Skip to main content
Top
Published in: Pathology & Oncology Research 2/2020

01-04-2020 | NSCLC | Review

Regulation of PD-1/PD-L1 Pathway in Cancer by Noncoding RNAs

Authors: Lei Ding, Shengdi Lu, Yanli Li

Published in: Pathology & Oncology Research | Issue 2/2020

Login to get access

Abstract

Immune checkpoint blockade has demonstrated significant anti-tumor immunity in an array of cancer types, yet the underlying regulatory mechanism of it is still obscure, and many problems remain to be solved. As an inhibitory costimulatory signal of T-cells, the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway can paralyze T-cells at the tumor site, enabling the immune escape of tumor cells. Although many antibodies targeting PD-1/PD-L1 have been developed to block their interaction for the treatment of cancer, the reduced response rate and resistance to the therapies call for further comprehension of this pathway in the tumor microenvironment. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main types of noncoding RNAs that play critical parts in the regulation of immune response in tumorigenesis, including the PD-1/PD-L1 pathway. Here we summarize the most recent studies on the control of this pathway by noncoding RNAs in cancer and hopefully will offer new insights into immune checkpoint blockade therapies.
Literature
1.
go back to reference Teng MW et al (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84(4):988–993PubMedCrossRef Teng MW et al (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84(4):988–993PubMedCrossRef
2.
3.
go back to reference Ishida Y et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895PubMedPubMedCentralCrossRef Ishida Y et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895PubMedPubMedCentralCrossRef
4.
go back to reference Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMedCrossRef Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800PubMedCrossRef
5.
go back to reference Dong H et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369PubMedCrossRef Dong H et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369PubMedCrossRef
6.
go back to reference Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034PubMedPubMedCentralCrossRef Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034PubMedPubMedCentralCrossRef
7.
go back to reference Zhang X et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20(3):337–347PubMedCrossRef Zhang X et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20(3):337–347PubMedCrossRef
8.
go back to reference Lesterhuis WJ, Steer H, Lake RA (2011) PD-L2 is predominantly expressed by Th2 cells. Mol Immunol 49(1–2):1–3PubMedCrossRef Lesterhuis WJ, Steer H, Lake RA (2011) PD-L2 is predominantly expressed by Th2 cells. Mol Immunol 49(1–2):1–3PubMedCrossRef
9.
go back to reference Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5):336–347PubMedCrossRef Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5):336–347PubMedCrossRef
10.
go back to reference Sheppard KA et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41PubMedCrossRef Sheppard KA et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41PubMedCrossRef
12.
go back to reference Zamani MR et al (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol 310:27–41PubMedCrossRef Zamani MR et al (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol 310:27–41PubMedCrossRef
13.
go back to reference Sharpe AH et al (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8(3):239–245PubMedCrossRef Sharpe AH et al (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8(3):239–245PubMedCrossRef
14.
go back to reference Butte MJ et al (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27(1):111–122PubMedPubMedCentralCrossRef Butte MJ et al (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27(1):111–122PubMedPubMedCentralCrossRef
15.
go back to reference Schadendorf D et al (2015) Pooled analysis of Long-term survival data from phase II and phase III trials of Ipilimumab in Unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894PubMedPubMedCentralCrossRef Schadendorf D et al (2015) Pooled analysis of Long-term survival data from phase II and phase III trials of Ipilimumab in Unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894PubMedPubMedCentralCrossRef
17.
go back to reference Younes RN et al (2011) Chemotherapy beyond first-line in stage IV metastatic non-small cell lung cancer. Rev Assoc Med Bras (1992) 57(6):686–691CrossRef Younes RN et al (2011) Chemotherapy beyond first-line in stage IV metastatic non-small cell lung cancer. Rev Assoc Med Bras (1992) 57(6):686–691CrossRef
18.
go back to reference Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. N Engl J Med 375(19):1823–1833PubMedCrossRef Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung Cancer. N Engl J Med 375(19):1823–1833PubMedCrossRef
19.
go back to reference D'Alterio C et al (2016) CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients. Oncoimmunology 5(12):e1254313PubMedPubMedCentralCrossRef D'Alterio C et al (2016) CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients. Oncoimmunology 5(12):e1254313PubMedPubMedCentralCrossRef
20.
go back to reference Sasaki S et al (2018) EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer Sasaki S et al (2018) EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer
21.
go back to reference Saito H et al (2018) Highly activated PD-1/PD-L1 pathway in gastric Cancer with PD-L1 expression. Anticancer Res 38(1):107–112PubMed Saito H et al (2018) Highly activated PD-1/PD-L1 pathway in gastric Cancer with PD-L1 expression. Anticancer Res 38(1):107–112PubMed
22.
