Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2009

01-12-2009

Mechanical and Energetic Consequences of HCM-Causing Mutations

Authors: Cecilia Ferrantini, Alexandra Belus, Nicoletta Piroddi, Beatrice Scellini, Chiara Tesi, Corrado Poggesi

Published in: Journal of Cardiovascular Translational Research | Issue 4/2009

Login to get access

Abstract

Hypertrophic cardiomyopathy (HCM) was the first inherited heart disease to be characterized at the molecular genetic level with the demonstration that it is caused by mutations in genes that encode different components of the cardiac sarcomere. Early functional in vitro studies have concluded that HCM mutations cause a loss of sarcomere mechanical function. Hypertrophy would then follow as a compensatory mechanism to raise the work and power output of the affected heart. More recent in vitro and mouse model studies have suggested that HCM mutations enhance contractile function and myofilament Ca2+ sensitivity and impair cardiac myocyte energetics. It has been hypothesized that these changes may result in cardiac myocyte energy depletion due to inefficient ATP utilization and also in altered myoplasmic Ca2+ handling. The problems encountered in reaching a definitive answer on the effects of HCM mutations are discussed. Though direct analysis of the altered functional characteristics of HCM human cardiac sarcomeres has so far lagged behind the in vitro and mouse studies, recent work with mechanically isolated skinned myocytes and myofibrils from affected human hearts seem to support the energy depletion hypothesis. If further validated in the human heart, this hypothesis would identify tractable therapeutic targets that suggest that HCM, perhaps more than any other cardiomyopathy, will be amenable to disease-modifying therapy.
Literature
1.
go back to reference Arad, M., Benson, D. W., Perez-Atayde, A. R., McKenna, W. J., Sparks, E. A., Kanter, R. J., et al. (2002). Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest, 109, 357–362.PubMed Arad, M., Benson, D. W., Perez-Atayde, A. R., McKenna, W. J., Sparks, E. A., Kanter, R. J., et al. (2002). Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest, 109, 357–362.PubMed
2.
go back to reference Ashrafian, H., Redwood, C., Blair, E., & Watkins, H. (2003). Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends in Genetics, 19, 263–268.CrossRefPubMed Ashrafian, H., Redwood, C., Blair, E., & Watkins, H. (2003). Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends in Genetics, 19, 263–268.CrossRefPubMed
3.
go back to reference Ashrafian, H., & Watkins, H. (2007). Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications. J Am Coll Cardiol, 49, 1251–1264.CrossRefPubMed Ashrafian, H., & Watkins, H. (2007). Reviews of translational medicine and genomics in cardiovascular disease: new disease taxonomy and therapeutic implications. J Am Coll Cardiol, 49, 1251–1264.CrossRefPubMed
4.
go back to reference Baudenbacher, F., Schober, T., Pinto, J. R., Sidorov, V. Y., Hilliard, F., Solaro, R. J., et al. (2008). Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest, 118, 3893–3903.PubMed Baudenbacher, F., Schober, T., Pinto, J. R., Sidorov, V. Y., Hilliard, F., Solaro, R. J., et al. (2008). Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J Clin Invest, 118, 3893–3903.PubMed
5.
go back to reference Bing, W., Knott, A., Redwood, C., Esposito, G., Purcell, I., Watkins, H., et al. (2000). Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cel Cardiol, 32, 1489–1498.CrossRef Bing, W., Knott, A., Redwood, C., Esposito, G., Purcell, I., Watkins, H., et al. (2000). Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cel Cardiol, 32, 1489–1498.CrossRef
6.
go back to reference Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Broxholme, J., Kerr, B., et al. (2001). Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Human molecular genetics, 10, 1215–1220.CrossRefPubMed Blair, E., Redwood, C., Ashrafian, H., Oliveira, M., Broxholme, J., Kerr, B., et al. (2001). Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Human molecular genetics, 10, 1215–1220.CrossRefPubMed
7.
go back to reference Belus, A., Piroddi, N., Scellini, B., Tesi, C., D’Amati, G., Girolami, F., et al. (2008). The FHC-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol, 586, 3639–3644.PubMed Belus, A., Piroddi, N., Scellini, B., Tesi, C., D’Amati, G., Girolami, F., et al. (2008). The FHC-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils. J Physiol, 586, 3639–3644.PubMed
8.
