Skip to main content
Top
Published in: Neuroscience Bulletin 4/2019

01-08-2019 | Schizophrenia | Original Article

Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms

Authors: Lingling Cui, Fei Wang, Miao Chang, Zhiyang Yin, Guoguang Fan, Yanzhuo Song, Yange Wei, Yixiao Xu, Yifan Zhang, Yanqing Tang, Xiaohong Gong, Ke Xu

Published in: Neuroscience Bulletin | Issue 4/2019

Login to get access

Abstract

ZNF804A rs1344706 has been identified as one of the risk genes for schizophrenia. However, the neural mechanisms underlying this association are unknown. Given that ZNF804A upregulates the expression of COMT, we hypothesized that ZNF804A may influence brain activity by interacting with COMT. Here, we genotyped ZNF804A rs1344706 and COMT rs4680 in 218 healthy Chinese participants. Amplitudes of low-frequency fluctuations (ALFFs) were applied to analyze the main and interaction effects of ZNF804A rs1344706 and COMT rs4680. The ALFFs of the bilateral dorsolateral prefrontal cortex showed a significant ZNF804A rs1344706 × COMT rs4680 interaction, manifesting as a U-shaped modulation, presumably by dopamine signaling. Significant main effects were also found. These findings suggest that ZNF804A affects the resting-state functional activation by interacting with COMT, and may improve our understanding of the neurobiological effects of ZNF804A and its association with schizophrenia.
Appendix
Available only for authorised users
Literature
1.
go back to reference International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460: 748–752.CrossRefPubMedCentral International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460: 748–752.CrossRefPubMedCentral
2.
go back to reference Kauppi K, Westlye LT, Tesli M, Bettella F, Brandt CL, Mattingsdal M, et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 2015, 41: 736–743.CrossRefPubMed Kauppi K, Westlye LT, Tesli M, Bettella F, Brandt CL, Mattingsdal M, et al. Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 2015, 41: 736–743.CrossRefPubMed
3.
go back to reference Walton E, Turner J, Gollub RL, Manoach DS, Yendiki A, Ho BC, et al. Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 2013, 39: 703–711.CrossRefPubMed Walton E, Turner J, Gollub RL, Manoach DS, Yendiki A, Ho BC, et al. Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 2013, 39: 703–711.CrossRefPubMed
4.
go back to reference Yang Y, Yu H, Li W, Liu B, Zhang H, Ding S, et al. Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population. Behav Brain Funct 2018, 14: 1.CrossRefPubMedPubMedCentral Yang Y, Yu H, Li W, Liu B, Zhang H, Ding S, et al. Association between cerebral dopamine neurotrophic factor (CDNF) 2 polymorphisms and schizophrenia susceptibility and symptoms in the Han Chinese population. Behav Brain Funct 2018, 14: 1.CrossRefPubMedPubMedCentral
5.
go back to reference Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004, 74: 1–58.CrossRefPubMed Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004, 74: 1–58.CrossRefPubMed
6.
go back to reference Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999, 51: 593–628.PubMed Mannisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 1999, 51: 593–628.PubMed
7.
go back to reference Elton A, Smith CT, Parrish MH, Boettiger CA. COMT Val(158)Met polymorphism exerts sex-dependent effects on fMRI measures of brain function. Front Hum Neurosci 2017, 11: 578.CrossRefPubMedPubMedCentral Elton A, Smith CT, Parrish MH, Boettiger CA. COMT Val(158)Met polymorphism exerts sex-dependent effects on fMRI measures of brain function. Front Hum Neurosci 2017, 11: 578.CrossRefPubMedPubMedCentral
8.
go back to reference Ojala KE, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, Ter Huurne NP, et al. Dopaminergic drug effects on probability weighting during risky decision making. eNeuro 2018, 5. Ojala KE, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, Ter Huurne NP, et al. Dopaminergic drug effects on probability weighting during risky decision making. eNeuro 2018, 5.
9.
go back to reference Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, et al. Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 2013, 8: e78697.CrossRefPubMedPubMedCentral Tian T, Qin W, Liu B, Wang D, Wang J, Jiang T, et al. Catechol-O-methyltransferase Val158Met polymorphism modulates gray matter volume and functional connectivity of the default mode network. PLoS One 2013, 8: e78697.CrossRefPubMedPubMedCentral
10.
