Skip to main content
Top
Published in: Neuroscience Bulletin 4/2019

01-08-2019 | Cytokines | Original Article

Thymosin Alpha-1 Inhibits Complete Freund’s Adjuvant-Induced Pain and Production of Microglia-Mediated Pro-inflammatory Cytokines in Spinal Cord

Authors: Yunlong Xu, Yanjun Jiang, Lin Wang, Jiahua Huang, Junmao Wen, Hang Lv, Xiaoli Wu, Chaofan Wan, Chuanxin Yu, Wenjie Zhang, Jiaying Zhao, Yinqi Zhou, Yongjun Chen

Published in: Neuroscience Bulletin | Issue 4/2019

Login to get access

Abstract

Activation of inflammatory responses regulates the transmission of pain pathways through an integrated network in the peripheral and central nervous systems. The immunopotentiator thymosin alpha-1 (Tα1) has recently been reported to have anti-inflammatory and neuroprotective functions in rodents. However, how Tα1 affects inflammatory pain remains unclear. In the present study, intraperitoneal injection of Tα1 attenuated complete Freund’s adjuvant (CFA)-induced pain hypersensitivity, and decreased the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in inflamed skin and the spinal cord. We found that CFA-induced peripheral inflammation evoked strong microglial activation, but the effect was reversed by Tα1. Notably, Tα1 reversed the CFA-induced up-regulation of vesicular glutamate transporter (VGLUT) and down-regulated the vesicular γ-aminobutyric acid transporter (VGAT) in the spinal cord. Taken together, these results suggest that Tα1 plays a therapeutic role in inflammatory pain and in the modulation of microglia-induced pro-inflammatory cytokine production in addition to mediation of VGLUT and VGAT expression in the spinal cord.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ghasemlou N, Chiu IM, Julien JP, Woolf CJ. CD11b + Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 2015, 112: E6808–E6817.CrossRefPubMedPubMedCentral Ghasemlou N, Chiu IM, Julien JP, Woolf CJ. CD11b + Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 2015, 112: E6808–E6817.CrossRefPubMedPubMedCentral
4.
go back to reference Mifflin KA, Kerr BJ. The transition from acute to chronic pain: understanding how different biological systems interact. Can J Anaesth 2014, 61: 112–122.CrossRefPubMed Mifflin KA, Kerr BJ. The transition from acute to chronic pain: understanding how different biological systems interact. Can J Anaesth 2014, 61: 112–122.CrossRefPubMed
5.
go back to reference Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 2006, 112: 116–138. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 2006, 112: 116–138.
6.
go back to reference Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A 2005, 102: 1755–1760.CrossRefPubMedPubMedCentral Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A 2005, 102: 1755–1760.CrossRefPubMedPubMedCentral
7.
go back to reference Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004, 361: 184–187.CrossRefPubMed Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: Peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004, 361: 184–187.CrossRefPubMed
8.
go back to reference Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 2010, 16: 592–597.CrossRefPubMedPubMedCentral Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 2010, 16: 592–597.CrossRefPubMedPubMedCentral
9.
go back to reference De Leo JA, Tanga FY, Tawfk VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 2004, 10: 40–52. De Leo JA, Tanga FY, Tawfk VL. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 2004, 10: 40–52.
10.
go back to reference Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368.CrossRefPubMed Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361–1368.CrossRefPubMed
11.
go back to reference Xpudala L. Interactions between the immune and nervous systems in pain. Nat Med 2010, 16: 1267–1276.CrossRef Xpudala L. Interactions between the immune and nervous systems in pain. Nat Med 2010, 16: 1267–1276.CrossRef
12.
go back to reference Huang CP, Chen HN, Su HL, Hsieh CL, Chen WH, Lai ZR, et al. Electroacupuncture reduces carrageenan- and CFA-induced inflammatory pain accompanied by changing the expression of Nav1.7 and Nav1.8, rather than Nav1.9, in mice dorsal root ganglia. Evid Based Complement Alternat Med 2013, 2013: 312184. Huang CP, Chen HN, Su HL, Hsieh CL, Chen WH, Lai ZR, et al. Electroacupuncture reduces carrageenan- and CFA-induced inflammatory pain accompanied by changing the expression of Nav1.7 and Nav1.8, rather than Nav1.9, in mice dorsal root ganglia. Evid Based Complement Alternat Med 2013, 2013: 312184.
