Skip to main content
Top
Published in: Radiological Physics and Technology 3/2019

01-09-2019 | Silicone

Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology

Authors: Reza Malekzadeh, Parinaz Mehnati, Mohammad Yousefi Sooteh, Asghar Mesbahi

Published in: Radiological Physics and Technology | Issue 3/2019

Login to get access

Abstract

Recent studies have shown that the particle size of the shielding material and photon energy has significant effects on the efficiency of radiation-shielding materials. The purpose of the current study was to investigate the shielding properties of the bismuth–silicon (Bi–Si) composite containing varying percentages of micro- and nano-sized Bi particles for low-energy X-rays. Radiation composite shields composed of nano- and micro-sized Bi particles in Si-based matrix were constructed. The mass attenuation coefficients of the designed shields were experimentally assessed for diagnostic radiology energy range. In addition, the mass attenuation coefficients of the composite were comprehensively investigated using the MCNPX Monte Carlo (MC) code and XCOM. The X-ray attenuation for two different micro-sized Bi composites of radii of 50 µm and 0.50 µm showed enhancement in the range of 37–79% and 5–24%, respectively, for mono-energy photons (60–150 keV). Furthermore, the experimental and MC results indicated that nano-structured composites had higher photon attenuation properties (approximately 11–18%) than those of micro-sized samples for poly-energy X-ray photons. The amount of radiation attenuation for lower energies was more than that of higher energies. Thus, it was found that the shielding properties of composites were considerably strengthened by adding Bi nano-particles for lower energy photons.
Literature
1.
go back to reference de Gonzalez AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.CrossRef de Gonzalez AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.CrossRef
2.
go back to reference Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.PubMed Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.PubMed
3.
go back to reference Gaikwad D, Obaid SS, Sayyed M, Bhosale R, Awasarmol V, Kumar A, et al. Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater Chem Phys. 2018;213:508–17.CrossRef Gaikwad D, Obaid SS, Sayyed M, Bhosale R, Awasarmol V, Kumar A, et al. Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater Chem Phys. 2018;213:508–17.CrossRef
4.
go back to reference Tekin HO, Singh V, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl Radiat Isot. 2017;121:122–5.CrossRefPubMed Tekin HO, Singh V, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl Radiat Isot. 2017;121:122–5.CrossRefPubMed
5.
go back to reference Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater. 2014;16(9):1083–9.CrossRef Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater. 2014;16(9):1083–9.CrossRef
6.
go back to reference Mehnati P, Yousefi Sooteh M, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomed J. 2018;5(4):222–6. Mehnati P, Yousefi Sooteh M, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomed J. 2018;5(4):222–6.
7.
go back to reference Malekie S, Hajiloo N. Comparative study of micro and nano size WO3/E44 epoxy composite as gamma radiation shielding using MCNP and experiment. Chin Phys Lett. 2017;34(10):108102.CrossRef Malekie S, Hajiloo N. Comparative study of micro and nano size WO3/E44 epoxy composite as gamma radiation shielding using MCNP and experiment. Chin Phys Lett. 2017;34(10):108102.CrossRef
8.
go back to reference Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite-based shielding against diagnostic X-rays. J App Polym Sci. 2013;127(6):4939–46.CrossRef Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite-based shielding against diagnostic X-rays. J App Polym Sci. 2013;127(6):4939–46.CrossRef
9.
go back to reference Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat Phys Chem. 2018;147:85–90.CrossRef Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat Phys Chem. 2018;147:85–90.CrossRef
10.
go back to reference Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range. IJRR. 2016;14(2):127.CrossRef Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range. IJRR. 2016;14(2):127.CrossRef
11.
go back to reference Botelho M, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. App Radiat Isot. 2011;69(2):527–30.CrossRef Botelho M, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. App Radiat Isot. 2011;69(2):527–30.CrossRef
12.
go back to reference Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14–7.CrossRef Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14–7.CrossRef
13.
go back to reference Wagatsuma K, Oda K, Miwa K, Inaji M, Sakata M, Toyohara J, Ishiwata J, Sasaki M, Ishii K. Effects of a novel tungsten-impregnated rubber neck shield on the quality of cerebral images acquired using 15O-labeled gas. Radiol Phys Technol. 2017;10(4):422–30.CrossRefPubMed Wagatsuma K, Oda K, Miwa K, Inaji M, Sakata M, Toyohara J, Ishiwata J, Sasaki M, Ishii K. Effects of a novel tungsten-impregnated rubber neck shield on the quality of cerebral images acquired using 15O-labeled gas. Radiol Phys Technol. 2017;10(4):422–30.CrossRefPubMed