go back to reference Zhao F, Zhang X, Qin W, Liu F, Wang Q, Xu Q, et al. Network-dependent modulation of COMT and DRD2 polymorphisms in healthy young adults. Sci Rep 2015, 5: 17996.CrossRefPubMedPubMedCentral Zhao F, Zhang X, Qin W, Liu F, Wang Q, Xu Q, et al. Network-dependent modulation of COMT and DRD2 polymorphisms in healthy young adults. Sci Rep 2015, 5: 17996.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009, 324: 605.CrossRefPubMed Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, et al. Neural mechanisms of a genome-wide supported psychosis variant. Science 2009, 324: 605.CrossRefPubMed
13.
go back to reference O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008, 40: 1053–1055.CrossRefPubMed O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008, 40: 1053–1055.CrossRefPubMed
14.
go back to reference Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluation of European schizophrenia GWAS loci in Asian populations via comprehensive meta-analyses. Mol Neurobiol 2017, 54: 4071–4080.CrossRefPubMed Xiao X, Luo XJ, Chang H, Liu Z, Li M. Evaluation of European schizophrenia GWAS loci in Asian populations via comprehensive meta-analyses. Mol Neurobiol 2017, 54: 4071–4080.CrossRefPubMed
15.
go back to reference Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 2012, 7: e32404.CrossRefPubMedPubMedCentral Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One 2012, 7: e32404.CrossRefPubMedPubMedCentral
16.
go back to reference Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Wightman RM, et al. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci 2009, 30: 1117–1127.CrossRefPubMedPubMedCentral Owesson-White CA, Ariansen J, Stuber GD, Cleaveland NA, Cheer JF, Wightman RM, et al. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur J Neurosci 2009, 30: 1117–1127.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Oh Y, Park C, Kim DH, Shin H, Kang YM, DeWaele M, et al. Monitoring in vivo changes in tonic extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal Chem 2016, 88: 10962–10970.CrossRefPubMed Oh Y, Park C, Kim DH, Shin H, Kang YM, DeWaele M, et al. Monitoring in vivo changes in tonic extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal Chem 2016, 88: 10962–10970.CrossRefPubMed
19.
go back to reference Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004, 75: 807–821.CrossRefPubMedPubMedCentral Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004, 75: 807–821.CrossRefPubMedPubMedCentral
20.
go back to reference Huang XQ, Lui S, Deng W, Chan RC, Wu QZ, Jiang LJ, et al. Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage 2010, 49: 2901–2906.CrossRefPubMed Huang XQ, Lui S, Deng W, Chan RC, Wu QZ, Jiang LJ, et al. Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage 2010, 49: 2901–2906.CrossRefPubMed
21.
go back to reference Yang H, Long XY, Yang Y, Yan H, Zhu CZ, Zhou XP, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007, 36: 144–152.CrossRefPubMed Yang H, Long XY, Yang Y, Yan H, Zhu CZ, Zhou XP, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007, 36: 144–152.CrossRefPubMed
22.
go back to reference Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007, 29: 83–91.CrossRefPubMed Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007, 29: 83–91.CrossRefPubMed
23.
24.
go back to reference Di X, Kannurpatti SS, Rypma B, Biswal BB. Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex 2013, 23: 255–263.CrossRefPubMed Di X, Kannurpatti SS, Rypma B, Biswal BB. Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex 2013, 23: 255–263.CrossRefPubMed
25.
go back to reference Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N, et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol 2013, 70: 845–851.CrossRefPubMed Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N, et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurol 2013, 70: 845–851.CrossRefPubMed
26.
go back to reference Salvador R, Vega D, Pascual JC, Marco J, Canales-Rodriguez EJ, Aguilar S, et al. Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biol Psychiatry 2016, 79: 107–116.CrossRefPubMed Salvador R, Vega D, Pascual JC, Marco J, Canales-Rodriguez EJ, Aguilar S, et al. Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biol Psychiatry 2016, 79: 107–116.CrossRefPubMed
27.
go back to reference Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412: 150–157.CrossRefPubMed Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001, 412: 150–157.CrossRefPubMed
28.
go back to reference Fryer SL, Roach BJ, Ford JM, Turner JA, van Erp TG, Voyvodic J, et al. Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology 2015, 40: 2705–2714.CrossRefPubMedPubMedCentral Fryer SL, Roach BJ, Ford JM, Turner JA, van Erp TG, Voyvodic J, et al. Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology 2015, 40: 2705–2714.CrossRefPubMedPubMedCentral
29.
go back to reference Hare SM, Ford JM, Ahmadi A, Damaraju E, Belger A, Bustillo J, et al. Modality-dependent impact of hallucinations on low-frequency fluctuations in schizophrenia. Schizophr Bull 2017, 43: 389–396.CrossRefPubMed Hare SM, Ford JM, Ahmadi A, Damaraju E, Belger A, Bustillo J, et al. Modality-dependent impact of hallucinations on low-frequency fluctuations in schizophrenia. Schizophr Bull 2017, 43: 389–396.CrossRefPubMed
30.
go back to reference Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.CrossRefPubMed Hu ML, Zong XF, Mann JJ, Zheng JJ, Liao YH, Li ZC, et al. A review of the functional and anatomical default mode network in schizophrenia. Neurosci Bull 2017, 33: 73–84.CrossRefPubMed
31.
go back to reference First MB, SpitzerRL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I & II Disorders (Version 2.0). New York: New York State Psychiatric Institute, 1995. First MB, SpitzerRL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I & II Disorders (Version 2.0). New York: New York State Psychiatric Institute, 1995.
32.
go back to reference Lish JD, Weissman MM, Adams PB, Hoven CW, Bird H. Family psychiatric screening instruments for epidemiologic studies: pilot testing and validation. Psychiatry Res 1995, 57: 169–180.CrossRefPubMed Lish JD, Weissman MM, Adams PB, Hoven CW, Bird H. Family psychiatric screening instruments for epidemiologic studies: pilot testing and validation. Psychiatry Res 1995, 57: 169–180.CrossRefPubMed
33.
go back to reference Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016, 14: 339–351.CrossRefPubMed Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 2016, 14: 339–351.CrossRefPubMed
34.
go back to reference Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34: 537–541.CrossRefPubMed Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995, 34: 537–541.CrossRefPubMed
35.
go back to reference Yin Y, Li L, Jin C, Hu X, Duan L, Eyler LT, et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett 2011, 498: 185–189.CrossRefPubMed Yin Y, Li L, Jin C, Hu X, Duan L, Eyler LT, et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett 2011, 498: 185–189.CrossRefPubMed
36.
go back to reference Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29: 162–173.CrossRefPubMed Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29: 162–173.CrossRefPubMed
37.
go back to reference Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, et al. Behavioral phenotyping of dopamine transporter knockout rats: compulsive traits, motor stereotypies, and anhedonia. Front Psychiatry 2018, 9: 43.CrossRefPubMedPubMedCentral Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, et al. Behavioral phenotyping of dopamine transporter knockout rats: compulsive traits, motor stereotypies, and anhedonia. Front Psychiatry 2018, 9: 43.CrossRefPubMedPubMedCentral
38.
go back to reference Kuppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 2001, 12: 1175–1179.CrossRefPubMed Kuppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 2001, 12: 1175–1179.CrossRefPubMed
39.
go back to reference Fumagalli F, Racagni G, Colombo E, Riva MA. BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Mol Psychiatry 2003, 8: 898–899.CrossRefPubMed Fumagalli F, Racagni G, Colombo E, Riva MA. BDNF gene expression is reduced in the frontal cortex of dopamine transporter knockout mice. Mol Psychiatry 2003, 8: 898–899.CrossRefPubMed
40.
go back to reference Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 1994, 79: 729–742.CrossRefPubMed Xu M, Moratalla R, Gold LH, Hiroi N, Koob GF, Graybiel AM, et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 1994, 79: 729–742.CrossRefPubMed
41.
go back to reference Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995, 376: 572–575.CrossRefPubMed Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995, 376: 572–575.CrossRefPubMed
42.
go back to reference Qin S, Cousijn H, Rijpkema M, Luo J, Franke B, Hermans EJ, et al. The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Front Integr Neurosci 2012, 6: 16.CrossRefPubMedPubMedCentral Qin S, Cousijn H, Rijpkema M, Luo J, Franke B, Hermans EJ, et al. The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans. Front Integr Neurosci 2012, 6: 16.CrossRefPubMedPubMedCentral
43.
go back to reference Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 2009, 132: 417–425.CrossRefPubMed Bertolino A, Fazio L, Caforio G, Blasi G, Rampino A, Romano R, et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain 2009, 132: 417–425.CrossRefPubMed
44.
go back to reference Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry 2011, 16: 462–470.CrossRefPubMed Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry 2011, 16: 462–470.CrossRefPubMed
45.
go back to reference Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, et al. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1). Genes Brain Behav 2017, 16: 479–488.CrossRefPubMed Mallas E, Carletti F, Chaddock CA, Shergill S, Woolley J, Picchioni MM, et al. The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder(1). Genes Brain Behav 2017, 16: 479–488.CrossRefPubMed
46.
go back to reference Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K, et al. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014, 40: 532–541.CrossRefPubMed Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K, et al. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014, 40: 532–541.CrossRefPubMed
47.
go back to reference Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011, 16: 429–441.CrossRefPubMed Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2011, 16: 429–441.CrossRefPubMed
48.
go back to reference Guella I, Vawter MP. Allelic imbalance associated with the schizophrenia risk SNP rs1344706 indicates a cis-acting variant in ZNF804A. Schizophr Res 2014, 153: 243–245.CrossRefPubMedPubMedCentral Guella I, Vawter MP. Allelic imbalance associated with the schizophrenia risk SNP rs1344706 indicates a cis-acting variant in ZNF804A. Schizophr Res 2014, 153: 243–245.CrossRefPubMedPubMedCentral
49.
go back to reference Guella I, Sequeira A, Rollins B, Morgan L, Myers RM, Watson SJ, et al. Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophr Res 2014, 152: 111–116.CrossRefPubMed Guella I, Sequeira A, Rollins B, Morgan L, Myers RM, Watson SJ, et al. Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophr Res 2014, 152: 111–116.CrossRefPubMed
50.
go back to reference Xu Q, Xiong Y, Yuan C, Liu F, Zhao F, Shen J, et al. ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 2018, 12: 13–19.CrossRefPubMed Xu Q, Xiong Y, Yuan C, Liu F, Zhao F, Shen J, et al. ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging Behav 2018, 12: 13–19.CrossRefPubMed
51.
go back to reference Pearlson GD, Petty RG, Ross CA, Tien AY. Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology 1996, 14: 1–17.CrossRefPubMed Pearlson GD, Petty RG, Ross CA, Tien AY. Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology 1996, 14: 1–17.CrossRefPubMed
52.
go back to reference Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992, 149: 890–897.CrossRefPubMed Weinberger DR, Berman KF, Suddath R, Torrey EF. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 1992, 149: 890–897.CrossRefPubMed
53.
go back to reference Turner JA, Damaraju E, van Erp TG, Mathalon DH, Ford JM, Voyvodic J, et al. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 2013, 7: 137.PubMedPubMedCentral Turner JA, Damaraju E, van Erp TG, Mathalon DH, Ford JM, Voyvodic J, et al. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 2013, 7: 137.PubMedPubMedCentral
54.
go back to reference Cui L, Gong X, Tang Y, Kong L, Chang M, Geng H, et al. Relationship between the LHPP gene polymorphism and resting-state brain activity in major depressive disorder. Neural Plast 2016, 2016: 9162590.CrossRefPubMedPubMedCentral Cui L, Gong X, Tang Y, Kong L, Chang M, Geng H, et al. Relationship between the LHPP gene polymorphism and resting-state brain activity in major depressive disorder. Neural Plast 2016, 2016: 9162590.CrossRefPubMedPubMedCentral
55.
go back to reference Bearden CE, Jawad AF, Lynch DR, Sokol S, Kanes SJ, McDonald-McGinn DM, et al. Effects of a functional COMT polymorphism on prefrontal cognitive function in patients with 22q11.2 deletion syndrome. Am J Psychiatry 2004, 161: 1700–1702. Bearden CE, Jawad AF, Lynch DR, Sokol S, Kanes SJ, McDonald-McGinn DM, et al. Effects of a functional COMT polymorphism on prefrontal cognitive function in patients with 22q11.2 deletion syndrome. Am J Psychiatry 2004, 161: 1700–1702.
56.
go back to reference Zhang Y, Yan H, Liao J, Yu H, Jiang S, Liu Q, et al. ZNF804A variation may affect hippocampal-prefrontal resting-state functional connectivity in schizophrenic and healthy individuals. Neurosci Bull 2018, 34: 507–516.CrossRefPubMedPubMedCentral Zhang Y, Yan H, Liao J, Yu H, Jiang S, Liu Q, et al. ZNF804A variation may affect hippocampal-prefrontal resting-state functional connectivity in schizophrenic and healthy individuals. Neurosci Bull 2018, 34: 507–516.CrossRefPubMedPubMedCentral
Metadata
Title
Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms
Authors
Lingling Cui
Fei Wang
Miao Chang
Zhiyang Yin
Guoguang Fan
Yanzhuo Song
Yange Wei
Yixiao Xu
Yifan Zhang
Yanqing Tang
Xiaohong Gong
Ke Xu
Publication date
01-08-2019
Publisher
Springer Singapore
Keyword
Schizophrenia
Published in
Neuroscience Bulletin / Issue 4/2019
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-019-00357-w

Other articles of this Issue 4/2019

Neuroscience Bulletin 4/2019 Go to the issue