go back to reference Liu S et al (2017) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8(59):99901–99912PubMedPubMedCentralCrossRef Liu S et al (2017) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8(59):99901–99912PubMedPubMedCentralCrossRef
23.
go back to reference Shi W et al (2018) Follicular helper T cells promote the effector functions of CD8(+) T cells via the provision of IL-21, which is downregulated due to PD-1/PD-L1-mediated suppression in colorectal cancer. Exp Cell Res 372(1):35–42PubMedCrossRef Shi W et al (2018) Follicular helper T cells promote the effector functions of CD8(+) T cells via the provision of IL-21, which is downregulated due to PD-1/PD-L1-mediated suppression in colorectal cancer. Exp Cell Res 372(1):35–42PubMedCrossRef
24.
go back to reference Motzer RJ et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437PubMedCrossRef Motzer RJ et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437PubMedCrossRef
25.
26.
27.
go back to reference Ge Y et al (2013) Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett 336(2):253–259PubMedCrossRef Ge Y et al (2013) Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett 336(2):253–259PubMedCrossRef
28.
go back to reference Strickland KC et al (2016) Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7(12):13587–13598PubMedPubMedCentralCrossRef Strickland KC et al (2016) Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7(12):13587–13598PubMedPubMedCentralCrossRef
29.
go back to reference Tan D, Sheng L, Yi QH (2018) Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer. Cancer Biomark 21(2):287–297PubMedCrossRef Tan D, Sheng L, Yi QH (2018) Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer. Cancer Biomark 21(2):287–297PubMedCrossRef
30.
go back to reference Powles T et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562PubMedCrossRef Powles T et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515(7528):558–562PubMedCrossRef
34.
go back to reference Topalian SL et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030PubMedPubMedCentralCrossRef Topalian SL et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030PubMedPubMedCentralCrossRef
35.
go back to reference Bray F et al (2018) Global Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin Bray F et al (2018) Global Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin
36.
go back to reference Barlesi F et al (2014) Maintenance bevacizumab-pemetrexed after first-line cisplatin-pemetrexed-bevacizumab for advanced nonsquamous nonsmall-cell lung cancer: updated survival analysis of the AVAPERL (MO22089) randomized phase III trial. Ann Oncol 25(5):1044–1052PubMedCrossRef Barlesi F et al (2014) Maintenance bevacizumab-pemetrexed after first-line cisplatin-pemetrexed-bevacizumab for advanced nonsquamous nonsmall-cell lung cancer: updated survival analysis of the AVAPERL (MO22089) randomized phase III trial. Ann Oncol 25(5):1044–1052PubMedCrossRef
37.
go back to reference Ettinger DS et al (2012) Non-small cell lung cancer. J Natl Compr Cancer Netw 10(10):1236–1271CrossRef Ettinger DS et al (2012) Non-small cell lung cancer. J Natl Compr Cancer Netw 10(10):1236–1271CrossRef
38.
go back to reference Shamai S, Merimsky O (2018) Efficacy and safety of Nivolumab in non-small cell lung cancer patients in Tel-Aviv tertiary medical center: facing the reality. Mol Clin Oncol 9(4):419–422PubMedPubMedCentral Shamai S, Merimsky O (2018) Efficacy and safety of Nivolumab in non-small cell lung cancer patients in Tel-Aviv tertiary medical center: facing the reality. Mol Clin Oncol 9(4):419–422PubMedPubMedCentral
39.
go back to reference Osa A et al (2018) Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI Insight:3(19) Osa A et al (2018) Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI Insight:3(19)
40.
go back to reference Nizam A, Aragon-Ching JB (2018) Frontline immunotherapy treatment with nivolumab and ipilimumab in metastatic renal cell cancer: a new standard of care. Cancer Biol Ther:1–2 Nizam A, Aragon-Ching JB (2018) Frontline immunotherapy treatment with nivolumab and ipilimumab in metastatic renal cell cancer: a new standard of care. Cancer Biol Ther:1–2
41.
go back to reference Long GV et al (2018) Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer. Ann Oncol Long GV et al (2018) Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer. Ann Oncol
42.
go back to reference Hida T (2018) Nivolumab for the treatment of Japanese patients with advanced metastatic non-small cell lung cancer: a review of clinical trial evidence for efficacy and safety. Ther Adv Respir Dis 12:1753466618801167PubMedPubMedCentralCrossRef Hida T (2018) Nivolumab for the treatment of Japanese patients with advanced metastatic non-small cell lung cancer: a review of clinical trial evidence for efficacy and safety. Ther Adv Respir Dis 12:1753466618801167PubMedPubMedCentralCrossRef
43.
go back to reference Grimm SE et al (2018) Nivolumab for treating metastatic or Unresectable urothelial Cancer: An evidence review Group perspective of a NICE single technology appraisal. Pharmacoeconomics Grimm SE et al (2018) Nivolumab for treating metastatic or Unresectable urothelial Cancer: An evidence review Group perspective of a NICE single technology appraisal. Pharmacoeconomics
44.
