Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2009

01-12-2009

Hypertrophic Cardiomyopathy: Preclinical and Early Phenotype

Author: Carolyn Y. Ho

Published in: Journal of Cardiovascular Translational Research | Issue 4/2009

Login to get access

Abstract

Hypertrophic cardiomyopathy (HCM) is caused by dominant mutations in sarcomere genes. Although the diagnosis of HCM is traditionally based on identifying unexplained left ventricular hypertrophy (LVH) by cardiac imaging, LVH is not an invariable feature of disease. The expression of LVH is highly age-dependent, and LV wall thickness is typically normal during childhood. Overt cardiac hypertrophy often does not develop until adolescence or later. With genetic testing, family members who have inherited a pathogenic sarcomere mutation (G+) can be identified prior to a clinical diagnosis (LVH−). This allows characterization of a new and important subset, denoted preclinical HCM (G+/LVH−). Although there are no distinguishing morphologic features of early disease, there is evidence of myocardial dysfunction prior to the development of LVH. Otherwise healthy sarcomere mutation carriers frequently have subtle impairment of diastolic function, detectable by tissue Doppler interrogation. These findings can assist in differentiating such at-risk family members from those who did not inherit the mutation, despite the presence of normal LV wall thickness. In contrast, systolic function appears relatively preserved in preclinical HCM but impaired in overt disease, suggesting that both the sarcomere mutation and the characteristic changes in myocardial architecture (LVH, fibrosis, and disarray) are required to perturb force generation. Better characterization of preclinical HCM will identify the initial manifestations of sarcomere mutations, characterize intermediate disease phenotypes, and foster efforts to develop novel therapeutic strategies based on genetic identification of at-risk individuals and early initiation of therapy to prevent disease progression when treatment may be most effective.
Literature
1.
go back to reference Abraham, T. P., Dimaano, V. L., & Liang, H. Y. (2007). Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation, 116, 2597–609.CrossRefPubMed Abraham, T. P., Dimaano, V. L., & Liang, H. Y. (2007). Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation, 116, 2597–609.CrossRefPubMed
2.
go back to reference Bellavia, D., Pellikka, P. A., Abraham, T. P., Al-Zahrani, G. B., Dispenzieri, A., Oh, J. K., et al. (2008). Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. American Journal of Cardiology, 101, 1039–1045.CrossRefPubMed Bellavia, D., Pellikka, P. A., Abraham, T. P., Al-Zahrani, G. B., Dispenzieri, A., Oh, J. K., et al. (2008). Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. American Journal of Cardiology, 101, 1039–1045.CrossRefPubMed
3.
go back to reference Blanchard, E., Seidman, C., Seidman, J. G., LeWinter, M., & Maughan, D. (1999). Altered crossbridge kinetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 84, 475–483.PubMed Blanchard, E., Seidman, C., Seidman, J. G., LeWinter, M., & Maughan, D. (1999). Altered crossbridge kinetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 84, 475–483.PubMed
4.
go back to reference D'Hooge, J., Heimdal, A., Jamal, F., Kukulski, T., Bijnens, B., Rademakers, F., et al. (2000). Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. European Journal of Echocardiography, 1, 154–170.CrossRefPubMed D'Hooge, J., Heimdal, A., Jamal, F., Kukulski, T., Bijnens, B., Rademakers, F., et al. (2000). Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. European Journal of Echocardiography, 1, 154–170.CrossRefPubMed
5.
go back to reference Debold, E. P., Schmitt, J. P., Patlak, J. B., Beck, S. E., Moore, J. R., Seidman, J. G., et al. (2007). Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. American Journal of Physiology. Heart and Circulatory Physiology, 293, H284–H291.CrossRefPubMed Debold, E. P., Schmitt, J. P., Patlak, J. B., Beck, S. E., Moore, J. R., Seidman, J. G., et al. (2007). Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. American Journal of Physiology. Heart and Circulatory Physiology, 293, H284–H291.CrossRefPubMed
6.
go back to reference Edvardsen, T., Gerber, B. L., Garot, J., Bluemke, D. A., Lima, J. A., & Smiseth, O. A. (2002). Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation, 106, 50–56.CrossRefPubMed Edvardsen, T., Gerber, B. L., Garot, J., Bluemke, D. A., Lima, J. A., & Smiseth, O. A. (2002). Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation, 106, 50–56.CrossRefPubMed
