raised.
Literature
1.
go back to reference Adamopoulos, S., Parissis, J. T., & Kremastinos, D. T. (2001). A glossary of circulating cytokines in chronic heart failure. European Journal of Heart Failure, 3, 517–526.CrossRefPubMed Adamopoulos, S., Parissis, J. T., & Kremastinos, D. T. (2001). A glossary of circulating cytokines in chronic heart failure. European Journal of Heart Failure, 3, 517–526.CrossRefPubMed
2.
go back to reference Agbulut, O., Mazo, M., Bressolle, C., Gutierrez, M., Azarnoush, K., Sabbah, L., et al. (2006). Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium? Cardiovascular Research, 72, 175–183.CrossRefPubMed Agbulut, O., Mazo, M., Bressolle, C., Gutierrez, M., Azarnoush, K., Sabbah, L., et al. (2006). Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium? Cardiovascular Research, 72, 175–183.CrossRefPubMed
3.
go back to reference Armstrong, P. W., Granger, C. B., Adams, P. X., Hamm, C., Holmes, D., Jr., O'Neill, W. W., et al. (2007). Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: A randomized controlled trial. JAMA, 297, 43–51.CrossRefPubMed Armstrong, P. W., Granger, C. B., Adams, P. X., Hamm, C., Holmes, D., Jr., O'Neill, W. W., et al. (2007). Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: A randomized controlled trial. JAMA, 297, 43–51.CrossRefPubMed
4.
go back to reference Bai, X., Pinkernell, K., Song, Y. H., Nabzdyk, C., Reiser, J., & Alt, E. (2007). Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 353, 665–671.CrossRefPubMed Bai, X., Pinkernell, K., Song, Y. H., Nabzdyk, C., Reiser, J., & Alt, E. (2007). Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 353, 665–671.CrossRefPubMed
5.
go back to reference Behfar, A., Faustino, R. S., Arrell, D. K., Dzeja, P. P., Perez-Terzic, C., & Terzic, A. (2008). Guided stem cell cardiopoiesis: Discovery and translation. Journal of Molecular and Cellular Cardiology, 45, 523–529.CrossRefPubMed Behfar, A., Faustino, R. S., Arrell, D. K., Dzeja, P. P., Perez-Terzic, C., & Terzic, A. (2008). Guided stem cell cardiopoiesis: Discovery and translation. Journal of Molecular and Cellular Cardiology, 45, 523–529.CrossRefPubMed
6.
go back to reference Bonaros, N., Rauf, R., Werner, E., Schlechta, B., Rohde, E., Kocher, A., et al. (2008). Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interact Cardiovasc Thorac Surg, 7, 249–255.CrossRefPubMed Bonaros, N., Rauf, R., Werner, E., Schlechta, B., Rohde, E., Kocher, A., et al. (2008). Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interact Cardiovasc Thorac Surg, 7, 249–255.CrossRefPubMed
7.
go back to reference Bonaros, N., Rauf, R., Wolf, D., Margreiter, E., Tzankov, A., Schlechta, B., et al. (2006). Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 132, 1321–1328.CrossRefPubMed Bonaros, N., Rauf, R., Wolf, D., Margreiter, E., Tzankov, A., Schlechta, B., et al. (2006). Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 132, 1321–1328.CrossRefPubMed
8.
go back to reference Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110, 1362–1369.CrossRefPubMed Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110, 1362–1369.CrossRefPubMed
9.
go back to reference Bujak, M. & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74, 184–195.CrossRefPubMed Bujak, M. & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research, 74, 184–195.CrossRefPubMed
10.
go back to reference Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.CrossRefPubMed Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50, 1884–1893.CrossRefPubMed
11.
go back to reference Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V., & Weber, K. T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. Journal of Molecular and Cellular Cardiology, 27, 1281–1292.CrossRefPubMed Cleutjens, J. P., Kandala, J. C., Guarda, E., Guntaka, R. V., & Weber, K. T. (1995). Regulation of collagen degradation in the rat myocardium after infarction. Journal of Molecular and Cellular Cardiology, 27, 1281–1292.CrossRefPubMed
12.