45.
go back to reference Agata Y et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8(5):765–772PubMedCrossRef Agata Y et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8(5):765–772PubMedCrossRef
46.
go back to reference Zaric B et al (2018) PD-1 and PD-L1 protein expression predict survival in completely resected lung adenocarcinoma. Clin Lung Cancer 19:e957–e963PubMedCrossRef Zaric B et al (2018) PD-1 and PD-L1 protein expression predict survival in completely resected lung adenocarcinoma. Clin Lung Cancer 19:e957–e963PubMedCrossRef
47.
go back to reference Karim R et al (2009) Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 15(20):6341–6347PubMedCrossRef Karim R et al (2009) Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 15(20):6341–6347PubMedCrossRef
48.
go back to reference PD-1 inhibitors raise survival in NSCLC. Cancer Discov, 2014. 4(1):6 PD-1 inhibitors raise survival in NSCLC. Cancer Discov, 2014. 4(1):6
49.
go back to reference Yang ZZ et al (2015) PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J 5:e281PubMedPubMedCentralCrossRef Yang ZZ et al (2015) PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J 5:e281PubMedPubMedCentralCrossRef
50.
go back to reference Prasanth KV, Spector DL (2007) Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev 21(1):11–42PubMedCrossRef Prasanth KV, Spector DL (2007) Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev 21(1):11–42PubMedCrossRef
51.
go back to reference Enfield KS et al (2012) Mechanistic roles of noncoding RNAs in lung Cancer biology and their clinical implications. Genet Res Int 2012:737416PubMedPubMedCentral Enfield KS et al (2012) Mechanistic roles of noncoding RNAs in lung Cancer biology and their clinical implications. Genet Res Int 2012:737416PubMedPubMedCentral
53.
go back to reference Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770PubMedCrossRef Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770PubMedCrossRef
54.
go back to reference Berezikov E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24PubMedCrossRef Berezikov E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24PubMedCrossRef
55.
go back to reference Voorhoeve PM (2010) MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta 1805(1):72–86PubMed Voorhoeve PM (2010) MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochim Biophys Acta 1805(1):72–86PubMed
56.
go back to reference Lee YS, Dutta A (2006) MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs 7(6):560–564PubMed Lee YS, Dutta A (2006) MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs 7(6):560–564PubMed
57.
58.
go back to reference Ortholan C et al (2009) MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem 16(9):1047–1061PubMedCrossRef Ortholan C et al (2009) MicroRNAs and lung cancer: new oncogenes and tumor suppressors, new prognostic factors and potential therapeutic targets. Curr Med Chem 16(9):1047–1061PubMedCrossRef
59.
go back to reference Wozniak M, Mielczarek A, Czyz M (2016) miRNAs in melanoma: tumor suppressors and oncogenes with prognostic potential. Curr Med Chem 23(28):3136–3153PubMedCrossRef Wozniak M, Mielczarek A, Czyz M (2016) miRNAs in melanoma: tumor suppressors and oncogenes with prognostic potential. Curr Med Chem 23(28):3136–3153PubMedCrossRef
60.
go back to reference Bergmann JH, Spector DL (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10–18PubMedCrossRef Bergmann JH, Spector DL (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10–18PubMedCrossRef
61.
go back to reference Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927PubMedPubMedCentralCrossRef Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927PubMedPubMedCentralCrossRef
64.
go back to reference Pei X, Wang X, Li H (2018) LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol 118(Pt A):24–30PubMedCrossRef Pei X, Wang X, Li H (2018) LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol 118(Pt A):24–30PubMedCrossRef
65.
go back to reference Guo Q et al (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep 5:17683PubMedPubMedCentralCrossRef Guo Q et al (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep 5:17683PubMedPubMedCentralCrossRef
66.
