Skip to main content
Top
Published in: Neuroscience Bulletin 4/2019

01-08-2019 | Original Article

Cortical Organization of Centrifugal Afferents to the Olfactory Bulb: Mono- and Trans-synaptic Tracing with Recombinant Neurotropic Viral Tracers

Authors: Pengjie Wen, Xiaoping Rao, Liuying Xu, Zhijian Zhang, Fan Jia, Xiaobin He, Fuqiang Xu

Published in: Neuroscience Bulletin | Issue 4/2019

Login to get access

Abstract

Sensory processing is strongly modulated by different brain and behavioral states, and this is based on the top–down modulation. In the olfactory system, local neural circuits in the olfactory bulb (OB) are innervated by centrifugal afferents in order to regulate the processing of olfactory information in the OB under different behavioral states. The purpose of the present study was to explore the organization of neural networks in olfactory-related cortices and modulatory nuclei that give rise to direct and indirect innervations to the glomerular layer (GL) of the OB at the whole-brain scale. Injection of different recombinant attenuated neurotropic viruses into the GL showed that it received direct inputs from each layer in the OB, centrifugal inputs from the ipsilateralanterior olfactory nucleus (AON), anterior piriform cortex (Pir), and horizontal limb of diagonal band of Broca (HDB), and various indirect inputs from bilateral cortical neurons in the AON, Pir, amygdala, entorhinal cortex, hippocampus, HDB, dorsal raphe, median raphe and locus coeruleus. These results provide a circuitry basis that will help further understand the mechanism by which olfactory information-processing in the OB is regulated.
Literature
1.
go back to reference Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, et al. Selective attention. Long-range and local circuits for top–down modulation of visual cortex processing. Science 2014, 345: 660–665. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, et al. Selective attention. Long-range and local circuits for top–down modulation of visual cortex processing. Science 2014, 345: 660–665.
3.
go back to reference Padmanabhan K, Osakada F, Tarabrina A, Kizer E, Callaway EM, Gage FH, et al. Diverse representations of olfactory information in centrifugal feedback projections. J Neurosci 2016, 36: 7535–7545.CrossRefPubMedPubMedCentral Padmanabhan K, Osakada F, Tarabrina A, Kizer E, Callaway EM, Gage FH, et al. Diverse representations of olfactory information in centrifugal feedback projections. J Neurosci 2016, 36: 7535–7545.CrossRefPubMedPubMedCentral
4.
go back to reference D’Souza RD, Vijayaraghavan S. Paying attention to smell: cholinergic signaling in the olfactory bulb. Front Synaptic Neurosci 2014, 6: 21.PubMedPubMedCentral D’Souza RD, Vijayaraghavan S. Paying attention to smell: cholinergic signaling in the olfactory bulb. Front Synaptic Neurosci 2014, 6: 21.PubMedPubMedCentral
6.
go back to reference Markopoulos F, Rokni D, Gire DH, Murthy VN. Functional properties of cortical feedback projections to the olfactory bulb. Neuron 2012, 76: 1175–1188.CrossRefPubMedPubMedCentral Markopoulos F, Rokni D, Gire DH, Murthy VN. Functional properties of cortical feedback projections to the olfactory bulb. Neuron 2012, 76: 1175–1188.CrossRefPubMedPubMedCentral
7.
go back to reference Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol 2014, 35: 180–188.CrossRefPubMed Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol 2014, 35: 180–188.CrossRefPubMed
8.
go back to reference Uchida N, Poo C, Haddad R. Coding and transformations in the olfactory system. Annu Rev Neurosci 2014, 37: 363–385.CrossRefPubMed Uchida N, Poo C, Haddad R. Coding and transformations in the olfactory system. Annu Rev Neurosci 2014, 37: 363–385.CrossRefPubMed
9.
go back to reference Takahashi H, Ogawa Y, Yoshihara S, Asahina R, Kinoshita M, Kitano T, et al. A subtype of olfactory bulb interneurons is required for odor detection and discrimination behaviors. J Neurosci 2016, 36: 8210–8227.CrossRefPubMedPubMedCentral Takahashi H, Ogawa Y, Yoshihara S, Asahina R, Kinoshita M, Kitano T, et al. A subtype of olfactory bulb interneurons is required for odor detection and discrimination behaviors. J Neurosci 2016, 36: 8210–8227.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Otazu GH, Chae H, Davis MB, Albeanu DF. Cortical feedback decorrelates olfactory bulb output in awake mice. Neuron 2015, 86: 1461–1477.CrossRefPubMed Otazu GH, Chae H, Davis MB, Albeanu DF. Cortical feedback decorrelates olfactory bulb output in awake mice. Neuron 2015, 86: 1461–1477.CrossRefPubMed
13.
go back to reference Linster C, Cleland TA. Neuromodulation of olfactory transformations. Curr Opin Neurobiol 2016, 40: 170–177.CrossRefPubMed Linster C, Cleland TA. Neuromodulation of olfactory transformations. Curr Opin Neurobiol 2016, 40: 170–177.CrossRefPubMed
14.
go back to reference Lizbinski KM, Dacks AM. Intrinsic and extrinsic neuromodulation of olfactory processing. Front Cell Neurosci 2017, 11: 424.CrossRefPubMed Lizbinski KM, Dacks AM. Intrinsic and extrinsic neuromodulation of olfactory processing. Front Cell Neurosci 2017, 11: 424.CrossRefPubMed
16.
go back to reference Manella LC, Petersen N, Linster C. Stimulation of the locus ceruleus modulates signal-to-noise ratio in the olfactory bulb. J Neurosci 2017, 37: 11605–11615.CrossRefPubMedPubMedCentral Manella LC, Petersen N, Linster C. Stimulation of the locus ceruleus modulates signal-to-noise ratio in the olfactory bulb. J Neurosci 2017, 37: 11605–11615.CrossRefPubMedPubMedCentral
17.
go back to reference Case DT, Burton SD, Gedeon JY, Williams SG, Urban NN, Seal RP. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat Commun 2017, 8: 652.CrossRefPubMedPubMedCentral Case DT, Burton SD, Gedeon JY, Williams SG, Urban NN, Seal RP. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat Commun 2017, 8: 652.CrossRefPubMedPubMedCentral
18.
go back to reference Wachowiak M, Economo MN, Diaz-Quesada M, Brunert D, Wesson DW, White JA, et al. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 2013, 33: 5285–5300.CrossRefPubMedPubMedCentral Wachowiak M, Economo MN, Diaz-Quesada M, Brunert D, Wesson DW, White JA, et al. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb. J Neurosci 2013, 33: 5285–5300.CrossRefPubMedPubMedCentral
21.
go back to reference Thorne RG, Emory CR, Ala TA, Frey WH, 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 1995, 692: 278–282.CrossRefPubMed Thorne RG, Emory CR, Ala TA, Frey WH, 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res 1995, 692: 278–282.CrossRefPubMed
22.
go back to reference Callaway EM. Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 2008, 18: 617–623.CrossRefPubMed Callaway EM. Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 2008, 18: 617–623.CrossRefPubMed
24.
go back to reference Bienkowski MS, Wendel ES, Rinaman L. Organization of multisynaptic circuits within and between the medial and the central extended amygdala. J Comp Neurol 2013, 521: 3406–3431.CrossRefPubMedPubMedCentral Bienkowski MS, Wendel ES, Rinaman L. Organization of multisynaptic circuits within and between the medial and the central extended amygdala. J Comp Neurol 2013, 521: 3406–3431.CrossRefPubMedPubMedCentral
26.
go back to reference Willhite DC, Nguyen KT, Masurkar AV, Greer CA, Shepherd GM, Chen WR. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci USA 2006, 103: 12592–12597.CrossRefPubMedPubMedCentral Willhite DC, Nguyen KT, Masurkar AV, Greer CA, Shepherd GM, Chen WR. Viral tracing identifies distributed columnar organization in the olfactory bulb. Proc Natl Acad Sci USA 2006, 103: 12592–12597.CrossRefPubMedPubMedCentral
27.
go back to reference Kikuta S, Sato K, Kashiwadani H, Tsunoda K, Yamasoba T, Mori K. From the Cover: Neurons in the anterior olfactory nucleus pars externa detect right or left localization of odor sources. Proc Natl Acad Sci USA 2010, 107: 12363–12368.CrossRefPubMedPubMedCentral Kikuta S, Sato K, Kashiwadani H, Tsunoda K, Yamasoba T, Mori K. From the Cover: Neurons in the anterior olfactory nucleus pars externa detect right or left localization of odor sources. Proc Natl Acad Sci USA 2010, 107: 12363–12368.CrossRefPubMedPubMedCentral
28.
go back to reference Esquivelzeta Rabell J, Mutlu K, Noutel J, Martin Del Olmo P, Haesler S. Spontaneous rapid odor source localization behavior requires interhemispheric communication. Curr Biol 2017, 27: 1542–1548 e1544. Esquivelzeta Rabell J, Mutlu K, Noutel J, Martin Del Olmo P, Haesler S. Spontaneous rapid odor source localization behavior requires interhemispheric communication. Curr Biol 2017, 27: 1542–1548 e1544.