go back to reference Chang, S. A., Lee, E. J., Kang, H. J., Zhang, S. Y., Kim, J. H., Li, L., et al. (2008). Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: Effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 26, 1901–1912.CrossRefPubMed Chang, S. A., Lee, E. J., Kang, H. J., Zhang, S. Y., Kim, J. H., Li, L., et al. (2008). Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: Effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 26, 1901–1912.CrossRefPubMed
13.
go back to reference Desmouliere, A., Chaponnier, C., & Gabbiani, G. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13, 7–12.CrossRefPubMed Desmouliere, A., Chaponnier, C., & Gabbiani, G. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair and Regeneration, 13, 7–12.CrossRefPubMed
14.
go back to reference Deten, A., Volz, H. C., Briest, W., & Zimmer, H. G. (2002). Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovascular Research, 55, 329–340.CrossRefPubMed Deten, A., Volz, H. C., Briest, W., & Zimmer, H. G. (2002). Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovascular Research, 55, 329–340.CrossRefPubMed
15.
go back to reference Ertl, G. & Frantz, S. (2005). Healing after myocardial infarction. Cardiovascular Research, 66, 22–32.CrossRefPubMed Ertl, G. & Frantz, S. (2005). Healing after myocardial infarction. Cardiovascular Research, 66, 22–32.CrossRefPubMed
16.
go back to reference Farahmand, P., Lai, T. Y., Weisel, R. D., Fazel, S., Yau, T., Menasche, P., et al. (2008). Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation, 118, S130–137.CrossRefPubMed Farahmand, P., Lai, T. Y., Weisel, R. D., Fazel, S., Yau, T., Menasche, P., et al. (2008). Skeletal myoblasts preserve remote matrix architecture and global function when implanted early or late after coronary ligation into infarcted or remote myocardium. Circulation, 118, S130–137.CrossRefPubMed
17.
go back to reference Fishbein, M. C., Maclean, D., & Maroko, P. R. (1978). Experimental myocardial infarction in the rat: Qualitative and quantitative changes during pathologic evolution. American Journal of Pathology, 90, 57–70.PubMed Fishbein, M. C., Maclean, D., & Maroko, P. R. (1978). Experimental myocardial infarction in the rat: Qualitative and quantitative changes during pathologic evolution. American Journal of Pathology, 90, 57–70.PubMed
18.
go back to reference Frangogiannis, N. G., Perrard, J. L., Mendoza, L. H., Burns, A. R., Lindsey, M. L., Ballantyne, C. M., et al. (1998). Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation, 98, 687–698.PubMed Frangogiannis, N. G., Perrard, J. L., Mendoza, L. H., Burns, A. R., Lindsey, M. L., Ballantyne, C. M., et al. (1998). Stem cell factor induction is associated with mast cell accumulation after canine myocardial ischemia and reperfusion. Circulation, 98, 687–698.PubMed
19.
go back to reference Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.CrossRefPubMed Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.CrossRefPubMed
20.
go back to reference Fukushima, S., Coppen, S. R., Lee, J., Yamahara, K., Felkin, L. E., Terracciano, C. M., et al. (2008). Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS ONE, 3, e3071.CrossRefPubMed Fukushima, S., Coppen, S. R., Lee, J., Yamahara, K., Felkin, L. E., Terracciano, C. M., et al. (2008). Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS ONE, 3, e3071.CrossRefPubMed
21.
go back to reference Fyhrquist, F. & Saijonmaa, O. (2008). Renin–angiotensin system revisited. Journal of Internal Medicine, 264, 224–236.CrossRefPubMed Fyhrquist, F. & Saijonmaa, O. (2008). Renin–angiotensin system revisited. Journal of Internal Medicine, 264, 224–236.CrossRefPubMed
22.
go back to reference Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131, 799–804.CrossRefPubMed Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131, 799–804.CrossRefPubMed
23.
go back to reference Gavira, J. J., Nasarre, E., Abizanda, G., Perez-Ilzarbe, M., de Martino-Rodriguez, A., Garcia de Jalon, J. A. et al. (2009). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal (in press). Gavira, J. J., Nasarre, E., Abizanda, G., Perez-Ilzarbe, M., de Martino-Rodriguez, A., Garcia de Jalon, J. A. et al. (2009). Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction. European Heart Journal (in press).