go back to reference Bonne, G., Carrier, L., Bercovici, J., Cruaud, C., Richard, P., Hainque, B., et al. (1995). Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet, 11, 438–440.CrossRefPubMed Bonne, G., Carrier, L., Bercovici, J., Cruaud, C., Richard, P., Hainque, B., et al. (1995). Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet, 11, 438–440.CrossRefPubMed
9.
go back to reference Borbély, A., van der Velden, J., Bronzwaer, J. G. F., Papp, Z., Édes, I., Stienen, G. J. M., et al. (2005). Cardiomyocyte stiffness in diastolic heart failure. Circulation, 111, 774–781.CrossRefPubMed Borbély, A., van der Velden, J., Bronzwaer, J. G. F., Papp, Z., Édes, I., Stienen, G. J. M., et al. (2005). Cardiomyocyte stiffness in diastolic heart failure. Circulation, 111, 774–781.CrossRefPubMed
10.
go back to reference Bottinelli, R., Coviello, D. A., Redwood, C. S., Pellegrino, M. A., Maron, B. J., Spirito, P., et al. (1998). A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ Res, 82, 106–115.PubMed Bottinelli, R., Coviello, D. A., Redwood, C. S., Pellegrino, M. A., Maron, B. J., Spirito, P., et al. (1998). A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ Res, 82, 106–115.PubMed
11.
go back to reference Crilley, J. G., Boehm, E. A., Blair, E., Rajagopalan, B., Blamire, A. M., Styles, P., et al. (2003). Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol, 41, 1776–1782.CrossRefPubMed Crilley, J. G., Boehm, E. A., Blair, E., Rajagopalan, B., Blamire, A. M., Styles, P., et al. (2003). Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol, 41, 1776–1782.CrossRefPubMed
12.
go back to reference Cuda, G., Fananapazir, L., Zhu, W. S., Sellers, J. R., & Epstein, N. D. (1993). Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. J Clin Invest, 91, 2861–2865.CrossRefPubMed Cuda, G., Fananapazir, L., Zhu, W. S., Sellers, J. R., & Epstein, N. D. (1993). Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. J Clin Invest, 91, 2861–2865.CrossRefPubMed
13.
go back to reference Dyer, E., Jacques, A., Burch, M., Kaski, J. P., & Marston, S. (2008). Functional effects of DCM mutation G159D in troponin C from an explanted heart. J Mol Cell Cardiol, 44, 729–730.CrossRef Dyer, E., Jacques, A., Burch, M., Kaski, J. P., & Marston, S. (2008). Functional effects of DCM mutation G159D in troponin C from an explanted heart. J Mol Cell Cardiol, 44, 729–730.CrossRef
14.
go back to reference Elliott, K., Watkins, H., & Redwood, C. S. (2000). Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J Biol Chem, 275, 22069–22074.CrossRefPubMed Elliott, K., Watkins, H., & Redwood, C. S. (2000). Altered regulatory properties of human cardiac troponin I mutants that cause hypertrophic cardiomyopathy. J Biol Chem, 275, 22069–22074.CrossRefPubMed
15.
go back to reference Fujita, H., Sugiura, S., Momomura, S., Omata, M., Sugi, H., & Sutoh, K. (1997). Characterization of mutant myosins of Dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants. Molecular force level of mutant myosins may have a prognostic implication. J Clin Invest, 99, 1010–1015.CrossRefPubMed Fujita, H., Sugiura, S., Momomura, S., Omata, M., Sugi, H., & Sutoh, K. (1997). Characterization of mutant myosins of Dictyostelium discoideum equivalent to human familial hypertrophic cardiomyopathy mutants. Molecular force level of mutant myosins may have a prognostic implication. J Clin Invest, 99, 1010–1015.CrossRefPubMed
16.
go back to reference Geisterfer-Lowrance, A. A., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.CrossRefPubMed Geisterfer-Lowrance, A. A., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.CrossRefPubMed
17.
go back to reference Geisterfer-Lowrance, A. A., Kass, S., Tanigawa, G., Vosberg, H. P., McKenna, W., Seidman, C. E., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell, 62, 999–1006.CrossRefPubMed Geisterfer-Lowrance, A. A., Kass, S., Tanigawa, G., Vosberg, H. P., McKenna, W., Seidman, C. E., et al. (1990). A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell, 62, 999–1006.CrossRefPubMed
18.
go back to reference Hajjar, R. J., Gwathmey, J. K., Briggs, G. M., & Morgan, J. P. (1988). Differential effect of DPI 201–106 on the sensitivity of the myofilaments to Ca2+ in intact and skinned trabeculae from control and myopathic human hearts. J Clin Invest, 82, 1578–1584.CrossRefPubMed Hajjar, R. J., Gwathmey, J. K., Briggs, G. M., & Morgan, J. P. (1988). Differential effect of DPI 201–106 on the sensitivity of the myofilaments to Ca2+ in intact and skinned trabeculae from control and myopathic human hearts. J Clin Invest, 82, 1578–1584.CrossRefPubMed
19.
go back to reference He, H., Javadpour, M. M., Latif, F., Tardiff, J. C., & Ingwall, J. S. (2007). R-92L and R-92W mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts. Biophys J, 93, 1834–1844.CrossRefPubMed He, H., Javadpour, M. M., Latif, F., Tardiff, J. C., & Ingwall, J. S. (2007). R-92L and R-92W mutations in cardiac troponin T lead to distinct energetic phenotypes in intact mouse hearts. Biophys J, 93, 1834–1844.CrossRefPubMed
20.
go back to reference Ho, C., Sweitzer, N. K., McDonough, B., Maron, B. J., Casey, S. A., Seidman, J. G., et al. (2002). Assessment of diastolic function with doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation, 105, 2992–2997.CrossRefPubMed Ho, C., Sweitzer, N. K., McDonough, B., Maron, B. J., Casey, S. A., Seidman, J. G., et al. (2002). Assessment of diastolic function with doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation, 105, 2992–2997.CrossRefPubMed
21.
go back to reference Hoffmann, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J., & Gessner, R. (2001). First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat, 17, 524.CrossRefPubMed Hoffmann, B., Schmidt-Traub, H., Perrot, A., Osterziel, K. J., & Gessner, R. (2001). First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat, 17, 524.CrossRefPubMed
22.
go back to reference Hofmann, P. A., Hartzell, H. C., & Moss, R. L. (1991). Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol, 97, 1141–1163.CrossRefPubMed Hofmann, P. A., Hartzell, H. C., & Moss, R. L. (1991). Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol, 97, 1141–1163.CrossRefPubMed
23.
go back to reference Homsher, E., Lee, D. M., Morris, C., Pavlov, D., & Tobacman, L. S. (2000). Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol, 524, 233–243.CrossRefPubMed Homsher, E., Lee, D. M., Morris, C., Pavlov, D., & Tobacman, L. S. (2000). Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol, 524, 233–243.CrossRefPubMed
24.
go back to reference Jarcho, J. A., McKenna, W., Pare, J. A., Solomon, S. D., Holcombe, R. F., Dickie, S., et al. (1989). Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med, 321, 1372–1378.PubMedCrossRef Jarcho, J. A., McKenna, W., Pare, J. A., Solomon, S. D., Holcombe, R. F., Dickie, S., et al. (1989). Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med, 321, 1372–1378.PubMedCrossRef
25.
go back to reference Jacques, A., Hoskins, A., Kentish, J. C., & Marston, S. B. (2008). From genotype to phenotype: a longitudinal study of a patient with hypertrophic cardiomyopathy due to a mutation in the MYBPC3 gene. J Muscle Res Cell Motility, 29, 239–246.CrossRef Jacques, A., Hoskins, A., Kentish, J. C., & Marston, S. B. (2008). From genotype to phenotype: a longitudinal study of a patient with hypertrophic cardiomyopathy due to a mutation in the MYBPC3 gene. J Muscle Res Cell Motility, 29, 239–246.CrossRef
26.
go back to reference Javadpour, M. M., Tardiff, J. C., Pinz, I., & Ingwall, J. S. (2003). Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest, 112, 768–775.PubMed Javadpour, M. M., Tardiff, J. C., Pinz, I., & Ingwall, J. S. (2003). Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest, 112, 768–775.PubMed
27.