30.
31.
go back to reference Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 2006, 63: 1476–1484.CrossRefPubMed Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 2006, 63: 1476–1484.CrossRefPubMed
32.
go back to reference Sewards TV, Sewards MA. Input and output stations of the entorhinal cortex: superficial vs. deep layers or lateral vs. medial divisions? Brain Res Brain Res Rev 2003, 42: 243–251.CrossRefPubMed Sewards TV, Sewards MA. Input and output stations of the entorhinal cortex: superficial vs. deep layers or lateral vs. medial divisions? Brain Res Brain Res Rev 2003, 42: 243–251.CrossRefPubMed
33.
34.
go back to reference Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013, 16: 1154–1161.CrossRefPubMed Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 2013, 16: 1154–1161.CrossRefPubMed
35.
go back to reference De Saint Jan D, Hirnet D, Westbrook GL, Charpak S. External tufted cells drive the output of olfactory bulb glomeruli. J Neurosci 2009, 29: 2043–2052.CrossRef De Saint Jan D, Hirnet D, Westbrook GL, Charpak S. External tufted cells drive the output of olfactory bulb glomeruli. J Neurosci 2009, 29: 2043–2052.CrossRef
36.
go back to reference Liu S, Plachez C, Shao Z, Puche A, Shipley MT. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neurosci 2013, 33: 2916–2926.CrossRefPubMedPubMedCentral Liu S, Plachez C, Shao Z, Puche A, Shipley MT. Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neurosci 2013, 33: 2916–2926.CrossRefPubMedPubMedCentral
37.
go back to reference Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, et al. Molecular identity of periglomerular and short axon cells. J Neurosci 2010, 30: 1185–1196.CrossRefPubMedPubMedCentral Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, et al. Molecular identity of periglomerular and short axon cells. J Neurosci 2010, 30: 1185–1196.CrossRefPubMedPubMedCentral
38.
go back to reference Gire DH, Franks KM, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, et al. Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path. J Neurosci 2012, 32: 2964–2975.CrossRefPubMedPubMedCentral Gire DH, Franks KM, Zak JD, Tanaka KF, Whitesell JD, Mulligan AA, et al. Mitral cells in the olfactory bulb are mainly excited through a multistep signaling path. J Neurosci 2012, 32: 2964–2975.CrossRefPubMedPubMedCentral
39.
go back to reference Murphy GJ, Darcy DP, Isaacson JS. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nat Neurosci 2005, 8: 354–364.CrossRefPubMed Murphy GJ, Darcy DP, Isaacson JS. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit. Nat Neurosci 2005, 8: 354–364.CrossRefPubMed
40.
go back to reference Najac M, Sanz Diez A, Kumar A, Benito N, Charpak S, De Saint Jan D. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. J Neurosci 2015, 35: 4319–4331.CrossRefPubMedPubMedCentral Najac M, Sanz Diez A, Kumar A, Benito N, Charpak S, De Saint Jan D. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. J Neurosci 2015, 35: 4319–4331.CrossRefPubMedPubMedCentral
41.
go back to reference Parsa PV, D’Souza RD, Vijayaraghavan S. Signaling between periglomerular cells reveals a bimodal role for GABA in modulating glomerular microcircuitry in the olfactory bulb. Proc Natl Acad Sci U S A 2015, 112: 9478–9483.CrossRefPubMedPubMedCentral Parsa PV, D’Souza RD, Vijayaraghavan S. Signaling between periglomerular cells reveals a bimodal role for GABA in modulating glomerular microcircuitry in the olfactory bulb. Proc Natl Acad Sci U S A 2015, 112: 9478–9483.CrossRefPubMedPubMedCentral
42.
go back to reference Liu S, Puche AC, Shipley MT. The interglomerular circuit potently inhibits olfactory bulb output neurons by both direct and indirect pathways. J Neurosci 2016, 36: 9604–9617.CrossRefPubMedPubMedCentral Liu S, Puche AC, Shipley MT. The interglomerular circuit potently inhibits olfactory bulb output neurons by both direct and indirect pathways. J Neurosci 2016, 36: 9604–9617.CrossRefPubMedPubMedCentral
43.
go back to reference Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, et al. An interglomerular circuit gates glomerular output and implements gain control in the mouse olfactory bulb. Neuron 2015, 87: 193–207. Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, et al. An interglomerular circuit gates glomerular output and implements gain control in the mouse olfactory bulb. Neuron 2015, 87: 193–207.
44.
go back to reference Burton SD, LaRocca G, Liu A, Cheetham CE, Urban NN. Olfactory bulb deep short-axon cells mediate widespread inhibition of tufted cell apical dendrites. J Neurosci 2017, 37: 1117–1138.CrossRefPubMedPubMedCentral Burton SD, LaRocca G, Liu A, Cheetham CE, Urban NN. Olfactory bulb deep short-axon cells mediate widespread inhibition of tufted cell apical dendrites. J Neurosci 2017, 37: 1117–1138.CrossRefPubMedPubMedCentral
45.
go back to reference Eyre MD, Antal M, Nusser Z. Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections. J Neurosci 2008, 28: 8217–8229.CrossRefPubMedPubMedCentral Eyre MD, Antal M, Nusser Z. Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections. J Neurosci 2008, 28: 8217–8229.CrossRefPubMedPubMedCentral
46.
go back to reference Pressler RT, Strowbridge BW. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 2006, 49: 889–904.CrossRefPubMed Pressler RT, Strowbridge BW. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 2006, 49: 889–904.CrossRefPubMed
47.
go back to reference Eyre MD, Kerti K, Nusser Z. Molecular diversity of deep short-axon cells of the rat main olfactory bulb. Eur J Neurosci 2009, 29: 1397–1407.CrossRefPubMed Eyre MD, Kerti K, Nusser Z. Molecular diversity of deep short-axon cells of the rat main olfactory bulb. Eur J Neurosci 2009, 29: 1397–1407.CrossRefPubMed
48.
go back to reference Kelsch W, Sim S, Lois C. Watching synaptogenesis in the adult brain. Annu Rev Neurosci 2010, 33: 131–149.CrossRefPubMed Kelsch W, Sim S, Lois C. Watching synaptogenesis in the adult brain. Annu Rev Neurosci 2010, 33: 131–149.CrossRefPubMed
49.
go back to reference Belluscio L, Lodovichi C, Feinstein P, Mombaerts P, Katz LC. Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature 2002, 419: 296–300.CrossRefPubMed Belluscio L, Lodovichi C, Feinstein P, Mombaerts P, Katz LC. Odorant receptors instruct functional circuitry in the mouse olfactory bulb. Nature 2002, 419: 296–300.CrossRefPubMed
50.
go back to reference Lodovichi C, Belluscio L, Katz LC. Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb. Neuron 2003, 38: 265–276.CrossRefPubMed Lodovichi C, Belluscio L, Katz LC. Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb. Neuron 2003, 38: 265–276.CrossRefPubMed
51.
go back to reference Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus (cortex). Brain Res Brain Res Rev 2005, 50: 305–335.CrossRefPubMed Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus (cortex). Brain Res Brain Res Rev 2005, 50: 305–335.CrossRefPubMed
52.
go back to reference Yan Z, Tan J, Qin C, Lu Y, Ding C, Luo M. Precise circuitry links bilaterally symmetric olfactory maps. Neuron 2008, 58: 613–624.CrossRefPubMed Yan Z, Tan J, Qin C, Lu Y, Ding C, Luo M. Precise circuitry links bilaterally symmetric olfactory maps. Neuron 2008, 58: 613–624.CrossRefPubMed
55.
go back to reference Insausti R, Herrero MT, Witter MP. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 1997, 7: 146–183.CrossRefPubMed Insausti R, Herrero MT, Witter MP. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 1997, 7: 146–183.CrossRefPubMed
56.
go back to reference de la Rosa-Prieto C, Ubeda-Banon I, Mohedano-Moriano A, Pro-Sistiaga P, Saiz-Sanchez D, Insausti R, et al. Subicular and CA1 hippocampal projections to the accessory olfactory bulb. Hippocampus 2009, 19: 124–129.CrossRefPubMed de la Rosa-Prieto C, Ubeda-Banon I, Mohedano-Moriano A, Pro-Sistiaga P, Saiz-Sanchez D, Insausti R, et al. Subicular and CA1 hippocampal projections to the accessory olfactory bulb. Hippocampus 2009, 19: 124–129.CrossRefPubMed
57.
go back to reference de Olmos J, Hardy H, Heimer L. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J Comp Neurol 1978, 181: 213–244.CrossRefPubMed de Olmos J, Hardy H, Heimer L. The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J Comp Neurol 1978, 181: 213–244.CrossRefPubMed
58.
go back to reference van Groen T, Wyss JM. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 1990, 302: 515–528.CrossRefPubMed van Groen T, Wyss JM. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 1990, 302: 515–528.CrossRefPubMed
59.
go back to reference Devore S, de Almeida L, Linster C. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning. J Neurosci 2014, 34: 11244–11260.CrossRefPubMedPubMedCentral Devore S, de Almeida L, Linster C. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning. J Neurosci 2014, 34: 11244–11260.CrossRefPubMedPubMedCentral
60.
go back to reference Bendahmane M, Ogg MC, Ennis M, Fletcher ML. Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Sci Rep 2016, 6: 25808.CrossRefPubMedPubMedCentral Bendahmane M, Ogg MC, Ennis M, Fletcher ML. Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity. Sci Rep 2016, 6: 25808.CrossRefPubMedPubMedCentral
61.
go back to reference Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2017, 525: 574–591.CrossRefPubMed Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol 2017, 525: 574–591.CrossRefPubMed
62.
go back to reference Gracia-Llanes FJ, Crespo C, Blasco-Ibanez JM, Nacher J, Varea E, Rovira-Esteban L, et al. GABAergic basal forebrain afferents innervate selectively GABAergic targets in the main olfactory bulb. Neuroscience 2010, 170: 913–922.CrossRefPubMed Gracia-Llanes FJ, Crespo C, Blasco-Ibanez JM, Nacher J, Varea E, Rovira-Esteban L, et al. GABAergic basal forebrain afferents innervate selectively GABAergic targets in the main olfactory bulb. Neuroscience 2010, 170: 913–922.CrossRefPubMed
63.
go back to reference Nunez-Parra A, Maurer RK, Krahe K, Smith RS, Araneda RC. Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 2013, 110: 14777–14782.CrossRefPubMedPubMedCentral Nunez-Parra A, Maurer RK, Krahe K, Smith RS, Araneda RC. Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 2013, 110: 14777–14782.CrossRefPubMedPubMedCentral
64.
go back to reference Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C. Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 2010, 32: 458–468.CrossRefPubMed Escanilla O, Arrellanos A, Karnow A, Ennis M, Linster C. Noradrenergic modulation of behavioral odor detection and discrimination thresholds in the olfactory bulb. Eur J Neurosci 2010, 32: 458–468.CrossRefPubMed
65.
go back to reference Escanilla O, Alperin S, Youssef M, Ennis M, Linster C. Noradrenergic but not cholinergic modulation of olfactory bulb during processing of near threshold concentration stimuli. Behav Neurosci 2012, 126: 720–728.CrossRefPubMedPubMedCentral Escanilla O, Alperin S, Youssef M, Ennis M, Linster C. Noradrenergic but not cholinergic modulation of olfactory bulb during processing of near threshold concentration stimuli. Behav Neurosci 2012, 126: 720–728.CrossRefPubMedPubMedCentral
66.
67.
go back to reference Li G, Linster C, Cleland TA. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 2015, 114: 3177–3200.CrossRefPubMedPubMedCentral Li G, Linster C, Cleland TA. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 2015, 114: 3177–3200.CrossRefPubMedPubMedCentral
68.
go back to reference Zhou FW, Dong HW, Ennis M. Activation of beta-noradrenergic receptors enhances rhythmic bursting in mouse olfactory bulb external tufted cells. J Neurophysiol 2016, 116: 2604–2614.CrossRefPubMedPubMedCentral Zhou FW, Dong HW, Ennis M. Activation of beta-noradrenergic receptors enhances rhythmic bursting in mouse olfactory bulb external tufted cells. J Neurophysiol 2016, 116: 2604–2614.CrossRefPubMedPubMedCentral
69.
go back to reference Gire DH, Schoppa NE. Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb. J Neurophysiol 2008, 99: 2021–2025.CrossRefPubMed Gire DH, Schoppa NE. Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb. J Neurophysiol 2008, 99: 2021–2025.CrossRefPubMed
70.
71.
go back to reference Fonseca MS, Murakami M, Mainen ZF. Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr Biol 2015, 25: 306–315.CrossRefPubMed Fonseca MS, Murakami M, Mainen ZF. Activation of dorsal raphe serotonergic neurons promotes waiting but is not reinforcing. Curr Biol 2015, 25: 306–315.CrossRefPubMed
72.
73.
go back to reference Liu Y, Jiang Y, Si Y, Kim JY, Chen ZF, Rao Y. Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice. Nature 2011, 472: 95–99.CrossRefPubMedPubMedCentral Liu Y, Jiang Y, Si Y, Kim JY, Chen ZF, Rao Y. Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice. Nature 2011, 472: 95–99.CrossRefPubMedPubMedCentral
74.
go back to reference Kraus C, Castren E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev 2017, 77: 317–326.CrossRefPubMed Kraus C, Castren E, Kasper S, Lanzenberger R. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neurosci Biobehav Rev 2017, 77: 317–326.CrossRefPubMed
75.
go back to reference Luo MM, Li Y, Zhong WX. Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol Learn Mem 2016, 135: 40–49.CrossRefPubMed Luo MM, Li Y, Zhong WX. Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol Learn Mem 2016, 135: 40–49.CrossRefPubMed
76.
go back to reference Miyazaki KW, Miyazaki K, Tanaka KF, Yamanaka A, Takahashi A, Tabuchi S, et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr Biol 2014, 24: 2033–2040.CrossRefPubMed Miyazaki KW, Miyazaki K, Tanaka KF, Yamanaka A, Takahashi A, Tabuchi S, et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr Biol 2014, 24: 2033–2040.CrossRefPubMed
77.
78.
go back to reference Steinfeld R, Herb JT, Sprengel R, Schaefer AT, Fukunaga I. Divergent innervation of the olfactory bulb by distinct raphe nuclei. J Comp Neurol 2015, 523: 805–813.CrossRefPubMedPubMedCentral Steinfeld R, Herb JT, Sprengel R, Schaefer AT, Fukunaga I. Divergent innervation of the olfactory bulb by distinct raphe nuclei. J Comp Neurol 2015, 523: 805–813.CrossRefPubMedPubMedCentral
79.
go back to reference Liu SL, Aungst JL, Puche AC, Shipley MT. Serotonin modulates the population activity profile of olfactory bulb external tufted cells. J Neurophysiol 2012, 107: 473–483.CrossRefPubMed Liu SL, Aungst JL, Puche AC, Shipley MT. Serotonin modulates the population activity profile of olfactory bulb external tufted cells. J Neurophysiol 2012, 107: 473–483.CrossRefPubMed
80.
go back to reference Brill J, Shao Z, Puche AC, Wachowiak M, Shipley MT. Serotonin increases synaptic activity in olfactory bulb glomeruli. J Neurophysiol 2016, 115: 1208–1219.CrossRefPubMedPubMedCentral Brill J, Shao Z, Puche AC, Wachowiak M, Shipley MT. Serotonin increases synaptic activity in olfactory bulb glomeruli. J Neurophysiol 2016, 115: 1208–1219.CrossRefPubMedPubMedCentral
81.
go back to reference Schmidt LJ, Strowbridge BW. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits. Learn Mem 2014, 21: 406–416.CrossRefPubMedPubMedCentral Schmidt LJ, Strowbridge BW. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits. Learn Mem 2014, 21: 406–416.CrossRefPubMedPubMedCentral
82.
go back to reference Petzold GC, Hagiwara A, Murthy VN. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 2009, 12: 784–791.CrossRefPubMed Petzold GC, Hagiwara A, Murthy VN. Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 2009, 12: 784–791.CrossRefPubMed
83.
go back to reference Brunert D, Tsuno Y, Rothermel M, Shipley MT, Wachowiak M. Cell-type-specific modulation of sensory responses in olfactory bulb circuits by serotonergic projections from the raphe nuclei. J Neurosci 2016, 36: 6820–6835.CrossRefPubMedPubMedCentral Brunert D, Tsuno Y, Rothermel M, Shipley MT, Wachowiak M. Cell-type-specific modulation of sensory responses in olfactory bulb circuits by serotonergic projections from the raphe nuclei. J Neurosci 2016, 36: 6820–6835.CrossRefPubMedPubMedCentral
Metadata
Title
Cortical Organization of Centrifugal Afferents to the Olfactory Bulb: Mono- and Trans-synaptic Tracing with Recombinant Neurotropic Viral Tracers
Authors
Pengjie Wen
Xiaoping Rao
Liuying Xu
Zhijian Zhang
Fan Jia
Xiaobin He
Fuqiang Xu
Publication date
01-08-2019
Publisher
Springer Singapore
Published in
Neuroscience Bulletin / Issue 4/2019
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-019-00385-6

Other articles of this Issue 4/2019

Neuroscience Bulletin 4/2019 Go to the issue