24.
go back to reference Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71, 744–753.CrossRefPubMed Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71, 744–753.CrossRefPubMed
25.
go back to reference Hamad, E., Mather, P. J., Srinivasan, S., Rubin, S., Whellan, D. J., & Feldman, A. M. (2007). Pharmacologic therapy of chronic heart failure. American Journal of Cardiovascular Drugs, 7, 235–248.CrossRefPubMed Hamad, E., Mather, P. J., Srinivasan, S., Rubin, S., Whellan, D. J., & Feldman, A. M. (2007). Pharmacologic therapy of chronic heart failure. American Journal of Cardiovascular Drugs, 7, 235–248.CrossRefPubMed
26.
go back to reference He, Q., Trindade, P. T., Stumm, M., Li, J., Zammaretti, P., Bettiol, E., et al. (2009). Fate of undifferentiated mouse embryonic stem cells within the rat heart: Role of myocardial infarction and immune suppression. Journal of Cellular and Molecular Medicine, 13, 188–201.CrossRefPubMed He, Q., Trindade, P. T., Stumm, M., Li, J., Zammaretti, P., Bettiol, E., et al. (2009). Fate of undifferentiated mouse embryonic stem cells within the rat heart: Role of myocardial infarction and immune suppression. Journal of Cellular and Molecular Medicine, 13, 188–201.CrossRefPubMed
27.
go back to reference Holmes, J. W., Borg, T. K., & Covell, J. W. (2005). Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering, 7, 223–253.CrossRefPubMed Holmes, J. W., Borg, T. K., & Covell, J. W. (2005). Structure and mechanics of healing myocardial infarcts. Annual Review of Biomedical Engineering, 7, 223–253.CrossRefPubMed
28.
go back to reference Irwin, M. W., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation, 99, 1492–1498.PubMed Irwin, M. W., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-alpha in postinfarction dysfunctional myocardium. Circulation, 99, 1492–1498.PubMed
29.
go back to reference Kastrup, J., Ripa, R. S., Wang, Y., & Jorgensen, E. (2006). Myocardial regeneration induced by granulocyte-colony-stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: A non-invasive alternative for clinical stem cell therapy? European Heart Journal, 27, 2748–2754.CrossRefPubMed Kastrup, J., Ripa, R. S., Wang, Y., & Jorgensen, E. (2006). Myocardial regeneration induced by granulocyte-colony-stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: A non-invasive alternative for clinical stem cell therapy? European Heart Journal, 27, 2748–2754.CrossRefPubMed
30.
go back to reference Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.CrossRefPubMed Kinnaird, T., Stabile, E., Burnett, M. S., Lee, C. W., Barr, S., Fuchs, S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94, 678–685.CrossRefPubMed
31.
go back to reference Koh, G. Y., Klug, M. G., Soonpaa, M. H., & Field, L. J. (1993). Differentiation and long-term survival of C2C12 myoblast grafts in heart. Journal of Clinical Investigation, 92, 1548–1554.CrossRefPubMed Koh, G. Y., Klug, M. G., Soonpaa, M. H., & Field, L. J. (1993). Differentiation and long-term survival of C2C12 myoblast grafts in heart. Journal of Clinical Investigation, 92, 1548–1554.CrossRefPubMed
32.
go back to reference Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.CrossRefPubMed Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.CrossRefPubMed
33.
go back to reference Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117, 1388–1396.CrossRefPubMed Landa, N., Miller, L., Feinberg, M. S., Holbova, R., Shachar, M., Freeman, I., et al. (2008). Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation, 117, 1388–1396.CrossRefPubMed
34.
go back to reference Le Blanc, K. (2006). Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8, 559–561.CrossRefPubMed Le Blanc, K. (2006). Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8, 559–561.CrossRefPubMed
35.
go back to reference Leobon, B., Roncalli, J., Joffre, C., Mazo, M., Boisson, M., Barreau, C., et al. (2009). Adipose-derived cardiomyogenic cells: In vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83, 757–767.CrossRefPubMed Leobon, B., Roncalli, J., Joffre, C., Mazo, M., Boisson, M., Barreau, C., et al. (2009). Adipose-derived cardiomyogenic cells: In vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovascular Research, 83, 757–767.CrossRefPubMed
36.