13.
go back to reference Goldstein AL, Goldstein AL. From lab to bedside: emerging clinical applications of thymosin alpha 1. Expert Opin Biol Ther 2009, 9: 593–608.CrossRefPubMed Goldstein AL, Goldstein AL. From lab to bedside: emerging clinical applications of thymosin alpha 1. Expert Opin Biol Ther 2009, 9: 593–608.CrossRefPubMed
14.
go back to reference Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S, et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 2006, 108: 2265–2274.CrossRefPubMed Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S, et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 2006, 108: 2265–2274.CrossRefPubMed
15.
go back to reference Turrini P, Aloe L. Evidence that endogenous thymosin alpha-1 is present in the rat central nervous system. Neurochem Int 1999, 35: 463–470.CrossRefPubMed Turrini P, Aloe L. Evidence that endogenous thymosin alpha-1 is present in the rat central nervous system. Neurochem Int 1999, 35: 463–470.CrossRefPubMed
16.
go back to reference Yang S, Liu ZW, Zhou WX, Zhang YX. Thymosin alpha-1 modulates excitatory synaptic transmission in cultured hippocampal neurons in rats. Neurosci Lett 2003, 350: 81–84.CrossRefPubMed Yang S, Liu ZW, Zhou WX, Zhang YX. Thymosin alpha-1 modulates excitatory synaptic transmission in cultured hippocampal neurons in rats. Neurosci Lett 2003, 350: 81–84.CrossRefPubMed
17.
go back to reference Wang G, He F, Xu Y, Zhang Y, Wang X, Zhou C, et al. Immunopotentiator thymosin alpha-1 promotes neurogenesis and cognition in the developing mouse via a systemic Th1 bias. Neurosci Bull 2017, 33: 675–684.CrossRefPubMedPubMedCentral Wang G, He F, Xu Y, Zhang Y, Wang X, Zhou C, et al. Immunopotentiator thymosin alpha-1 promotes neurogenesis and cognition in the developing mouse via a systemic Th1 bias. Neurosci Bull 2017, 33: 675–684.CrossRefPubMedPubMedCentral
18.
go back to reference Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19: 312–318.CrossRefPubMed Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19: 312–318.CrossRefPubMed
19.
go back to reference Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 2006, 187 : 321–327.CrossRef Hansson E. Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 2006, 187 : 321–327.CrossRef
20.
go back to reference Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2012, 61: 71–90.CrossRefPubMed Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2012, 61: 71–90.CrossRefPubMed
22.
go back to reference Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, et al. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci: 2014, 71: 999–1015.CrossRefPubMed Rizzo F, Riboldi G, Salani S, Nizzardo M, Simone C, Corti S, et al. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci: 2014, 71: 999–1015.CrossRefPubMed
23.
go back to reference Raghavendra V, Tanga FY, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 2003, 306: 624–630.CrossRefPubMed Raghavendra V, Tanga FY, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 2003, 306: 624–630.CrossRefPubMed
24.
go back to reference Raghavendra V, Tanga F, Rutkowski MD, DeLeo JA. Antihyperalgesic and morphine sparing actions of propentofylline following nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain 2003, 104: 655–664.CrossRefPubMed Raghavendra V, Tanga F, Rutkowski MD, DeLeo JA. Antihyperalgesic and morphine sparing actions of propentofylline following nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain 2003, 104: 655–664.CrossRefPubMed
25.
go back to reference Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013, 716: 106–119.CrossRefPubMed Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol 2013, 716: 106–119.CrossRefPubMed
26.
go back to reference Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003, 2: 973–985.CrossRefPubMed Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003, 2: 973–985.CrossRefPubMed
27.