67.
go back to reference Ray M, Ruffalo MM, Bar-Joseph Z (2018) Construction of integrated microRNA and mRNA immune cell signatures to predict survival of patients with breast and ovarian cancer. Genes Chromosom Cancer Ray M, Ruffalo MM, Bar-Joseph Z (2018) Construction of integrated microRNA and mRNA immune cell signatures to predict survival of patients with breast and ovarian cancer. Genes Chromosom Cancer
68.
go back to reference Miao BP et al (2015) Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol 12(6):750–756CrossRef Miao BP et al (2015) Nasopharyngeal cancer-derived microRNA-21 promotes immune suppressive B cells. Cell Mol Immunol 12(6):750–756CrossRef
69.
go back to reference Li ZH et al. (2018) MicroRNA-92a promotes tumor growth and suppresses immune function through activation of MAPK/ERK signaling pathway by inhibiting PTEN in mice bearing U14 cervical cancer. Cancer Med Li ZH et al. (2018) MicroRNA-92a promotes tumor growth and suppresses immune function through activation of MAPK/ERK signaling pathway by inhibiting PTEN in mice bearing U14 cervical cancer. Cancer Med
70.
go back to reference Korsunsky I et al (2017) Two microRNA signatures for malignancy and immune infiltration predict overall survival in advanced epithelial ovarian cancer. J Investig Med 65(7):1068–1076PubMedPubMedCentralCrossRef Korsunsky I et al (2017) Two microRNA signatures for malignancy and immune infiltration predict overall survival in advanced epithelial ovarian cancer. J Investig Med 65(7):1068–1076PubMedPubMedCentralCrossRef
71.
go back to reference Khorrami S et al (2017) MicroRNA-146a induces immune suppression and drug-resistant colorectal cancer cells. Tumour Biol 39(5):1010428317698365PubMedCrossRef Khorrami S et al (2017) MicroRNA-146a induces immune suppression and drug-resistant colorectal cancer cells. Tumour Biol 39(5):1010428317698365PubMedCrossRef
72.
go back to reference Afonso-Grunz F, Muller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141PubMedCrossRef Afonso-Grunz F, Muller S (2015) Principles of miRNA-mRNA interactions: beyond sequence complementarity. Cell Mol Life Sci 72(16):3127–3141PubMedCrossRef
73.
go back to reference Kataoka K et al (2016) Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature 534(7607):402–406PubMedCrossRef Kataoka K et al (2016) Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers. Nature 534(7607):402–406PubMedCrossRef
74.
go back to reference Du W et al (2017) Variant SNPs at the microRNA complementary site in the B7-H1 3′-untranslated region increase the risk of non-small cell lung cancer. Mol Med Rep 16(3):2682–2690PubMedPubMedCentralCrossRef Du W et al (2017) Variant SNPs at the microRNA complementary site in the B7-H1 3′-untranslated region increase the risk of non-small cell lung cancer. Mol Med Rep 16(3):2682–2690PubMedPubMedCentralCrossRef
75.
go back to reference Wang W et al (2012) A frequent somatic mutation in CD274 3'-UTR leads to protein over-expression in gastric cancer by disrupting miR-570 binding. Hum Mutat 33(3):480–484PubMedCrossRef Wang W et al (2012) A frequent somatic mutation in CD274 3'-UTR leads to protein over-expression in gastric cancer by disrupting miR-570 binding. Hum Mutat 33(3):480–484PubMedCrossRef
76.
go back to reference Gong AY et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol 182(3):1325–1333PubMedCrossRef Gong AY et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol 182(3):1325–1333PubMedCrossRef
77.
go back to reference Gong AY et al (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201(1):160–169PubMedCrossRef Gong AY et al (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201(1):160–169PubMedCrossRef
78.
go back to reference Yee D et al (2017) MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292(50):20683–20693PubMedPubMedCentralCrossRef Yee D et al (2017) MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292(50):20683–20693PubMedPubMedCentralCrossRef
79.
go back to reference Zhang J, Braun MY (2014) PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice. Int Immunol 26(7):407–415PubMedCrossRef Zhang J, Braun MY (2014) PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice. Int Immunol 26(7):407–415PubMedCrossRef
80.
go back to reference Cioffi M et al (2017) The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget 8(13):21609–21625PubMedPubMedCentralCrossRef Cioffi M et al (2017) The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget 8(13):21609–21625PubMedPubMedCentralCrossRef
81.
go back to reference Takamizawa J et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756PubMedCrossRef Takamizawa J et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756PubMedCrossRef
82.
go back to reference Yu SL et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13(1):48–57PubMedCrossRef Yu SL et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13(1):48–57PubMedCrossRef
83.
go back to reference Wang DT et al (2013) miR-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis. Oncol Rep 30(1):492–498PubMedCrossRef Wang DT et al (2013) miR-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis. Oncol Rep 30(1):492–498PubMedCrossRef
84.
go back to reference Fu Y et al (2018) Silencing of Long non-coding RNA MIAT sensitizes lung Cancer cells to Gefitinib by epigenetically regulating miR-34a. Front Pharmacol 9:82PubMedPubMedCentralCrossRef Fu Y et al (2018) Silencing of Long non-coding RNA MIAT sensitizes lung Cancer cells to Gefitinib by epigenetically regulating miR-34a. Front Pharmacol 9:82PubMedPubMedCentralCrossRef
85.