go back to reference Li, L., Zhang, S., Zhang, Y., Yu, B., Xu, Y., & Guan, Z. (2008). Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Molecular Biology Reports, 36, 725–731.CrossRefPubMed Li, L., Zhang, S., Zhang, Y., Yu, B., Xu, Y., & Guan, Z. (2008). Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Molecular Biology Reports, 36, 725–731.CrossRefPubMed
37.
go back to reference Li, R. K., Mickle, D. A., Weisel, R. D., Rao, V., & Jia, Z. Q. (2001). Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Annals of Thoracic Surgery, 72, 1957–1963.CrossRefPubMed Li, R. K., Mickle, D. A., Weisel, R. D., Rao, V., & Jia, Z. Q. (2001). Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Annals of Thoracic Surgery, 72, 1957–1963.CrossRefPubMed
38.
go back to reference Li, S. H., Lai, T. Y., Sun, Z., Han, M., Moriyama, E., Wilson, B., et al. (2009). Tracking cardiac engraftment and distribution of implanted bone marrow cells: Comparing intra-aortic, intravenous, and intramyocardial delivery. Journal of Thoracic and Cardiovascular Surgery, 137, 1225–1233. e1221.CrossRefPubMed Li, S. H., Lai, T. Y., Sun, Z., Han, M., Moriyama, E., Wilson, B., et al. (2009). Tracking cardiac engraftment and distribution of implanted bone marrow cells: Comparing intra-aortic, intravenous, and intramyocardial delivery. Journal of Thoracic and Cardiovascular Surgery, 137, 1225–1233. e1221.CrossRefPubMed
39.
go back to reference Liu, J. F., Wang, B. W., Hung, H. F., Chang, H., & Shyu, K. G. (2008). Human mesenchymal stem cells improve myocardial performance in a splenectomized rat model of chronic myocardial infarction. Journal of the Formosan Medical Association, 107, 165–174.CrossRefPubMed Liu, J. F., Wang, B. W., Hung, H. F., Chang, H., & Shyu, K. G. (2008). Human mesenchymal stem cells improve myocardial performance in a splenectomized rat model of chronic myocardial infarction. Journal of the Formosan Medical Association, 107, 165–174.CrossRefPubMed
40.
go back to reference Mann, D. L. (1999). Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100, 999–1008.PubMed Mann, D. L. (1999). Mechanisms and models in heart failure: A combinatorial approach. Circulation, 100, 999–1008.PubMed
41.
go back to reference Mann, D. L., Deswal, A., Bozkurt, B., & Torre-Amione, G. (2002). New therapeutics for chronic heart failure. Annual Review of Medicine, 53, 59–74.CrossRefPubMed Mann, D. L., Deswal, A., Bozkurt, B., & Torre-Amione, G. (2002). New therapeutics for chronic heart failure. Annual Review of Medicine, 53, 59–74.CrossRefPubMed
42.
go back to reference Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105, 648–656.CrossRefPubMed Martinez-Fernandez, A., Nelson, T. J., Yamada, S., Reyes, S., Alekseev, A. E., Perez-Terzic, C., et al. (2009). iPS programmed without c-MYC yield proficient cardiogenesis for functional heart chimerism. Circulation Research, 105, 648–656.CrossRefPubMed
43.
go back to reference Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRefPubMed Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.CrossRefPubMed
44.
go back to reference Mazo, M. (2009). Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant. doi:10.3727/096368909X480323. Mazo, M. (2009). Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transplant. doi:10.​3727/​096368909X480323​.
45.
go back to reference Mazo, M., Planat-Benard, V., Abizanda, G., Pelacho, B., Leobon, B., Gavira, J. J., et al. (2008). Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure, 10, 454–462.CrossRefPubMed Mazo, M., Planat-Benard, V., Abizanda, G., Pelacho, B., Leobon, B., Gavira, J. J., et al. (2008). Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure, 10, 454–462.CrossRefPubMed
46.
go back to reference Menasche, P. (2009). Stem cell therapy for heart failure: Are arrhythmias a real safety concern? Circulation, 119, 2735–2740.CrossRefPubMed Menasche, P. (2009). Stem cell therapy for heart failure: Are arrhythmias a real safety concern? Circulation, 119, 2735–2740.CrossRefPubMed
47.
go back to reference Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First randomized placebo-controlled study of myoblast transplantation. Circulation, 117, 1189–1200.CrossRefPubMed Menasche, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First randomized placebo-controlled study of myoblast transplantation. Circulation, 117, 1189–1200.CrossRefPubMed
48.
go back to reference Merx, M. W., Zernecke, A., Liehn, E. A., Schuh, A., Skobel, E., Butzbach, B., et al. (2005). Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Research in Cardiology, 100, 208–216.CrossRefPubMed Merx, M. W., Zernecke, A., Liehn, E. A., Schuh, A., Skobel, E., Butzbach, B., et al. (2005). Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Research in Cardiology, 100, 208–216.CrossRefPubMed
49.
go back to reference Mias, C., Lairez, O., Trouche, E., Roncalli, J., Calise, D., Seguelas, M. H. et al. (2009). Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells, 27(11), 2734–2743. Mias, C., Lairez, O., Trouche, E., Roncalli, J., Calise, D., Seguelas, M. H. et al. (2009). Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction. Stem Cells, 27(11), 2734–2743.
50.
go back to reference Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.CrossRefPubMed Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.CrossRefPubMed
51.
go back to reference Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12, 459–465.CrossRefPubMed Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12, 459–465.CrossRefPubMed
52.
go back to reference Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 204, 3037–3047.CrossRefPubMed Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 204, 3037–3047.CrossRefPubMed
53.
go back to reference Nakajima, H., Sakakibara, Y., Tambara, K., Marui, A., Yoshimoto, M., Premaratne, G. U., et al. (2008). Delivery route in bone marrow cell transplantation should be optimized according to the etiology of heart disease. Circ J, 72, 1528–1535.CrossRefPubMed Nakajima, H., Sakakibara, Y., Tambara, K., Marui, A., Yoshimoto, M., Premaratne, G. U., et al. (2008). Delivery route in bone marrow cell transplantation should be optimized according to the etiology of heart disease. Circ J, 72, 1528–1535.CrossRefPubMed
54.
go back to reference Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., Terzic, A. (2009) Repair of acute myocardial infarction with induced pluripotent stem cells induced by human stemness factors. Circulation. doi:10.1161/CIRCULATIONAHA.109.865154. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., Terzic, A. (2009) Repair of acute myocardial infarction with induced pluripotent stem cells induced by human stemness factors. Circulation. doi:10.​1161/​CIRCULATIONAHA.​109.​865154.
55.
go back to reference Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94, 1543–1553.CrossRefPubMed Nian, M., Lee, P., Khaper, N., & Liu, P. (2004). Inflammatory cytokines and postmyocardial infarction remodeling. Circulation Research, 94, 1543–1553.CrossRefPubMed
56.
go back to reference Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.CrossRefPubMed Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21, 1345–1357.CrossRefPubMed
57.
go back to reference Organization WH (2004) The world health report 2004. Organization WH (2004) The world health report 2004.
58.
go back to reference Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229. discussion 229–230.PubMedCrossRef Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229. discussion 229–230.PubMedCrossRef
59.
go back to reference Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.CrossRefPubMed Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.CrossRefPubMed
60.
go back to reference Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221.CrossRefPubMed Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221.CrossRefPubMed
61.
go back to reference Pearl, J. & Wu, J. C. (2008). Seeing is believing: Tracking cells to determine the effects of cell transplantation. Seminars in Thoracic and Cardiovascular Surgery, 20, 102–109.CrossRefPubMed Pearl, J. & Wu, J. C. (2008). Seeing is believing: Tracking cells to determine the effects of cell transplantation. Seminars in Thoracic and Cardiovascular Surgery, 20, 102–109.CrossRefPubMed
62.
go back to reference Pelacho, B. & Prosper, F. (2008). Stem cells and cardiac disease: Where are we going? Curr Stem Cell Res Ther, 3, 265–276.CrossRefPubMed Pelacho, B. & Prosper, F. (2008). Stem cells and cardiac disease: Where are we going? Curr Stem Cell Res Ther, 3, 265–276.CrossRefPubMed
63.
go back to reference Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San, Jose-Eneriz E., Desnos, M., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 10, 1065–1072.CrossRefPubMed Perez-Ilzarbe, M., Agbulut, O., Pelacho, B., Ciorba, C., San, Jose-Eneriz E., Desnos, M., et al. (2008). Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. European Journal of Heart Failure, 10, 1065–1072.CrossRefPubMed
64.
go back to reference Pfannkuche, K., Liang, H., Hannes, T., Xi, J., Fatima, A., Nguemo, F., et al. (2009). Cardiac myocytes derived from murine reprogrammed fibroblasts: Intact hormonal regulation, cardiac ion channel expression and development of contractility. Cellular Physiology and Biochemistry, 24, 73–86.CrossRefPubMed Pfannkuche, K., Liang, H., Hannes, T., Xi, J., Fatima, A., Nguemo, F., et al. (2009). Cardiac myocytes derived from murine reprogrammed fibroblasts: Intact hormonal regulation, cardiac ion channel expression and development of contractility. Cellular Physiology and Biochemistry, 24, 73–86.CrossRefPubMed
65.
go back to reference Phillips, H. R., O’Connor, C. M., & Rogers, J. (2007). Revascularization for heart failure. American Heart Journal, 153, 65–73.CrossRefPubMed Phillips, H. R., O’Connor, C. M., & Rogers, J. (2007). Revascularization for heart failure. American Heart Journal, 153, 65–73.CrossRefPubMed
66.
go back to reference Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.CrossRefPubMed Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.CrossRefPubMed
67.
go back to reference Puymirat, E., Geha, R., Tomescot, A., Bellamy, V., Larghero, J., Trinquart, L., et al. (2009). Can mesenchymal stem cells induce tolerance to cotransplanted human embryonic stem cells? Molecular Therapy, 17, 176–182.CrossRefPubMed Puymirat, E., Geha, R., Tomescot, A., Bellamy, V., Larghero, J., Trinquart, L., et al. (2009). Can mesenchymal stem cells induce tolerance to cotransplanted human embryonic stem cells? Molecular Therapy, 17, 176–182.CrossRefPubMed
68.
go back to reference Richard, V., Murry, C. E., & Reimer, K. A. (1995). Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation, 92, 1891–1901.PubMed Richard, V., Murry, C. E., & Reimer, K. A. (1995). Healing of myocardial infarcts in dogs. Effects of late reperfusion. Circulation, 92, 1891–1901.PubMed
69.
go back to reference Roger, V. L., Weston, S. A., Redfield, M. M., Hellermann-Homan, J. P., Killian, J., Yawn, B. P., et al. (2004). Trends in heart failure incidence and survival in a community-based population. Jama, 292, 344–350.CrossRefPubMed Roger, V. L., Weston, S. A., Redfield, M. M., Hellermann-Homan, J. P., Killian, J., Yawn, B. P., et al. (2004). Trends in heart failure incidence and survival in a community-based population. Jama, 292, 344–350.CrossRefPubMed
70.
go back to reference Rossen, R. D., Michael, L. H., Kagiyama, A., Savage, H. E., Hanson, G., Reisberg, M. A., et al. (1988). Mechanism of complement activation after coronary artery occlusion: Evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circulation Research, 62, 572–584.PubMed Rossen, R. D., Michael, L. H., Kagiyama, A., Savage, H. E., Hanson, G., Reisberg, M. A., et al. (1988). Mechanism of complement activation after coronary artery occlusion: Evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circulation Research, 62, 572–584.PubMed
71.
go back to reference Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 17783–17788.CrossRefPubMed Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 17783–17788.CrossRefPubMed
72.
go back to reference Schaffler, A. & Buchler, C. (2007). Concise review: Adipose tissue-derived stromal cells—Basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.CrossRefPubMed Schaffler, A. & Buchler, C. (2007). Concise review: Adipose tissue-derived stromal cells—Basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.CrossRefPubMed
73.
go back to reference Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30, 2722–2732.CrossRefPubMed Schuleri, K. H., Feigenbaum, G. S., Centola, M., Weiss, E. S., Zimmet, J. M., Turney, J., et al. (2009). Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. European Heart Journal, 30, 2722–2732.CrossRefPubMed
74.