7.
8.
go back to reference Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 106, 1351–1359.CrossRefPubMed Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 106, 1351–1359.CrossRefPubMed
9.
go back to reference Geisterfer-Lowrance, A. A., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.CrossRefPubMed Geisterfer-Lowrance, A. A., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.CrossRefPubMed
10.
go back to reference Georgakopoulos, D., Christe, M. E., Giewat, M., Seidman, C. M., Seidman, J. G., & Kass, D. A. (1999). The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation [see comments]. Nature Medicine, 5, 327–330.CrossRefPubMed Georgakopoulos, D., Christe, M. E., Giewat, M., Seidman, C. M., Seidman, J. G., & Kass, D. A. (1999). The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation [see comments]. Nature Medicine, 5, 327–330.CrossRefPubMed
11.
go back to reference Germans, T., Wilde, A. A., Dijkmans, P. A., Chai, W., Kamp, O., Pinto, Y. M., et al. (2006). Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. Journal of the American College of Cardiology, 48, 2518–2523.CrossRefPubMed Germans, T., Wilde, A. A., Dijkmans, P. A., Chai, W., Kamp, O., Pinto, Y. M., et al. (2006). Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. Journal of the American College of Cardiology, 48, 2518–2523.CrossRefPubMed
12.
go back to reference Ho, C. Y., Carlsen, C., Thune, J. J., Havndrup, O., Bundgaard, H., Farrohi, F., et al. (2009). Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy. Circulation: Cardiovascular Genetics, 2, 314–321.CrossRef Ho, C. Y., Carlsen, C., Thune, J. J., Havndrup, O., Bundgaard, H., Farrohi, F., et al. (2009). Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy. Circulation: Cardiovascular Genetics, 2, 314–321.CrossRef
13.
go back to reference Ho, C. Y., Sweitzer, N. K., McDonough, B., Maron, B. J., Casey, S. A., Seidman, J. G., et al. (2002). Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation, 105, 2992–2997.CrossRefPubMed Ho, C. Y., Sweitzer, N. K., McDonough, B., Maron, B. J., Casey, S. A., Seidman, J. G., et al. (2002). Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation, 105, 2992–2997.CrossRefPubMed
14.
go back to reference Koyama, J., Ray-Sequin, P. A., & Falk, R. H. (2003). Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation, 107, 2446–2452.CrossRefPubMed Koyama, J., Ray-Sequin, P. A., & Falk, R. H. (2003). Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation, 107, 2446–2452.CrossRefPubMed
15.
go back to reference Maron, B. J., Seidman, J. G., & Seidman, C. E. (2004). Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 44, 2125–2132.CrossRefPubMed Maron, B. J., Seidman, J. G., & Seidman, C. E. (2004). Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 44, 2125–2132.CrossRefPubMed
16.
go back to reference Mirsky, I., & Parmley, W. W. (1973). Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circulation Research, 33, 233–243.PubMed Mirsky, I., & Parmley, W. W. (1973). Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circulation Research, 33, 233–243.PubMed
17.
go back to reference Moon, J. C., Mogensen, J., Elliott, P. M., Smith, G. C., Elkington, A. G., Prasad, S. K., et al. (2005). Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart, 91, 1036–1040.CrossRefPubMed Moon, J. C., Mogensen, J., Elliott, P. M., Smith, G. C., Elkington, A. G., Prasad, S. K., et al. (2005). Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart, 91, 1036–1040.CrossRefPubMed
18.
go back to reference Nagueh, S. F., Bachinski, L. L., Meyer, D., Hill, R., Zoghbi, W. A., Tam, J. W., et al. (2001). Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation, 104, 128–130.PubMed Nagueh, S. F., Bachinski, L. L., Meyer, D., Hill, R., Zoghbi, W. A., Tam, J. W., et al. (2001). Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation, 104, 128–130.PubMed
19.
go back to reference Nagueh, S. F., Kopelen, H. A., Lim, D. S., Zoghbi, W. A., Quinones, M. A., Roberts, R., et al. (2000). Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 102, 1346–1350.PubMed Nagueh, S. F., Kopelen, H. A., Lim, D. S., Zoghbi, W. A., Quinones, M. A., Roberts, R., et al. (2000). Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 102, 1346–1350.PubMed
20.
go back to reference Niimura, H., Bachinski, L. L., Sangwatanaroj, S., Watkins, H., Chudley, A. E., McKenna, W., et al. (1998). Mutations in the gene for cardiac myosin-binding protein C and late- onset familial hypertrophic cardiomyopathy [see comments]. New England Journal of Medicine, 338, 1248–1257.CrossRefPubMed Niimura, H., Bachinski, L. L., Sangwatanaroj, S., Watkins, H., Chudley, A. E., McKenna, W., et al. (1998). Mutations in the gene for cardiac myosin-binding protein C and late- onset familial hypertrophic cardiomyopathy [see comments]. New England Journal of Medicine, 338, 1248–1257.CrossRefPubMed
21.
go back to reference Richard, P., Villard, E., Charron, P., & Isnard, R. (2006). The genetic bases of cardiomyopathies. Journal of the American College of Cardiology, 48, A79–A89.CrossRef Richard, P., Villard, E., Charron, P., & Isnard, R. (2006). The genetic bases of cardiomyopathies. Journal of the American College of Cardiology, 48, A79–A89.CrossRef
22.
go back to reference Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell, 104, 557–567.CrossRefPubMed Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell, 104, 557–567.CrossRefPubMed
23.
go back to reference Semsarian, C., Ahmad, I., Giewat, M., Georgakopoulos, D., Schmitt, J. P., McConnell, B. K., et al. (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. Journal of Clinical Investigation, 109, 1013–1020.PubMed Semsarian, C., Ahmad, I., Giewat, M., Georgakopoulos, D., Schmitt, J. P., McConnell, B. K., et al. (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. Journal of Clinical Investigation, 109, 1013–1020.PubMed
24.
go back to reference Serri, K., Reant, P., Lafitte, M., Berhouet, M., Le Bouffos, V., Roudaut, R., et al. (2006). Global and regional myocardial function quantification by two-dimensional strain: Application in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 47, 1175–1181.CrossRefPubMed Serri, K., Reant, P., Lafitte, M., Berhouet, M., Le Bouffos, V., Roudaut, R., et al. (2006). Global and regional myocardial function quantification by two-dimensional strain: Application in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 47, 1175–1181.CrossRefPubMed
25.
go back to reference Spindler, M., Saupe, K. W., Christe, M. E., Sweeney, H. L., Seidman, C. E., Seidman, J. G., et al. (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 101, 1775–1783.CrossRefPubMed Spindler, M., Saupe, K. W., Christe, M. E., Sweeney, H. L., Seidman, C. E., Seidman, J. G., et al. (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 101, 1775–1783.CrossRefPubMed
26.
go back to reference Strijack, B., Ariyarajah, V., Soni, R., Jassal, D. S., Greenberg, C. R., McGregor, R., et al. (2008). Late gadolinium enhancement cardiovascular magnetic resonance in genotyped hypertrophic cardiomyopathy with normal phenotype. Journal of Cardiovascular Magnetic Resonance, 10, 58.CrossRefPubMed Strijack, B., Ariyarajah, V., Soni, R., Jassal, D. S., Greenberg, C. R., McGregor, R., et al. (2008). Late gadolinium enhancement cardiovascular magnetic resonance in genotyped hypertrophic cardiomyopathy with normal phenotype. Journal of Cardiovascular Magnetic Resonance, 10, 58.CrossRefPubMed
27.
go back to reference Sutherland, G. R., Di Salvo, G., Claus, P., D'Hooge, J., & Bijnens, B. (2004). Strain and strain rate imaging: A new clinical approach to quantifying regional myocardial function. Journal of the American Society of Echocardiography, 17, 788–802.CrossRefPubMed Sutherland, G. R., Di Salvo, G., Claus, P., D'Hooge, J., & Bijnens, B. (2004). Strain and strain rate imaging: A new clinical approach to quantifying regional myocardial function. Journal of the American Society of Echocardiography, 17, 788–802.CrossRefPubMed
28.
go back to reference Tardiff, J. C. (2005). Sarcomeric proteins and familial hypertrophic cardiomyopathy: Linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Failure Reviews, 10, 237–248.CrossRefPubMed Tardiff, J. C. (2005). Sarcomeric proteins and familial hypertrophic cardiomyopathy: Linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Failure Reviews, 10, 237–248.CrossRefPubMed
Metadata
Title
Hypertrophic Cardiomyopathy: Preclinical and Early Phenotype
Author
Carolyn Y. Ho
Publication date
01-12-2009
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2009
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-009-9124-7

Other articles of this Issue 4/2009

Journal of Cardiovascular Translational Research 4/2009 Go to the issue