86.
go back to reference Wang J et al (2014) Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene 33(9):1181–1189PubMedPubMedCentralCrossRef Wang J et al (2014) Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene 33(9):1181–1189PubMedPubMedCentralCrossRef
87.
go back to reference Shao Y et al (2016) Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer. Oncotarget 7(23):34011–34021PubMedPubMedCentralCrossRef Shao Y et al (2016) Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer. Oncotarget 7(23):34011–34021PubMedPubMedCentralCrossRef
88.
go back to reference Gao ZJ et al (2018) miR-486-5p functions as an oncogene by targeting PTEN in non-small cell lung cancer. Pathol Res Pract 214(5):700–705PubMedCrossRef Gao ZJ et al (2018) miR-486-5p functions as an oncogene by targeting PTEN in non-small cell lung cancer. Pathol Res Pract 214(5):700–705PubMedCrossRef
89.
go back to reference Yu S, Geng S, Hu Y (2018) miR-486-5p inhibits cell proliferation and invasion through repressing GAB2 in non-small cell lung cancer. Oncol Lett 16(3):3525–3530PubMedPubMedCentral Yu S, Geng S, Hu Y (2018) miR-486-5p inhibits cell proliferation and invasion through repressing GAB2 in non-small cell lung cancer. Oncol Lett 16(3):3525–3530PubMedPubMedCentral
91.
go back to reference Shen Z et al (2015) Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. Int J Clin Exp Pathol 8(1):643–648PubMedPubMedCentral Shen Z et al (2015) Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. Int J Clin Exp Pathol 8(1):643–648PubMedPubMedCentral
92.
93.
go back to reference Park DH et al (2015) MicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2. Int J Oncol 47(4):1545–1553PubMedCrossRef Park DH et al (2015) MicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2. Int J Oncol 47(4):1545–1553PubMedCrossRef
94.
go back to reference Kapodistrias N, Bobori C, Theocharopoulou G (2017) MiR-140-3p Downregulation in Association with PDL-1 Overexpression in Many Cancers: A Review from the Literature Using Predictive Bioinformatics Tools. Adv Exp Med Biol 988:225–233PubMedCrossRef Kapodistrias N, Bobori C, Theocharopoulou G (2017) MiR-140-3p Downregulation in Association with PDL-1 Overexpression in Many Cancers: A Review from the Literature Using Predictive Bioinformatics Tools. Adv Exp Med Biol 988:225–233PubMedCrossRef
95.
go back to reference Ji X, Wang E, Tian F (2018) MicroRNA-140 suppresses osteosarcoma tumor growth by enhancing anti-tumor immune response and blocking mTOR signaling. Biochem Biophys Res Commun 495(1):1342–1348PubMedCrossRef Ji X, Wang E, Tian F (2018) MicroRNA-140 suppresses osteosarcoma tumor growth by enhancing anti-tumor immune response and blocking mTOR signaling. Biochem Biophys Res Commun 495(1):1342–1348PubMedCrossRef
96.
go back to reference Xie WB et al (2018) MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol Biochem 46(2):654–663PubMedCrossRef Xie WB et al (2018) MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol Biochem 46(2):654–663PubMedCrossRef
98.
go back to reference Jiang D et al (2006) Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16(5):507–518PubMedCrossRef Jiang D et al (2006) Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice. Cell Res 16(5):507–518PubMedCrossRef
99.
go back to reference Senfter D et al (2016) The microRNA-200 family: still much to discover. Biomol Concepts 7(5–6):311–319PubMedCrossRef Senfter D et al (2016) The microRNA-200 family: still much to discover. Biomol Concepts 7(5–6):311–319PubMedCrossRef
100.
go back to reference Wang R et al (2013) Functional role of miR-34 family in human cancer. Curr Drug Targets 14(10):1185–1191PubMedCrossRef Wang R et al (2013) Functional role of miR-34 family in human cancer. Curr Drug Targets 14(10):1185–1191PubMedCrossRef
101.
go back to reference Vergani E et al (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 7(4):4428–4441PubMedCrossRef Vergani E et al (2016) Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget 7(4):4428–4441PubMedCrossRef
102.
103.
go back to reference Cortez MA et al (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst:108(1) Cortez MA et al (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst:108(1)
104.