14.
go back to reference Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019;12(1):6–25.CrossRefPubMed Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019;12(1):6–25.CrossRefPubMed
15.
go back to reference Mehnati P, Sooteh YM, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2019;6(1):46–50. Mehnati P, Sooteh YM, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2019;6(1):46–50.
16.
go back to reference Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.CrossRef Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.CrossRef
17.
go back to reference Mesbahi A, Ghiasi H. Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. App Radiat Isot. 2018;136:27–31.CrossRef Mesbahi A, Ghiasi H. Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. App Radiat Isot. 2018;136:27–31.CrossRef
18.
go back to reference Mahmoud ME, El-Khatib AM, Badawi MS, Rashed AR, El-Sharkawy RM, Thabet AA. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem. 2018;145:160–73.CrossRef Mahmoud ME, El-Khatib AM, Badawi MS, Rashed AR, El-Sharkawy RM, Thabet AA. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem. 2018;145:160–73.CrossRef
19.
go back to reference Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat Phys Chem. 2018;150:95–100.CrossRef Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat Phys Chem. 2018;150:95–100.CrossRef
20.
go back to reference Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express. 2017;4(3):035035.CrossRef Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express. 2017;4(3):035035.CrossRef
21.
go back to reference Zhou D, Zhang Q-P, Zheng J, Wu Y, Zhao Y, Zhou Y-L. Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method. Inorgan Chem Commun. 2017;77:55–8.CrossRef Zhou D, Zhang Q-P, Zheng J, Wu Y, Zhao Y, Zhou Y-L. Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method. Inorgan Chem Commun. 2017;77:55–8.CrossRef
22.
go back to reference Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purpose. Radiol Phys Technol. 2016;9(1):37–43.CrossRefPubMed Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purpose. Radiol Phys Technol. 2016;9(1):37–43.CrossRefPubMed
23.
go back to reference Mesbahi A, Jamali F. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts. 2013;3(1):29.PubMed Mesbahi A, Jamali F. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts. 2013;3(1):29.PubMed
24.
go back to reference Mehnati P, Arash M, Akhlaghi P. Bismuth–silicon and bismuth–polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.PubMedPubMedCentral Mehnati P, Arash M, Akhlaghi P. Bismuth–silicon and bismuth–polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.PubMedPubMedCentral
25.
go back to reference Bjärngard BE, Shackford H. Attenuation in high-energy X-ray beams. Med Phys. 1994;21(7):1069–73.CrossRefPubMed Bjärngard BE, Shackford H. Attenuation in high-energy X-ray beams. Med Phys. 1994;21(7):1069–73.CrossRefPubMed
26.
go back to reference Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite–colemanite concrete with lower neutron production in radiation therapy bunkers. Ann Nucl Energy. 2013;51:107–11.CrossRef Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite–colemanite concrete with lower neutron production in radiation therapy bunkers. Ann Nucl Energy. 2013;51:107–11.CrossRef
27.
go back to reference Poludniowski G, Landry G, DeBlois F, Evans P, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes. Phys Med Biol. 2009;54(19):N433.CrossRefPubMed Poludniowski G, Landry G, DeBlois F, Evans P, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes. Phys Med Biol. 2009;54(19):N433.CrossRefPubMed
28.
go back to reference Shirmardi S, Singh V, Medhat M, Adeli R, Saniei E. MCNP modeling of attenuation coefficients of steel, red brass, pearl and beryl in comparison with experimental and XCOM data. J Nucl Energy Sci Power Gener Technol. 2016;5:2. Shirmardi S, Singh V, Medhat M, Adeli R, Saniei E. MCNP modeling of attenuation coefficients of steel, red brass, pearl and beryl in comparison with experimental and XCOM data. J Nucl Energy Sci Power Gener Technol. 2016;5:2.
29.
go back to reference Dong M, Sayyed M, Lakshminarayana G, Ersundu MÇ, Ersundu A, Nayar P, et al. Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. JNCS. 2017;468:12–6. Dong M, Sayyed M, Lakshminarayana G, Ersundu MÇ, Ersundu A, Nayar P, et al. Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. JNCS. 2017;468:12–6.
30.
go back to reference Yu D, Shu-Quan C, Hong-Xu Z, Chao R, Bin K, Ming-Zhu D, et al. Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin Phys Lett. 2012;29(10):108102.CrossRef Yu D, Shu-Quan C, Hong-Xu Z, Chao R, Bin K, Ming-Zhu D, et al. Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin Phys Lett. 2012;29(10):108102.CrossRef
Metadata
Title
Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology
Authors
Reza Malekzadeh
Parinaz Mehnati
Mohammad Yousefi Sooteh
Asghar Mesbahi
Publication date
01-09-2019
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 3/2019
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00529-3

Other articles of this Issue 3/2019

Radiological Physics and Technology 3/2019 Go to the issue