75.
go back to reference Shanmugam, G. & Legare, J. F. (2008). Revascularization for ischaemic cardiomyopathy. Current Opinion in Cardiology, 23, 148–152.CrossRefPubMed Shanmugam, G. & Legare, J. F. (2008). Revascularization for ischaemic cardiomyopathy. Current Opinion in Cardiology, 23, 148–152.CrossRefPubMed
76.
go back to reference Shintani, Y., Fukushima, S., Varela-Carver, A., Lee, J., Coppen, S. R., Takahashi, K., et al. (2009). Donor cell type-specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 47, 288–295.CrossRefPubMed Shintani, Y., Fukushima, S., Varela-Carver, A., Lee, J., Coppen, S. R., Takahashi, K., et al. (2009). Donor cell type-specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 47, 288–295.CrossRefPubMed
77.
go back to reference Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111, 150–156.CrossRefPubMed Silva, G. V., Litovsky, S., Assad, J. A., Sousa, A. L., Martin, B. J., Vela, D., et al. (2005). Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation, 111, 150–156.CrossRefPubMed
78.
go back to reference Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. Keio Journal of Medicine, 54, 132–141.CrossRefPubMed Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. Keio Journal of Medicine, 54, 132–141.CrossRefPubMed
79.
go back to reference Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97, 343–347.CrossRefPubMed Sun, Y., Kiani, M. F., Postlethwaite, A. E., & Weber, K. T. (2002). Infarct scar as living tissue. Basic Research in Cardiology, 97, 343–347.CrossRefPubMed
80.
go back to reference Takahashi, K. & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefPubMed Takahashi, K. & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.CrossRefPubMed
81.
go back to reference Takehara, N., Tsutsumi, Y., Tateishi, K., Ogata, T., Tanaka, H., Ueyama, T., et al. (2008). Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol, 52, 1858–1865.CrossRefPubMed Takehara, N., Tsutsumi, Y., Tateishi, K., Ogata, T., Tanaka, H., Ueyama, T., et al. (2008). Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol, 52, 1858–1865.CrossRefPubMed
82.
go back to reference Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nature Medicine, 4, 929–933.CrossRefPubMed Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nature Medicine, 4, 929–933.CrossRefPubMed
83.
go back to reference van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol, 214, 377–386.CrossRefPubMed van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. J Pathol, 214, 377–386.CrossRefPubMed
84.
go back to reference Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol, 15, 83–90.CrossRefPubMed Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol, 15, 83–90.CrossRefPubMed
85.
go back to reference Virag, J. I. & Murry, C. E. (2003). Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. American Journal of Pathology, 163, 2433–2440.PubMed Virag, J. I. & Murry, C. E. (2003). Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. American Journal of Pathology, 163, 2433–2440.PubMed
86.
go back to reference Waksman, R., Fournadjiev, J., Baffour, R., Pakala, R., Hellinga, D., Leborgne, L., et al. (2004). Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc Radiat Med, 5, 125–131.CrossRefPubMed Waksman, R., Fournadjiev, J., Baffour, R., Pakala, R., Hellinga, D., Leborgne, L., et al. (2004). Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc Radiat Med, 5, 125–131.CrossRefPubMed
87.
go back to reference Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L., & Healy, B. (1988). Cellular mechanisms of myocardial infarct expansion. Circulation, 78, 186–201.PubMed Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L., & Healy, B. (1988). Cellular mechanisms of myocardial infarct expansion. Circulation, 78, 186–201.PubMed
88.
go back to reference Yu, J., Christman, K. L., Chin, E., Sievers, R. E., Saeed, M., & Lee, R. J. (2009). Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 137, 180–187.CrossRefPubMed Yu, J., Christman, K. L., Chin, E., Sievers, R. E., Saeed, M., & Lee, R. J. (2009). Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 137, 180–187.CrossRefPubMed
89.
go back to reference Yu, J., Gu, Y., Du, K. T., Mihardja, S., Sievers, R. E., & Lee, R. J. (2008). The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials, 30, 751–756.CrossRefPubMed Yu, J., Gu, Y., Du, K. T., Mihardja, S., Sievers, R. E., & Lee, R. J. (2008). The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials, 30, 751–756.CrossRefPubMed
90.
go back to reference Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–41.CrossRefPubMed Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–41.CrossRefPubMed
Metadata
Title
Stem Cell Therapy for Chronic Myocardial Infarction
Authors
Manuel Mazo
Beatriz Pelacho
Felipe Prósper
Publication date
01-04-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-009-9159-9

Other articles of this Issue 2/2010

Journal of Cardiovascular Translational Research 2/2010 Go to the issue