go back to reference Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1β expression that correlates with pain behavior in the rat. Brain Res 1999, 829: 209–221.CrossRefPubMed Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1β expression that correlates with pain behavior in the rat. Brain Res 1999, 829: 209–221.CrossRefPubMed
28.
go back to reference Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28: 5189–5194.CrossRefPubMedPubMedCentral Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28: 5189–5194.CrossRefPubMedPubMedCentral
29.
go back to reference Zhang L, Berta T, Xu ZZ, Liu T, Park JY, Ji RR. TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 2011, 152: 419–427.CrossRefPubMed Zhang L, Berta T, Xu ZZ, Liu T, Park JY, Ji RR. TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain 2011, 152: 419–427.CrossRefPubMed
30.
go back to reference Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 2007, 27: 6006–6018.CrossRefPubMedPubMedCentral Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 2007, 27: 6006–6018.CrossRefPubMedPubMedCentral
31.
go back to reference Xie W, Strong JA, Zhang JM.  Early  blockade  of  injured  primary  sensory  afferents  reduces  glial  cell  activation  in  two  rat  neuropathic  pain  models. Neuroscience 2009, 160: 847–857. Xie W, Strong JA, Zhang JM.  Early  blockade  of  injured  primary  sensory  afferents  reduces  glial  cell  activation  in  two  rat  neuropathic  pain  models. Neuroscience 2009, 160: 847–857.
32.
go back to reference Vale ML, Marques JB, Moreira CA, Rocha FA, Ferreira SH, Poole S, et al. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J Pharmacol Exp Ther 2003, 304: 102–108.CrossRefPubMed Vale ML, Marques JB, Moreira CA, Rocha FA, Ferreira SH, Poole S, et al. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J Pharmacol Exp Ther 2003, 304: 102–108.CrossRefPubMed
33.
go back to reference Fremeau RTJ, Voglmaier S, Seal RP, Edwards RH. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004, 27: 98–103.CrossRefPubMed Fremeau RTJ, Voglmaier S, Seal RP, Edwards RH. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 2004, 27: 98–103.CrossRefPubMed
34.
go back to reference Brumovsky P, Watanabe M, Hökfelt T. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury. Neuroscience 2007, 147: 469–490.CrossRefPubMed Brumovsky P, Watanabe M, Hökfelt T. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury. Neuroscience 2007, 147: 469–490.CrossRefPubMed
35.
go back to reference Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F. Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 2004, 468: 380–394.CrossRefPubMed Landry M, Bouali-Benazzouz R, El Mestikawy S, Ravassard P, Nagy F. Expression of vesicular glutamate transporters in rat lumbar spinal cord, with a note on dorsal root ganglia. J Comp Neurol 2004, 468: 380–394.CrossRefPubMed
36.
go back to reference Aubrey KR. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles. Neurochem Int 2016, 98: 94–102.CrossRefPubMed Aubrey KR. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles. Neurochem Int 2016, 98: 94–102.CrossRefPubMed
37.
go back to reference Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.CrossRefPubMedPubMedCentral Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci 2002, 22: 6724–6731.CrossRefPubMedPubMedCentral
38.
go back to reference Muller F, Heinke B, Sandkuhler J. Reduction of glycine receptor mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation. Neuroscience 2003, 122: 799–805.CrossRefPubMed Muller F, Heinke B, Sandkuhler J. Reduction of glycine receptor mediated miniature inhibitory postsynaptic currents in rat spinal lamina I neurons after peripheral inflammation. Neuroscience 2003, 122: 799–805.CrossRefPubMed
39.
go back to reference Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004, 304: 884–887.CrossRefPubMed Harvey RJ, Depner UB, Wassle H, Ahmadi S, Heindl C, Reinold H, et al. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 2004, 304: 884–887.CrossRefPubMed
40.
go back to reference Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003, 26: 696–705.CrossRefPubMed Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003, 26: 696–705.CrossRefPubMed
41.
go back to reference Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769.CrossRefPubMed Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000, 288: 1765–1769.CrossRefPubMed
42.
go back to reference Romani L, Oikonomou V, Moretti S, Iannitti RG, D’Adamo MC, Villella VR. Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med 2017, 23: 590–600.CrossRefPubMedPubMedCentral Romani L, Oikonomou V, Moretti S, Iannitti RG, D’Adamo MC, Villella VR. Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med 2017, 23: 590–600.CrossRefPubMedPubMedCentral
43.
go back to reference Wang W, Gu J, Li YQ, Tao YX. Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 2011, 7: 16.PubMedPubMedCentral Wang W, Gu J, Li YQ, Tao YX. Are voltage-gated sodium channels on the dorsal root ganglion involved in the development of neuropathic pain? Mol Pain 2011, 7: 16.PubMedPubMedCentral
44.
go back to reference La Porta C, Bura SA, Aracil-Fernández A, Manzanares J, Maldonado R. Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. Pain 2013, 154: 160–174.CrossRefPubMed La Porta C, Bura SA, Aracil-Fernández A, Manzanares J, Maldonado R. Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. Pain 2013, 154: 160–174.CrossRefPubMed
45.
go back to reference Garrison SR, Dietrich A, Stucky CL. TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 2011, 107: 913–922.CrossRefPubMedPubMedCentral Garrison SR, Dietrich A, Stucky CL. TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 2011, 107: 913–922.CrossRefPubMedPubMedCentral
46.
go back to reference Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 2014, 159: 1417–1432.CrossRefPubMedPubMedCentral Duan B, Cheng L, Bourane S, Britz O, Padilla C, Garcia-Campmany L, et al. Identification of spinal circuits transmitting and gating mechanical pain. Cell 2014, 159: 1417–1432.CrossRefPubMedPubMedCentral
47.
go back to reference Gao F, Xiang HC, Li HP, Jia M, Pan XL, Pan HL, et al. Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain Behav Immun 2018, 67: 91–100.CrossRefPubMed Gao F, Xiang HC, Li HP, Jia M, Pan XL, Pan HL, et al. Electroacupuncture inhibits NLRP3 inflammasome activation through CB2 receptors in inflammatory pain. Brain Behav Immun 2018, 67: 91–100.CrossRefPubMed
48.
go back to reference Cui L, Miao X, Liang L, Abdus-Saboor I, Olson W, Fleming MS, et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 2016, 91: 1413.CrossRefPubMed Cui L, Miao X, Liang L, Abdus-Saboor I, Olson W, Fleming MS, et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 2016, 91: 1413.CrossRefPubMed
49.
go back to reference Du JY, Fang JQ, Liang Y, Fang JF. Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain. Brain Res Bull 2014, 108: 27–36.CrossRefPubMed Du JY, Fang JQ, Liang Y, Fang JF. Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain. Brain Res Bull 2014, 108: 27–36.CrossRefPubMed
50.
go back to reference Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glialactivation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 2004, 20: 467–473.CrossRefPubMed Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glialactivation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 2004, 20: 467–473.CrossRefPubMed
51.
go back to reference Cui L, Miao X, Liang L, Abdus-Saboor I, Olson W, Fleming MS, et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 2016, 91: 1413.CrossRefPubMed Cui L, Miao X, Liang L, Abdus-Saboor I, Olson W, Fleming MS, et al. Identification of early RET+ deep dorsal spinal cord interneurons in gating pain. Neuron 2016, 91: 1413.CrossRefPubMed
52.
go back to reference Wiedemann F1, Link R, Pumpe K, Jacobshagen U, Schaefer HE, Wiesmüller KH, et al. Histopathological studies on the local reactions induced by complete Freund’s adjuvant (CFA), bacterial lipopolysaccharide (LPS), and synthetic lipopeptide (P3C) conjugates. J Pathol 1991, 164: 265–271. Wiedemann F1, Link R, Pumpe K, Jacobshagen U, Schaefer HE, Wiesmüller KH, et al. Histopathological studies on the local reactions induced by complete Freund’s adjuvant (CFA), bacterial lipopolysaccharide (LPS), and synthetic lipopeptide (P3C) conjugates. J Pathol 1991, 164: 265–271.
53.
go back to reference Shah NM, Mangat GK, Balakrishnan C, Buch VI, Joshi VR. Accidental selfinjection with Freund’s complete adjuvant. J Assoc Physicians India 2001, 49: 366–368.PubMed Shah NM, Mangat GK, Balakrishnan C, Buch VI, Joshi VR. Accidental selfinjection with Freund’s complete adjuvant. J Assoc Physicians India 2001, 49: 366–368.PubMed
54.
55.
go back to reference Miller RJ, Jung H, Bhangoo SK, White FA. Cytokine and chemokine regulation of sensory neuron function. Handbook Exp Pharmacol 2009, 194: 417–449.CrossRef Miller RJ, Jung H, Bhangoo SK, White FA. Cytokine and chemokine regulation of sensory neuron function. Handbook Exp Pharmacol 2009, 194: 417–449.CrossRef
56.
go back to reference Parada, CA, Yeh JJ, Joseph EK, Levine JD. Tumor necrosis factor receptor type-1 in sensory neurons contributes to induction of chronic enhancement of inflammatory hyperalgesia in rat. Eur J Neurosci 2003, 17: 1847–1852.CrossRefPubMed Parada, CA, Yeh JJ, Joseph EK, Levine JD. Tumor necrosis factor receptor type-1 in sensory neurons contributes to induction of chronic enhancement of inflammatory hyperalgesia in rat. Eur J Neurosci 2003, 17: 1847–1852.CrossRefPubMed
57.
go back to reference Obreja O, Rathee PK, Lips KS, Distler C, Kress M. IL-1 beta potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J 2002, 16: 1497–1503.CrossRefPubMed Obreja O, Rathee PK, Lips KS, Distler C, Kress M. IL-1 beta potentiates heat-activated currents in rat sensory neurons: involvement of IL-1RI, tyrosine kinase, and protein kinase C. FASEB J 2002, 16: 1497–1503.CrossRefPubMed
58.
go back to reference Ferreira SH, Lorenzetti BB, Bristow AF, Poole S. Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 1988, 334: 698–700.CrossRefPubMed Ferreira SH, Lorenzetti BB, Bristow AF, Poole S. Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 1988, 334: 698–700.CrossRefPubMed
59.
go back to reference Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 1997, 121: 417–424.CrossRefPubMedPubMedCentral Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 1997, 121: 417–424.CrossRefPubMedPubMedCentral
60.
go back to reference Cunha JM, Sachs D, Canetti CA, Poole S, Ferreira SH, Cunha FQ. The critical role of leukotriene B4 in antigen-induced mechanical hyperalgesia in immunised rats. Br J Pharmacol 2003, 139: 1135–1145.CrossRefPubMedPubMedCentral Cunha JM, Sachs D, Canetti CA, Poole S, Ferreira SH, Cunha FQ. The critical role of leukotriene B4 in antigen-induced mechanical hyperalgesia in immunised rats. Br J Pharmacol 2003, 139: 1135–1145.CrossRefPubMedPubMedCentral
61.
go back to reference Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 2008, 28: 10482–10495.CrossRefPubMedPubMedCentral Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci 2008, 28: 10482–10495.CrossRefPubMedPubMedCentral
62.
63.
go back to reference Vila M, Jackson-Lewis V, Guegan C, Wu D, Teismann P, Choi DK, et al. The role of glial cells in Parkinsons’s disease. Curr Opin Neurol 2001, 14: 483–489.CrossRefPubMed Vila M, Jackson-Lewis V, Guegan C, Wu D, Teismann P, Choi DK, et al. The role of glial cells in Parkinsons’s disease. Curr Opin Neurol 2001, 14: 483–489.CrossRefPubMed
65.
go back to reference Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 2012, 234: 262–270.CrossRefPubMed Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 2012, 234: 262–270.CrossRefPubMed
66.
go back to reference Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115: 71–83. CrossRefPubMed Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115: 71–83. CrossRefPubMed
68.
go back to reference Liao HY, Hsieh CL, Huang CP, Lin YW. Electroacupuncture attenuates CFA-induced inflammatory pain by suppressing Nav1.8 through S100B, TRPV1, opioid, and adenosine pathways in mice. Sci Rep 2017, 7: 42531. Liao HY, Hsieh CL, Huang CP, Lin YW. Electroacupuncture attenuates CFA-induced inflammatory pain by suppressing Nav1.8 through S100B, TRPV1, opioid, and adenosine pathways in mice. Sci Rep 2017, 7: 42531.
69.
go back to reference Reeve AJ, Patel S, Fox A, Walker K, Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 2000, 4: 247–257. Reeve AJ, Patel S, Fox A, Walker K, Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain 2000, 4: 247–257.
70.
go back to reference Sung CS, Wen ZH, Chang WK, Ho ST, Tsai SK, Chang YC, et al. Intrathecal interleukin-1beta administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res 2004, 1015: 145–153.CrossRefPubMed Sung CS, Wen ZH, Chang WK, Ho ST, Tsai SK, Chang YC, et al. Intrathecal interleukin-1beta administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res 2004, 1015: 145–153.CrossRefPubMed
71.
go back to reference Zhu MD, Zhao LX, Wang XT, Gao YJ, Zhang ZJ. Ligustilide inhibits microglia-mediated proinflammatory cytokines production and inflammatory pain. Brain Res Bull 2014, 109: 54–60.CrossRefPubMed Zhu MD, Zhao LX, Wang XT, Gao YJ, Zhang ZJ. Ligustilide inhibits microglia-mediated proinflammatory cytokines production and inflammatory pain. Brain Res Bull 2014, 109: 54–60.CrossRefPubMed
72.
go back to reference Duan B, Cheng L, Ma Q. Spinal circuits transmitting mechanical pain and itch. Neurosci Bull 2018, 34: 186–193.CrossRefPubMed Duan B, Cheng L, Ma Q. Spinal circuits transmitting mechanical pain and itch. Neurosci Bull 2018, 34: 186–193.CrossRefPubMed
73.
go back to reference Zeilhofer HU. The glycinergic control of spinal pain processing. Cell Mol Life Sci 2005, 62: 2027–2035.CrossRefPubMed Zeilhofer HU. The glycinergic control of spinal pain processing. Cell Mol Life Sci 2005, 62: 2027–2035.CrossRefPubMed
74.
go back to reference Torsney C, Macdermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843.CrossRefPubMedPubMedCentral Torsney C, Macdermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006, 26: 1833–1843.CrossRefPubMedPubMedCentral
75.
go back to reference Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, et al. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice-effects of peripheral axotomy or hindpaw inflammation. Neuroscience 2013, 248: 95–111.CrossRefPubMed Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, et al. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice-effects of peripheral axotomy or hindpaw inflammation. Neuroscience 2013, 248: 95–111.CrossRefPubMed
76.
go back to reference Wang ZT, Yu G, Wang HS, Yi SP, Su RB, Gong ZH. Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res 2015, 1624: 515–524.CrossRefPubMed Wang ZT, Yu G, Wang HS, Yi SP, Su RB, Gong ZH. Changes in VGLUT2 expression and function in pain-related supraspinal regions correlate with the pathogenesis of neuropathic pain in a mouse spared nerve injury model. Brain Res 2015, 1624: 515–524.CrossRefPubMed
Metadata
Title
Thymosin Alpha-1 Inhibits Complete Freund’s Adjuvant-Induced Pain and Production of Microglia-Mediated Pro-inflammatory Cytokines in Spinal Cord
Authors
Yunlong Xu
Yanjun Jiang
Lin Wang
Jiahua Huang
Junmao Wen
Hang Lv
Xiaoli Wu
Chaofan Wan
Chuanxin Yu
Wenjie Zhang
Jiaying Zhao
Yinqi Zhou
Yongjun Chen
Publication date
01-08-2019
Publisher
Springer Singapore
Keyword
Cytokines
Published in
Neuroscience Bulletin / Issue 4/2019
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-019-00346-z

Other articles of this Issue 4/2019

Neuroscience Bulletin 4/2019 Go to the issue