go back to reference Keller, D. I., Coirault, C., Rau, T., Cheav, T., Weyand, M., Amann, K., et al. (2004). Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties. J Mol Cell Cardiol, 36, 355–362.CrossRefPubMed Keller, D. I., Coirault, C., Rau, T., Cheav, T., Weyand, M., Amann, K., et al. (2004). Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties. J Mol Cell Cardiol, 36, 355–362.CrossRefPubMed
28.
go back to reference Kimura, A., Harada, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M., et al. (1997). Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet, 16, 379–382.CrossRefPubMed Kimura, A., Harada, H., Park, J. E., Nishi, H., Satoh, M., Takahashi, M., et al. (1997). Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet, 16, 379–382.CrossRefPubMed
29.
go back to reference Knollmann, B. C., Blatt, S. A., Horton, K., de Freitas, F., Miller, T., Bell, M., et al. (2001). Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem, 276, 10039–10048.CrossRefPubMed Knollmann, B. C., Blatt, S. A., Horton, K., de Freitas, F., Miller, T., Bell, M., et al. (2001). Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J Biol Chem, 276, 10039–10048.CrossRefPubMed
30.
go back to reference Kulikovskaya, I., McClellan, G., Levine, R., & Winegrad, S. (2003). Effect of extraction of myosin binding protein C on contractility of rat heart. Am J Physiol Heart Circ Physiol, 285, H857–H865.PubMed Kulikovskaya, I., McClellan, G., Levine, R., & Winegrad, S. (2003). Effect of extraction of myosin binding protein C on contractility of rat heart. Am J Physiol Heart Circ Physiol, 285, H857–H865.PubMed
31.
go back to reference Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., et al. (2008). Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol, 45(2), 281–288.CrossRefPubMed Landstrom, A. P., Parvatiyar, M. S., Pinto, J. R., Marquardt, M. L., Bos, J. M., Tester, D. J., et al. (2008). Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol, 45(2), 281–288.CrossRefPubMed
32.
go back to reference Lankford, E. B., Epstein, N. D., Fananapazir, L., & Sweeney, H. L. (1995). Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest, 95, 1409–1414.CrossRefPubMed Lankford, E. B., Epstein, N. D., Fananapazir, L., & Sweeney, H. L. (1995). Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest, 95, 1409–1414.CrossRefPubMed
33.
go back to reference Lin, D., Bobkova, A., Homsher, E., & Tobacman, L. S. (1996). Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest, 97(12), 2842–8.CrossRefPubMed Lin, D., Bobkova, A., Homsher, E., & Tobacman, L. S. (1996). Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest, 97(12), 2842–8.CrossRefPubMed
34.
go back to reference Lowey, S. (2002). Functional consequences of mutations in the myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Trends Cardiovasc Med, 12, 348–354.CrossRefPubMed Lowey, S. (2002). Functional consequences of mutations in the myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Trends Cardiovasc Med, 12, 348–354.CrossRefPubMed
35.
go back to reference Lowey, S., Lesko, M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. J Biol Chem, 283, 20579–2089.CrossRefPubMed Lowey, S., Lesko, M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. J Biol Chem, 283, 20579–2089.CrossRefPubMed
36.
go back to reference Marian, A. J. (2000). Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet, 355, 58–60.CrossRefPubMed Marian, A. J. (2000). Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet, 355, 58–60.CrossRefPubMed
37.
go back to reference Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol, 33(4), 655–670.CrossRefPubMed Marian, A. J., & Roberts, R. (2001). The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol, 33(4), 655–670.CrossRefPubMed
38.
go back to reference Miller, G., Maycock, J., White, E., Peckham, M., & Calaghan, S. (2003). Heterologous expression of wild-type and mutant beta-cardiac myosin changes the contractile kinetics of cultured mouse myotubes. J Physiol, 548, 167–174.CrossRefPubMed Miller, G., Maycock, J., White, E., Peckham, M., & Calaghan, S. (2003). Heterologous expression of wild-type and mutant beta-cardiac myosin changes the contractile kinetics of cultured mouse myotubes. J Physiol, 548, 167–174.CrossRefPubMed
39.
go back to reference Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., et al. (1999). Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest, 103, R39–43.CrossRefPubMed Mogensen, J., Klausen, I. C., Pedersen, A. K., Egeblad, H., Bross, P., Kruse, T. A., et al. (1999). Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest, 103, R39–43.CrossRefPubMed
40.