105.
go back to reference Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6(9):6472–6498PubMedPubMedCentralCrossRef Humphries B, Yang C (2015) The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 6(9):6472–6498PubMedPubMedCentralCrossRef
106.
go back to reference Diaz T et al (2014) Role of miR-200 family members in survival of colorectal cancer patients treated with fluoropyrimidines. J Surg Oncol 109(7):676–683PubMedCrossRef Diaz T et al (2014) Role of miR-200 family members in survival of colorectal cancer patients treated with fluoropyrimidines. J Surg Oncol 109(7):676–683PubMedCrossRef
107.
go back to reference Chen L et al (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241PubMedCrossRef Chen L et al (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241PubMedCrossRef
108.
go back to reference Fujita Y et al (2015) The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther 23(4):717–727PubMedPubMedCentralCrossRef Fujita Y et al (2015) The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther 23(4):717–727PubMedPubMedCentralCrossRef
109.
go back to reference Tang D et al (2018) The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med 22:3847–3856PubMedCentralCrossRefPubMed Tang D et al (2018) The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med 22:3847–3856PubMedCentralCrossRefPubMed
110.
go back to reference Audrito V et al (2017) PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. Oncotarget 8(9):15894–15911PubMedPubMedCentralCrossRef Audrito V et al (2017) PD-L1 up-regulation in melanoma increases disease aggressiveness and is mediated through miR-17-5p. Oncotarget 8(9):15894–15911PubMedPubMedCentralCrossRef
111.
go back to reference Li Q et al (2016) miR-28 modulates exhaustive differentiation of T cells through silencing programmed cell death-1 and regulating cytokine secretion. Oncotarget 7(33):53735–53750PubMedPubMedCentralCrossRef Li Q et al (2016) miR-28 modulates exhaustive differentiation of T cells through silencing programmed cell death-1 and regulating cytokine secretion. Oncotarget 7(33):53735–53750PubMedPubMedCentralCrossRef
112.
go back to reference Rivera LB, Bergers G (2013) Location, location, location: macrophage positioning within tumors determines pro- or antitumor activity. Cancer Cell 24(6):687–689PubMedPubMedCentralCrossRef Rivera LB, Bergers G (2013) Location, location, location: macrophage positioning within tumors determines pro- or antitumor activity. Cancer Cell 24(6):687–689PubMedPubMedCentralCrossRef
113.
go back to reference Jahangiri A et al (2013) Gene expression profile identifies tyrosine kinase c-met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19(7):1773–1783PubMedPubMedCentralCrossRef Jahangiri A et al (2013) Gene expression profile identifies tyrosine kinase c-met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19(7):1773–1783PubMedPubMedCentralCrossRef
114.
go back to reference Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896PubMedCrossRef Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896PubMedCrossRef
117.
go back to reference Zhang G et al (2015) microRNA-4717 differentially interacts with its polymorphic target in the PD1 3′ untranslated region: A mechanism for regulating PD-1 expression and function in HBV-associated liver diseases. Oncotarget 6(22):18933–18944PubMedPubMedCentralCrossRef Zhang G et al (2015) microRNA-4717 differentially interacts with its polymorphic target in the PD1 3′ untranslated region: A mechanism for regulating PD-1 expression and function in HBV-associated liver diseases. Oncotarget 6(22):18933–18944PubMedPubMedCentralCrossRef
118.
go back to reference Zhang Z et al (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Investig 88(12):1358–1366PubMedCrossRef Zhang Z et al (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Investig 88(12):1358–1366PubMedCrossRef
119.
go back to reference Yang SM et al (2013) miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology 306:162–168PubMedCrossRef Yang SM et al (2013) miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology 306:162–168PubMedCrossRef
120.
121.
go back to reference P LA et al (2018) Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer. Iran Biomed J 22(6):367–373CrossRef P LA et al (2018) Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer. Iran Biomed J 22(6):367–373CrossRef
122.
go back to reference Zhang H et al (2012) miR-21 downregulated TCF21 to inhibit KISS1 in renal cancer. Urology 80(6):1298–1302 e1PubMedCrossRef Zhang H et al (2012) miR-21 downregulated TCF21 to inhibit KISS1 in renal cancer. Urology 80(6):1298–1302 e1PubMedCrossRef
123.
go back to reference An F, Liu Y, Hu Y (2017) miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett 14(4):4684–4688PubMedPubMedCentralCrossRef An F, Liu Y, Hu Y (2017) miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett 14(4):4684–4688PubMedPubMedCentralCrossRef
124.
go back to reference Winther M et al (2015) Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer. Acta Oncol 54(9):1582–1591PubMedCrossRef Winther M et al (2015) Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer. Acta Oncol 54(9):1582–1591PubMedCrossRef
125.
go back to reference Wen SW et al (2015) Association of miR-21 with esophageal cancer prognosis: a meta-analysis. Genet Mol Res 14(2):6578–6582PubMedCrossRef Wen SW et al (2015) Association of miR-21 with esophageal cancer prognosis: a meta-analysis. Genet Mol Res 14(2):6578–6582PubMedCrossRef
126.
go back to reference Fu C et al (2014) The expression of miR-21 and miR-375 predict prognosis of esophageal cancer. Biochem Biophys Res Commun 446(4):1197–1203PubMedCrossRef Fu C et al (2014) The expression of miR-21 and miR-375 predict prognosis of esophageal cancer. Biochem Biophys Res Commun 446(4):1197–1203PubMedCrossRef
127.
go back to reference Zhang J et al (2012) miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer 107(2):352–359PubMedPubMedCentralCrossRef Zhang J et al (2012) miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br J Cancer 107(2):352–359PubMedPubMedCentralCrossRef
129.
go back to reference Deng J et al (2014) Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun 443(3):789–795PubMedCrossRef Deng J et al (2014) Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun 443(3):789–795PubMedCrossRef
130.
go back to reference Xue X et al (2016) MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 7(51):84508–84519PubMedPubMedCentralCrossRef Xue X et al (2016) MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 7(51):84508–84519PubMedPubMedCentralCrossRef
131.
go back to reference Xia H et al (2017) miR-21 modulates the effect of EZH2 on the biological behavior of human lung cancer stem cells in vitro. Oncotarget 8(49):85442–85451PubMedPubMedCentralCrossRef Xia H et al (2017) miR-21 modulates the effect of EZH2 on the biological behavior of human lung cancer stem cells in vitro. Oncotarget 8(49):85442–85451PubMedPubMedCentralCrossRef
132.
go back to reference Su C et al (2018) MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med 7(6):2485–2503PubMedPubMedCentralCrossRef Su C et al (2018) MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med 7(6):2485–2503PubMedPubMedCentralCrossRef
133.
go back to reference Yang Y, Guo JX, Shao ZQ (2017) miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac J Trop Med 10(1):87–91PubMedCrossRef Yang Y, Guo JX, Shao ZQ (2017) miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study. Asian Pac J Trop Med 10(1):87–91PubMedCrossRef
134.
135.
go back to reference Amankwah EK et al (2013) miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. Asian J Androl 15(2):226–230PubMedPubMedCentralCrossRef Amankwah EK et al (2013) miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. Asian J Androl 15(2):226–230PubMedPubMedCentralCrossRef
136.
go back to reference Zadeh MM, Ranji N, Motamed N (2015) Deregulation of miR-21 and miR-155 and their putative targets after silibinin treatment in T47D breast cancer cells. Iran J Basic Med Sci 18(12):1209–1214PubMedPubMedCentral Zadeh MM, Ranji N, Motamed N (2015) Deregulation of miR-21 and miR-155 and their putative targets after silibinin treatment in T47D breast cancer cells. Iran J Basic Med Sci 18(12):1209–1214PubMedPubMedCentral
137.
go back to reference Fragni M et al (2016) The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedeberg's Arch Pharmacol 389(5):529–538CrossRef Fragni M et al (2016) The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn Schmiedeberg's Arch Pharmacol 389(5):529–538CrossRef
138.
go back to reference Yang CH et al (2015) The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem 290(10):6037–6046PubMedPubMedCentralCrossRef Yang CH et al (2015) The oncogenic microRNA-21 inhibits the tumor suppressive activity of FBXO11 to promote tumorigenesis. J Biol Chem 290(10):6037–6046PubMedPubMedCentralCrossRef
139.
go back to reference Iliopoulos D et al (2011) The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur J Immunol 41(6):1754–1763PubMedCrossRef Iliopoulos D et al (2011) The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur J Immunol 41(6):1754–1763PubMedCrossRef
140.
142.
145.
146.
go back to reference Zhu J et al (2014) MiR-20b, −21, and -130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer. Hum Immunol 75(4):348–353PubMedCrossRef Zhu J et al (2014) MiR-20b, −21, and -130b inhibit PTEN expression resulting in B7-H1 over-expression in advanced colorectal cancer. Hum Immunol 75(4):348–353PubMedCrossRef
147.
go back to reference Shlush LI, Mitchell A (2015) AML evolution from preleukemia to leukemia and relapse. Best Pract Res Clin Haematol 28(2–3):81–89PubMedCrossRef Shlush LI, Mitchell A (2015) AML evolution from preleukemia to leukemia and relapse. Best Pract Res Clin Haematol 28(2–3):81–89PubMedCrossRef
148.
go back to reference Wang X et al (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27(3):443–452CrossRefPubMed Wang X et al (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27(3):443–452CrossRefPubMed
150.
go back to reference Xu S et al (2016) miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun 7:11406PubMedPubMedCentralCrossRef Xu S et al (2016) miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun 7:11406PubMedPubMedCentralCrossRef
151.
go back to reference Tao Z et al (2018) MiR-195/−16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint. Cell Physiol Biochem 48(2):801–814PubMedCrossRef Tao Z et al (2018) MiR-195/−16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint. Cell Physiol Biochem 48(2):801–814PubMedCrossRef
152.
go back to reference Huang F et al (2018) MicroRNA-374b inhibits liver cancer progression via down regulating programmed cell death-1 expression on cytokine-induced killer cells. Oncol Lett 15(4):4797–4804PubMedPubMedCentral Huang F et al (2018) MicroRNA-374b inhibits liver cancer progression via down regulating programmed cell death-1 expression on cytokine-induced killer cells. Oncol Lett 15(4):4797–4804PubMedPubMedCentral
153.
go back to reference Wu Q et al (2018) miR-375 inhibits IFN-gamma-induced programmed death 1 ligand 1 surface expression in head and neck squamous cell carcinoma cells by blocking JAK2/STAT1 signaling. Oncol Rep 39(3):1461–1468PubMed Wu Q et al (2018) miR-375 inhibits IFN-gamma-induced programmed death 1 ligand 1 surface expression in head and neck squamous cell carcinoma cells by blocking JAK2/STAT1 signaling. Oncol Rep 39(3):1461–1468PubMed
154.
go back to reference Wei J et al (2016) MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology 18(5):639–648PubMedCrossRef Wei J et al (2016) MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology 18(5):639–648PubMedCrossRef
155.
go back to reference Jia L et al (2017) miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun 488(2):425–431PubMedCrossRef Jia L et al (2017) miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun 488(2):425–431PubMedCrossRef
156.
go back to reference Zou MX et al (2018) Clinicopathologic implications of CD8(+)/Foxp3(+) ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients. Cancer Immunol Immunother 67(2):209–224PubMedCrossRef Zou MX et al (2018) Clinicopathologic implications of CD8(+)/Foxp3(+) ratio and miR-574-3p/PD-L1 axis in spinal chordoma patients. Cancer Immunol Immunother 67(2):209–224PubMedCrossRef
157.
go back to reference He B, Yan F, Wu C (2018) Overexpressed miR-195 attenuated immune escape of diffuse large B-cell lymphoma by targeting PD-L1. Biomed Pharmacother 98:95–101PubMedCrossRef He B, Yan F, Wu C (2018) Overexpressed miR-195 attenuated immune escape of diffuse large B-cell lymphoma by targeting PD-L1. Biomed Pharmacother 98:95–101PubMedCrossRef
159.
160.
go back to reference Haderk F et al (2017) Tumor-derived exosomes modulate PD-L1 expression in monocytes. Science Immunology 2(13)PubMedCrossRef Haderk F et al (2017) Tumor-derived exosomes modulate PD-L1 expression in monocytes. Science Immunology 2(13)PubMedCrossRef
161.
go back to reference Zhang C et al (2019) Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway. J Cell Biochem Zhang C et al (2019) Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway. J Cell Biochem
162.
go back to reference Gilligan KE, Dwyer RM (2017) Engineering Exosomes for Cancer Therapy. Int J Mol Sci:18(6) Gilligan KE, Dwyer RM (2017) Engineering Exosomes for Cancer Therapy. Int J Mol Sci:18(6)
163.
go back to reference Kazandjian D et al (2016) FDA approval summary: Nivolumab for the treatment of metastatic non-small cell lung Cancer with progression on or after platinum-based chemotherapy. Oncologist 21(5):634–642PubMedPubMedCentralCrossRef Kazandjian D et al (2016) FDA approval summary: Nivolumab for the treatment of metastatic non-small cell lung Cancer with progression on or after platinum-based chemotherapy. Oncologist 21(5):634–642PubMedPubMedCentralCrossRef
164.
go back to reference Tanaka K et al. (2013) Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. J Biol Chem 288(33): p. 23990-9PubMedCrossRefPubMedCentral Tanaka K et al. (2013) Tumor-suppressive function of protein-tyrosine phosphatase non-receptor type 23 in testicular germ cell tumors is lost upon overexpression of miR142-3p microRNA. J Biol Chem 288(33): p. 23990-9PubMedCrossRefPubMedCentral
Metadata
Title
Regulation of PD-1/PD-L1 Pathway in Cancer by Noncoding RNAs
Authors
Lei Ding
Shengdi Lu
Yanli Li
Publication date
01-04-2020
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 2/2020
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-019-00735-9

Other articles of this Issue 2/2020

Pathology & Oncology Research 2/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine