Skip to main content
Top
Published in: Pathology & Oncology Research 2/2020

01-04-2020 | Original Article

Bioinformatics Analysis Makes Revelation to Potential Properties on Regulation and Functions of Human Sox2

Authors: Jianguo Zhang, Jianzhong Zhang, Wenqi Chen, Huiyu Li, Meiying Li, Lisha Li

Published in: Pathology & Oncology Research | Issue 2/2020

Login to get access

Abstract

Sex determining region Y-box 2 (Sox2) is a transcription factor that is essential for maintaining self-renewal or pluripotency of undifferentiated embryonic stem cells. The expression and distribution of Sox2 in tumor tissues have been extensively recorded, which are related to the progression and metastasis of tumor. However, a complete mechanistic understanding of Sox2 regulation and function remains to be studied. Herein, we show new potential properties of Sox2 regulation and functions from bioinformatics analysis. We use numerous algorithms to characterize the Sox2 gene promoter elements and the Sox2 protein structure, physio-chemical, localization properties and its evolutionary relationships. The expression of Sox2 is regulated by a diverse set of transcription factors and associated with the levels of methylation of CpG Islands in promoters. The structural properties of Sox2 indicate that Sox2 expresses as a stem cell marker in a variety of stem cells. Sox2 together with other transcription factors or proteins regulate the expression of downstream target genes, which makes a great difference to the biological function of stem cells. Not only stem cells, Sox2 also play an important role in tumor cells. In conclusion, this information from bioinformatics analysis will help to understand Sox2 regulation and functions better in future attempts.
Literature
1.
go back to reference Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30PubMedPubMedCentralCrossRef Sarkar A, Hochedlinger K (2013) The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30PubMedPubMedCentralCrossRef
2.
go back to reference Rex M, Church R, Tointon K, Ichihashi RMA, Mokhtar S, Uwanogho D, Sharpe PT, Scotting PJ (1998) Granule cell development in the cerebellum is punctuated by changes in Sox gene expression. Mol Brain Res 55:28–34PubMedCrossRef Rex M, Church R, Tointon K, Ichihashi RMA, Mokhtar S, Uwanogho D, Sharpe PT, Scotting PJ (1998) Granule cell development in the cerebellum is punctuated by changes in Sox gene expression. Mol Brain Res 55:28–34PubMedCrossRef
3.
go back to reference Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H (2013) Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell 52:380–392PubMedCrossRef Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H (2013) Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell 52:380–392PubMedCrossRef
4.
go back to reference Lin BY, Huang XF, Han X, Foltz G (2011) SOX2 (SRY (sex determining region Y)-box 2). Atlas Genet Cytogenet Oncol Haematol 15(12):1054–1057 Lin BY, Huang XF, Han X, Foltz G (2011) SOX2 (SRY (sex determining region Y)-box 2). Atlas Genet Cytogenet Oncol Haematol 15(12):1054–1057
5.
go back to reference Zhao X, Sun B, Sun D et al (2015) Slug promotes hepatocellular cancer cell progression by increasing sox2 and nanog expression. Oncol Rep 33:149–156PubMedCrossRef Zhao X, Sun B, Sun D et al (2015) Slug promotes hepatocellular cancer cell progression by increasing sox2 and nanog expression. Oncol Rep 33:149–156PubMedCrossRef
7.
go back to reference Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366PubMedCrossRef Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366PubMedCrossRef
8.
go back to reference Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56PubMedCrossRef Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56PubMedCrossRef
9.
go back to reference Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:W580–W584PubMedPubMedCentralCrossRef Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:W580–W584PubMedPubMedCentralCrossRef
10.
go back to reference Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431PubMedCrossRef Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431PubMedCrossRef
11.
go back to reference Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba M (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334PubMedCrossRef Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba M (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334PubMedCrossRef
12.
go back to reference Wilkins MR, Gasteiger E, Bairoch A et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552PubMed Wilkins MR, Gasteiger E, Bairoch A et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552PubMed
13.
go back to reference Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci : CABIOS 11:681–684PubMed Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci : CABIOS 11:681–684PubMed