go back to reference Morano, I., Bletz, C., Wojciechowski, R., & Ruegg, J. C. (1991). Modulation of crossbridge kinetics by myosin isoenzymes in skinned human heart fibers. Circ Res, 68, 614–618.PubMed Morano, I., Bletz, C., Wojciechowski, R., & Ruegg, J. C. (1991). Modulation of crossbridge kinetics by myosin isoenzymes in skinned human heart fibers. Circ Res, 68, 614–618.PubMed
41.
go back to reference Morimoto, S., Yanaga, F., Minatami, R., & Ohtsuki, I. (1998). Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am J Physiol, 275, C200–C207.PubMed Morimoto, S., Yanaga, F., Minatami, R., & Ohtsuki, I. (1998). Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am J Physiol, 275, C200–C207.PubMed
42.
go back to reference Mulieri, L. A., Barnes, W., Leavitt, B. J., Ittleman, F. P., LeWinter, M. M., Alpert, N. R., et al. (2002). Alterations of myocardial dynamic stiffness implicating abnormal crossbridge function in human mitral regurgitation heart failure. Circ Res, 90, 66–72.CrossRefPubMed Mulieri, L. A., Barnes, W., Leavitt, B. J., Ittleman, F. P., LeWinter, M. M., Alpert, N. R., et al. (2002). Alterations of myocardial dynamic stiffness implicating abnormal crossbridge function in human mitral regurgitation heart failure. Circ Res, 90, 66–72.CrossRefPubMed
43.
go back to reference Narolska, N. A., van Loon, R. B., Boontje, N. M., Zaremba, R., Penas, S. E., Russell, J., et al. (2005). Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res, 65, 221–229.CrossRefPubMed Narolska, N. A., van Loon, R. B., Boontje, N. M., Zaremba, R., Penas, S. E., Russell, J., et al. (2005). Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res, 65, 221–229.CrossRefPubMed
44.
go back to reference Palmiter, K. A., Tyska, M. J., Haeberle, J. R., Alpert, N. R., Fananapazir, L., & Warshaw, D. M. (2000). R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil, 21, 609–620.CrossRefPubMed Palmiter, K. A., Tyska, M. J., Haeberle, J. R., Alpert, N. R., Fananapazir, L., & Warshaw, D. M. (2000). R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil, 21, 609–620.CrossRefPubMed
45.
go back to reference Pinto, J. R., Parvatiyar, M. S., Jones, M. A., Liang, J., Ackerman, M. J., & Potter, J. D. (2009). A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem, 284, 19090–19100.CrossRefPubMed Pinto, J. R., Parvatiyar, M. S., Jones, M. A., Liang, J., Ackerman, M. J., & Potter, J. D. (2009). A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem, 284, 19090–19100.CrossRefPubMed
46.
go back to reference Piroddi, N., Belus, A., Scellini, B., Tesi, C., Giunti, G., Cerbai, E., et al. (2007). Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Arch, 454, 63–73.CrossRefPubMed Piroddi, N., Belus, A., Scellini, B., Tesi, C., Giunti, G., Cerbai, E., et al. (2007). Tension generation and relaxation in single myofibrils from human atrial and ventricular myocardium. Pflugers Arch, 454, 63–73.CrossRefPubMed
47.
go back to reference Poggesi, C., Tesi, C., & Stehle, R. (2005). Sarcomeric determinants of striated muscle relaxation kinetics. Pflügers Arch, 449, 505–517.CrossRefPubMed Poggesi, C., Tesi, C., & Stehle, R. (2005). Sarcomeric determinants of striated muscle relaxation kinetics. Pflügers Arch, 449, 505–517.CrossRefPubMed
48.
go back to reference Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., et al. (1996). Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet, 13, 63–69.CrossRefPubMed Poetter, K., Jiang, H., Hassanzadeh, S., Master, S. R., Chang, A., Dalakas, M. C., et al. (1996). Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet, 13, 63–69.CrossRefPubMed
49.
go back to reference Redwood, C., Lohmann, K., Bing, W., Esposito, G. M., Elliott, K., Abdulrazzak, H., et al. (2000). Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca2+ regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res, 86, 1146–1152.PubMed Redwood, C., Lohmann, K., Bing, W., Esposito, G. M., Elliott, K., Abdulrazzak, H., et al. (2000). Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca2+ regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circ Res, 86, 1146–1152.PubMed
50.
go back to reference Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., et al. (2003). Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 107, 2227–2232.CrossRefPubMed Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T., Pichereau, C., et al. (2003). Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 107, 2227–2232.CrossRefPubMed
51.
go back to reference Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res, 101, 1266–1273.CrossRefPubMed Robinson, P., Griffiths, P. J., Watkins, H., & Redwood, C. S. (2007). Dilated and hypertrophic cardiomyopathy mutations in troponin and alpha-tropomyosin have opposing effects on the calcium affinity of cardiac thin filaments. Circ Res, 101, 1266–1273.CrossRefPubMed
52.
go back to reference Robinson, P., Mirza, M., Knott, A., Abdulrazzak, H., Willott, R., Marston, S., et al. (2002). Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem, 277, 40710–40716.CrossRefPubMed Robinson, P., Mirza, M., Knott, A., Abdulrazzak, H., Willott, R., Marston, S., et al. (2002). Alterations in thin filament regulation induced by a human cardiac troponin T mutant that causes dilated cardiomyopathy are distinct from those induced by troponin T mutants that cause hypertrophic cardiomyopathy. J Biol Chem, 277, 40710–40716.CrossRefPubMed
53.
go back to reference Roopnarine, O., & Leinwand, L. A. (1998). Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Biophys J, 75, 3023–3030.CrossRefPubMed Roopnarine, O., & Leinwand, L. A. (1998). Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Biophys J, 75, 3023–3030.CrossRefPubMed
54.
go back to reference Sachs, F. (1999). Practical limits on the maximal speed of solution exchange for patch clamp experiments. Biophys J, 1999(77), 682–690.CrossRef Sachs, F. (1999). Practical limits on the maximal speed of solution exchange for patch clamp experiments. Biophys J, 1999(77), 682–690.CrossRef
55.
go back to reference Sata, M., & Ikebe, M. (1996). Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. J Clin Invest, 98, 2866–2873.CrossRefPubMed Sata, M., & Ikebe, M. (1996). Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. J Clin Invest, 98, 2866–2873.CrossRefPubMed
56.
go back to reference Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, F., & Kimura, A. (1999). Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun, 262, 411–417.CrossRefPubMed Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, F., & Kimura, A. (1999). Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun, 262, 411–417.CrossRefPubMed
57.
go back to reference Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell, 104, 557–567.CrossRefPubMed Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell, 104, 557–567.CrossRefPubMed
58.
go back to reference Spindler, M., Saupe, K. W., Christe, M. E., Sweeney, H. L., Seidman, C. E., Seidman, J. G., et al. (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest, 101, 1775–1783.CrossRefPubMed Spindler, M., Saupe, K. W., Christe, M. E., Sweeney, H. L., Seidman, C. E., Seidman, J. G., et al. (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest, 101, 1775–1783.CrossRefPubMed
59.
go back to reference Stehle, R., Solzin, J., Iorga, B., & Poggesi, C. (2009). Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflügers Arch, 458, 337–357.CrossRefPubMed Stehle, R., Solzin, J., Iorga, B., & Poggesi, C. (2009). Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies. Pflügers Arch, 458, 337–357.CrossRefPubMed
60.
go back to reference Sweeney, H. L., Feng, H. S., Yang, Z., & Watkins, H. (1998). Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci USA, 95, 14406–14410.CrossRefPubMed Sweeney, H. L., Feng, H. S., Yang, Z., & Watkins, H. (1998). Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: insights into disease pathogenesis and troponin function. Proc Natl Acad Sci USA, 95, 14406–14410.CrossRefPubMed
61.
go back to reference Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A., & Faust, L. (1994). Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem, 269, 1603–1605.PubMed Sweeney, H. L., Straceski, A. J., Leinwand, L. A., Tikunov, B. A., & Faust, L. (1994). Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem, 269, 1603–1605.PubMed
62.
go back to reference Tardiff, J. C., Hewett, T. E., Palmer, B. M., Olsson, C., Factor, S. M., Moore, R. L., et al. (1999). Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest, 104, 469–481.CrossRefPubMed Tardiff, J. C., Hewett, T. E., Palmer, B. M., Olsson, C., Factor, S. M., Moore, R. L., et al. (1999). Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest, 104, 469–481.CrossRefPubMed
63.
go back to reference Tesi, C., Colomo, F., Nencini, S., Piroddi, N., & Poggesi, C. (2000). The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J, 78, 3081–3092.CrossRefPubMed Tesi, C., Colomo, F., Nencini, S., Piroddi, N., & Poggesi, C. (2000). The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle. Biophys J, 78, 3081–3092.CrossRefPubMed
64.
go back to reference Tesi, C., Piroddi, N., Colomo, F., & Poggesi, C. (2002). Relaxation kinetics following sudden Ca2+ reduction in single myofibrils from skeletal muscle. Biophys J, 83, 2142–2151.CrossRefPubMed Tesi, C., Piroddi, N., Colomo, F., & Poggesi, C. (2002). Relaxation kinetics following sudden Ca2+ reduction in single myofibrils from skeletal muscle. Biophys J, 83, 2142–2151.CrossRefPubMed
65.
go back to reference Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H. P., et al. (1994). Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell, 77, 701–712.CrossRefPubMed Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H. P., et al. (1994). Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell, 77, 701–712.CrossRefPubMed
66.
go back to reference Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G., & Warshaw, D. M. (2000). Single molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. CircRes, 86, 737–744. Tyska, M. J., Hayes, E., Giewat, M., Seidman, C. E., Seidman, J. G., & Warshaw, D. M. (2000). Single molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. CircRes, 86, 737–744.
67.
go back to reference van der Velden, J., Klein, L. J., Zaremba, R., Boontje, N. M., Huybregts, M. A., Stooker, W., et al. (2001). Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts. Circulation, 104, 1140–1146.CrossRef van der Velden, J., Klein, L. J., Zaremba, R., Boontje, N. M., Huybregts, M. A., Stooker, W., et al. (2001). Effects of calcium, inorganic phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts. Circulation, 104, 1140–1146.CrossRef
68.
go back to reference van Dijk, S. J., Dooijes, D., dos Remedios, C., Michels, M., Lamers, J. M., Winegrad, S., et al. (2009). Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploin sufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation, 119(11), 1473–1483.CrossRefPubMed van Dijk, S. J., Dooijes, D., dos Remedios, C., Michels, M., Lamers, J. M., Winegrad, S., et al. (2009). Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploin sufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation, 119(11), 1473–1483.CrossRefPubMed
69.
go back to reference Vignier, N., Schlossarek, S., Fraysse, B., Mearini, G., Krämer, E., Pointu, H., et al. (2009). Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res, 105, 239–248.CrossRefPubMed Vignier, N., Schlossarek, S., Fraysse, B., Mearini, G., Krämer, E., Pointu, H., et al. (2009). Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res, 105, 239–248.CrossRefPubMed
70.
go back to reference Watkins, H., Conner, D., Thierfelder, L., Jarcho, J. A., MacRae, C., McKenna, W. J., et al. (1995). Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet, 11, 434–437.CrossRefPubMed Watkins, H., Conner, D., Thierfelder, L., Jarcho, J. A., MacRae, C., McKenna, W. J., et al. (1995). Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet, 11, 434–437.CrossRefPubMed
71.
go back to reference Wolff, M. R., Buck, S. H., Stoker, S. W., Greaser, M. L., & Mentzer, R. M. (1996). Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest, 98, 167–176.CrossRefPubMed Wolff, M. R., Buck, S. H., Stoker, S. W., Greaser, M. L., & Mentzer, R. M. (1996). Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest, 98, 167–176.CrossRefPubMed
72.
go back to reference Yamashita, H., Tyska, M. J., Warshaw, D. M., Lowey, S., & Trybus, K. M. (2000). Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem, 275, 28045–28052.PubMed Yamashita, H., Tyska, M. J., Warshaw, D. M., Lowey, S., & Trybus, K. M. (2000). Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem, 275, 28045–28052.PubMed
Metadata
Title
Mechanical and Energetic Consequences of HCM-Causing Mutations
Authors
Cecilia Ferrantini
Alexandra Belus
Nicoletta Piroddi
Beatrice Scellini
Chiara Tesi
Corrado Poggesi
Publication date
01-12-2009
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2009
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-009-9131-8

Other articles of this Issue 4/2009

Journal of Cardiovascular Translational Research 4/2009 Go to the issue