14.
go back to reference Garnier J: GOR secondary structure prediction method version IV. Methods Enzymol, RF Doolittle Ed. 266: 540-553, 1998 Garnier J: GOR secondary structure prediction method version IV. Methods Enzymol, RF Doolittle Ed. 266: 540-553, 1998
15.
go back to reference Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786PubMedCrossRef Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786PubMedCrossRef
16.
go back to reference Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinf 10:202CrossRef Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. BMC Bioinf 10:202CrossRef
17.
go back to reference Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016PubMedCrossRef Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016PubMedCrossRef
18.
go back to reference Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedPubMedCentralCrossRef Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedPubMedCentralCrossRef
19.
go back to reference Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztányi Z, el-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199PubMedCrossRef Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztányi Z, el-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199PubMedCrossRef
20.
go back to reference Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRef Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRef
21.
go back to reference Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258PubMedPubMedCentralCrossRef Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258PubMedPubMedCentralCrossRef
22.
go back to reference Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMed Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMed
23.
go back to reference Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–3248PubMedCrossRef Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–3248PubMedCrossRef
24.
go back to reference Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452PubMedCrossRef Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452PubMedCrossRef
25.
26.
27.
go back to reference Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462PubMedCrossRef Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462PubMedCrossRef
28.
go back to reference Hackenberg M, Previti C, Luque-Escamilla PL, Carpena P, Martínez-Aroza J, Oliver JL (2006) CpGcluster: a distance-based algorithm for CpG-island detection. BMC Bioinf 7:446CrossRef Hackenberg M, Previti C, Luque-Escamilla PL, Carpena P, Martínez-Aroza J, Oliver JL (2006) CpGcluster: a distance-based algorithm for CpG-island detection. BMC Bioinf 7:446CrossRef
29.
go back to reference Wu Y, Guo Z, Wu H, Wang X, Yang L, Shi X, et al (2012) SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2. PLoS One 7(6):e39606PubMedPubMedCentralCrossRef Wu Y, Guo Z, Wu H, Wang X, Yang L, Shi X, et al (2012) SUMOylation represses Nanog expression via modulating transcription factors Oct4 and Sox2. PLoS One 7(6):e39606PubMedPubMedCentralCrossRef
31.
go back to reference Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell-Badge R, Epstein DJ (2012) Disruption of SoxB1-dependent sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev Cell 22:585–596PubMedPubMedCentralCrossRef Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell-Badge R, Epstein DJ (2012) Disruption of SoxB1-dependent sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev Cell 22:585–596PubMedPubMedCentralCrossRef
32.
go back to reference Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D, Chellappan S (2015) YAP1 regulates OCT4 activity and SOX2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells 33:1705–1718PubMedPubMedCentralCrossRef Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D, Chellappan S (2015) YAP1 regulates OCT4 activity and SOX2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells 33:1705–1718PubMedPubMedCentralCrossRef
33.
go back to reference Verma NK, Gadi A, Maurizi G, Roy UB, Mansukhani A, Basilico C (2017) Myeloid zinc finger 1 and GA binding protein co-operate with Sox2 in regulating the expression of yes-associated protein 1 in cancer cells. Stem Cells 35(12):2340–2350PubMedCrossRef Verma NK, Gadi A, Maurizi G, Roy UB, Mansukhani A, Basilico C (2017) Myeloid zinc finger 1 and GA binding protein co-operate with Sox2 in regulating the expression of yes-associated protein 1 in cancer cells. Stem Cells 35(12):2340–2350PubMedCrossRef
34.
go back to reference Miranda CJ, Braun L, Jiang YY, Hester ME, Zhang L, Riolo M, Wang H, Rao M, Altura RA, Kaspar BK (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11:542–552PubMedCrossRef Miranda CJ, Braun L, Jiang YY, Hester ME, Zhang L, Riolo M, Wang H, Rao M, Altura RA, Kaspar BK (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11:542–552PubMedCrossRef
35.
go back to reference Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A (2011) Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 31:4593–4608PubMedPubMedCentralCrossRef Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A (2011) Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 31:4593–4608PubMedPubMedCentralCrossRef
36.
go back to reference Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, et al (2010) Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 5(11):e13952PubMedPubMedCentralCrossRef Keramari M, Razavi J, Ingman KA, Patsch C, Edenhofer F, Ward CM, et al (2010) Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 5(11):e13952PubMedPubMedCentralCrossRef
37.
go back to reference Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R, Vivanco MM (2014) Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 6:66–79PubMedCrossRef Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R, Vivanco MM (2014) Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 6:66–79PubMedCrossRef
38.
go back to reference Du J, Li B, Fang Y et al (2015) Overexpression of class III β-tubulin, Sox2, and nuclear Survivin is predictive of taxane resistance in patients with stage III ovarian epithelial cancer. BMC Cancer 15:536PubMedPubMedCentralCrossRef Du J, Li B, Fang Y et al (2015) Overexpression of class III β-tubulin, Sox2, and nuclear Survivin is predictive of taxane resistance in patients with stage III ovarian epithelial cancer. BMC Cancer 15:536PubMedPubMedCentralCrossRef
39.
go back to reference Li D, Zhao L-N, Zheng X-L et al (2014) Sox2 is involved in paclitaxel resistance of the prostate cancer cell line PC-3 via the PI3K/Akt pathway. Mol Med Rep 10:3169–3176PubMedCrossRef Li D, Zhao L-N, Zheng X-L et al (2014) Sox2 is involved in paclitaxel resistance of the prostate cancer cell line PC-3 via the PI3K/Akt pathway. Mol Med Rep 10:3169–3176PubMedCrossRef
40.
go back to reference Wen W, Han T, Chen C, Huang L, Sun W, Wang X, Chen SZ, Xiang DM, Tang L, Cao D, Feng GS, Wu MC, Ding J, Wang HY (2013) Cyclin G1 expands liver tumor-initiating cells by Sox2 induction via Akt/mTOR signaling. Mol Cancer Ther 12:1796–1804PubMedCrossRef Wen W, Han T, Chen C, Huang L, Sun W, Wang X, Chen SZ, Xiang DM, Tang L, Cao D, Feng GS, Wu MC, Ding J, Wang HY (2013) Cyclin G1 expands liver tumor-initiating cells by Sox2 induction via Akt/mTOR signaling. Mol Cancer Ther 12:1796–1804PubMedCrossRef
41.
go back to reference Chou M-Y, Hu F-W, Yu C-H, Yu C-C (2015) Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells. Oral Oncol 51:31–39PubMedCrossRef Chou M-Y, Hu F-W, Yu C-H, Yu C-C (2015) Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells. Oral Oncol 51:31–39PubMedCrossRef
42.
go back to reference Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J, Rivers CS, Foo CK, Bhatt D, Stinson J, Gnad F, Haverty PM, Gentleman R, Chaudhuri S, Janakiraman V, Jaiswal BS, Parikh C, Yuan W, Zhang Z, Koeppen H, Wu TD, Stern HM, Yauch RL, Huffman KE, Paskulin DD, Illei PB, Varella-Garcia M, Gazdar AF, de Sauvage FJ, Bourgon R, Minna JD, Brock MV, Seshagiri S (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116PubMedPubMedCentralCrossRef Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, Bergbower EA, Guan Y, Shin J, Guillory J, Rivers CS, Foo CK, Bhatt D, Stinson J, Gnad F, Haverty PM, Gentleman R, Chaudhuri S, Janakiraman V, Jaiswal BS, Parikh C, Yuan W, Zhang Z, Koeppen H, Wu TD, Stern HM, Yauch RL, Huffman KE, Paskulin DD, Illei PB, Varella-Garcia M, Gazdar AF, de Sauvage FJ, Bourgon R, Minna JD, Brock MV, Seshagiri S (2012) Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 44:1111–1116PubMedPubMedCentralCrossRef
43.
go back to reference Chen S, Li X, Lu D et al (2013) SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 35:613–623PubMedCrossRef Chen S, Li X, Lu D et al (2013) SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 35:613–623PubMedCrossRef
44.
go back to reference Ji J, Zheng PS (2010) Expression of Sox2 in human cervical carcinogenesis. Hum Pathol 41:1438–1447PubMedCrossRef Ji J, Zheng PS (2010) Expression of Sox2 in human cervical carcinogenesis. Hum Pathol 41:1438–1447PubMedCrossRef
45.
go back to reference Huang X, Xiong M, Jin Y et al (2016) Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties. Int J Oncol 49:343–351PubMedCrossRef Huang X, Xiong M, Jin Y et al (2016) Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties. Int J Oncol 49:343–351PubMedCrossRef
46.
go back to reference Wang L, Yang H, Lei Z, Zhao J, Chen Y, Chen P, Li C, Zeng Y, Liu Z, Liu X, Zhang HT (2016) Repression of TIF1gamma by SOX2 promotes TGF-beta-induced epithelial-mesenchymal transition in non-small-cell lung cancer. Oncogene 35:867–877PubMedCrossRef Wang L, Yang H, Lei Z, Zhao J, Chen Y, Chen P, Li C, Zeng Y, Liu Z, Liu X, Zhang HT (2016) Repression of TIF1gamma by SOX2 promotes TGF-beta-induced epithelial-mesenchymal transition in non-small-cell lung cancer. Oncogene 35:867–877PubMedCrossRef
47.
go back to reference Tornin J, Martinez-Cruzado L, Santos L et al (2016) Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma. Oncotarget 7:30935–30950PubMedPubMedCentralCrossRef Tornin J, Martinez-Cruzado L, Santos L et al (2016) Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma. Oncotarget 7:30935–30950PubMedPubMedCentralCrossRef
48.
go back to reference Marques-Torrejon MA, Porlan E, Banito A et al (2013) Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12:88–100PubMedCrossRef Marques-Torrejon MA, Porlan E, Banito A et al (2013) Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12:88–100PubMedCrossRef
49.
go back to reference Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, Urquiza L, Jauregi P, de Munain AL, Sampron N, Aramburu A, Tejada-Solís S, Vicente C, Odero MD, Bandrés E, García-Foncillas J, Idoate MA, Lang FF, Fueyo J, Gomez-Manzano C (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6:e26740PubMedPubMedCentralCrossRef Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, Urquiza L, Jauregi P, de Munain AL, Sampron N, Aramburu A, Tejada-Solís S, Vicente C, Odero MD, Bandrés E, García-Foncillas J, Idoate MA, Lang FF, Fueyo J, Gomez-Manzano C (2011) Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One 6:e26740PubMedPubMedCentralCrossRef
50.
go back to reference Li X, Wang YK, Song ZQ, Du ZQ, Yang CX (2016) Dimethyl sulfoxide perturbs cell cycle progression and spindle Organization in Porcine Meiotic Oocytes. PLoS One 11:e0158074PubMedPubMedCentralCrossRef Li X, Wang YK, Song ZQ, Du ZQ, Yang CX (2016) Dimethyl sulfoxide perturbs cell cycle progression and spindle Organization in Porcine Meiotic Oocytes. PLoS One 11:e0158074PubMedPubMedCentralCrossRef
51.
go back to reference Jung K, Wu F, Wang P, Ye X, Abdulkarim BS, Lai R (2014) YB-1 regulates Sox2 to coordinately sustain stemness and tumorigenic properties in a phenotypically distinct subset of breast cancer cells. BMC Cancer 14:328PubMedPubMedCentralCrossRef Jung K, Wu F, Wang P, Ye X, Abdulkarim BS, Lai R (2014) YB-1 regulates Sox2 to coordinately sustain stemness and tumorigenic properties in a phenotypically distinct subset of breast cancer cells. BMC Cancer 14:328PubMedPubMedCentralCrossRef
52.
go back to reference Chien CS, Wang ML, Chu PY, Chang YL, Liu WH, Yu CC, Lan YT, Huang PI, Lee YY, Chen YW, Lo WL, Chiou SH (2015) Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state. Cancer Res 75:2553–2565PubMedCrossRef Chien CS, Wang ML, Chu PY, Chang YL, Liu WH, Yu CC, Lan YT, Huang PI, Lee YY, Chen YW, Lo WL, Chiou SH (2015) Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state. Cancer Res 75:2553–2565PubMedCrossRef
53.
go back to reference Wu QQ, Zhang LS, Su P, Lei X, Liu X, Wang H, Lu L, Bai Y, Xiong T, Li D, Zhu Z, Duan E, Jiang E, Feng S, Han M, Xu Y, Wang F, Zhou J (2015) MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Cell Res 25:1314–1332PubMedPubMedCentralCrossRef Wu QQ, Zhang LS, Su P, Lei X, Liu X, Wang H, Lu L, Bai Y, Xiong T, Li D, Zhu Z, Duan E, Jiang E, Feng S, Han M, Xu Y, Wang F, Zhou J (2015) MSX2 mediates entry of human pluripotent stem cells into mesendoderm by simultaneously suppressing SOX2 and activating NODAL signaling. Cell Res 25:1314–1332PubMedPubMedCentralCrossRef
54.
go back to reference Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J, Shin K, Seo YJ, Choi YS, Lee JI, Lee J, Joo KM, Nam DH (2015) FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One 10:e0137703PubMedPubMedCentralCrossRef Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J, Shin K, Seo YJ, Choi YS, Lee JI, Lee J, Joo KM, Nam DH (2015) FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One 10:e0137703PubMedPubMedCentralCrossRef
55.
go back to reference Archer TC, Jin J, Casey ES (2011) Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol 350:429–440PubMedCrossRef Archer TC, Jin J, Casey ES (2011) Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev Biol 350:429–440PubMedCrossRef
Metadata
Title
Bioinformatics Analysis Makes Revelation to Potential Properties on Regulation and Functions of Human Sox2
Authors
Jianguo Zhang
Jianzhong Zhang
Wenqi Chen
Huiyu Li
Meiying Li
Lisha Li
Publication date
01-04-2020
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 2/2020
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-019-00581-9

Other articles of this Issue 2/2020

Pathology & Oncology Research 2/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine