Skip to main content
Top
Published in: Radiological Physics and Technology 3/2019

01-09-2019 | Magnetic Resonance Imaging

Delineation of the intratemporal facial nerve in a cadaveric specimen on diffusion tensor imaging using a 9.4 T magnetic resonance imaging scanner: a technical note

Authors: Daniel Thomas Ginat, John Collins, Florian Christov, Erik G. Nelson, Michael B. Gluth

Published in: Radiological Physics and Technology | Issue 3/2019

Login to get access

Abstract

The purpose of this study was to determine whether the intratemporal facial nerve could be delineated on 9.4 T magnetic resonance imaging (MRI) using T2-weighted and diffusion tensor imaging (DTI). DTI using a b value of 3000 and an isotropic resolution of 0.4 mm3 on a 9.4 T MRI scanner was performed on a whole-block celloidin-embedded cadaveric temporal bone specimen of a 1-year-old infant with normal temporal bones. The labyrinthine, tympanic, and mastoid segments of the facial nerve and the chorda tympani nerve were readily depicted on DTI. Therefore, DTI performed using a high b value on a high-field strength MRI scanner could help evaluate the intratemporal facial nerve in whole temporal bone ex vivo specimens.
Literature
1.
go back to reference Lane JI, Witte RJ, Driscoll CL, Camp JJ, Robb RA. Imaging microscopy of the middle and inner ear: part I: CT microscopy. Clin Anat. 2004;17:607–12.CrossRefPubMed Lane JI, Witte RJ, Driscoll CL, Camp JJ, Robb RA. Imaging microscopy of the middle and inner ear: part I: CT microscopy. Clin Anat. 2004;17:607–12.CrossRefPubMed
2.
go back to reference Lane JI, Witte RJ, Henson OW, Driscoll CL, Camp J, Robb RA. Imaging microscopy of the middle and inner ear: part II: MR microscopy. Clin Anat. 2005;18:409–15.CrossRefPubMed Lane JI, Witte RJ, Henson OW, Driscoll CL, Camp J, Robb RA. Imaging microscopy of the middle and inner ear: part II: MR microscopy. Clin Anat. 2005;18:409–15.CrossRefPubMed
3.
go back to reference Thylur DS, Jacobs RE, Go JL, Toga AW, Niparko JK. Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 Tesla. Otol Neurotol. 2017;38:133–8.CrossRefPubMedPubMedCentral Thylur DS, Jacobs RE, Go JL, Toga AW, Niparko JK. Ultra-high-field magnetic resonance imaging of the human inner ear at 11.7 Tesla. Otol Neurotol. 2017;38:133–8.CrossRefPubMedPubMedCentral
4.
go back to reference Kozerska M, Skrzat J. Anatomy of the fundus of the internal acoustic meatus—micro-computed tomography study. Folia Morphol (Warsz). 2015;74:352–8.CrossRefPubMed Kozerska M, Skrzat J. Anatomy of the fundus of the internal acoustic meatus—micro-computed tomography study. Folia Morphol (Warsz). 2015;74:352–8.CrossRefPubMed
5.
go back to reference Li Z, Shi D, Li H, Tan S, Liu Y, Qi C, Tang A. Micro-CT study of the human cochlear aqueduct. Surg Radiol Anat. 2018;40:713–20.CrossRefPubMed Li Z, Shi D, Li H, Tan S, Liu Y, Qi C, Tang A. Micro-CT study of the human cochlear aqueduct. Surg Radiol Anat. 2018;40:713–20.CrossRefPubMed
6.
go back to reference Taoka T, Hirabayashi H, Nakagawa H, Sakamoto M, Myochin K, Hirohashi S, Iwasaki S, Sakaki T, Kichikawa K. Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography. J Magn Reson Imaging. 2006;24:1005–10.CrossRefPubMed Taoka T, Hirabayashi H, Nakagawa H, Sakamoto M, Myochin K, Hirohashi S, Iwasaki S, Sakaki T, Kichikawa K. Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography. J Magn Reson Imaging. 2006;24:1005–10.CrossRefPubMed
7.
go back to reference Hilly O, Chen JM, Birch J, Hwang E, Lin VY, Aviv RI, Symons SP. Diffusion tensor imaging tractography of the facial nerve in patients with cerebellopontine angle tumors. Otol Neurotol. 2016;37:388–93.PubMed Hilly O, Chen JM, Birch J, Hwang E, Lin VY, Aviv RI, Symons SP. Diffusion tensor imaging tractography of the facial nerve in patients with cerebellopontine angle tumors. Otol Neurotol. 2016;37:388–93.PubMed
8.
go back to reference Zhang Y, Mao Z, Wei P, Jin Y, Ma L, Zhang J, Yu X. Preoperative prediction of location and shape of facial nerve in patients with large vestibular schwannomas using diffusion tensor imaging-based fiber tracking. World Neurosurg. 2017;99:70–8.CrossRefPubMed Zhang Y, Mao Z, Wei P, Jin Y, Ma L, Zhang J, Yu X. Preoperative prediction of location and shape of facial nerve in patients with large vestibular schwannomas using diffusion tensor imaging-based fiber tracking. World Neurosurg. 2017;99:70–8.CrossRefPubMed
9.
go back to reference Ung N, Mathur M, Chung LK, Cremer N, Pelargos P, Frew A, Thill K, Mathur I, Voth B, Lim M, Yang I. A systematic analysis of the reliability of diffusion tensor imaging tractography for facial nerve imaging in patients with vestibular schwannoma. J Neurol Surg B Skull Base. 2016;77:314–8.CrossRefPubMedPubMedCentral Ung N, Mathur M, Chung LK, Cremer N, Pelargos P, Frew A, Thill K, Mathur I, Voth B, Lim M, Yang I. A systematic analysis of the reliability of diffusion tensor imaging tractography for facial nerve imaging in patients with vestibular schwannoma. J Neurol Surg B Skull Base. 2016;77:314–8.CrossRefPubMedPubMedCentral
10.
go back to reference Savardekar AR, Patra DP, Thakur JD, Narayan V, Mohammed N, Bollam P, Nanda A. Preoperative diffusion tensor imaging-fiber tracking for facial nerve identification in vestibular schwannoma: a systematic review on its evolution and current status with a pooled data analysis of surgical concordance rates. Neurosurg Focus. 2018;44:E5.CrossRefPubMed Savardekar AR, Patra DP, Thakur JD, Narayan V, Mohammed N, Bollam P, Nanda A. Preoperative diffusion tensor imaging-fiber tracking for facial nerve identification in vestibular schwannoma: a systematic review on its evolution and current status with a pooled data analysis of surgical concordance rates. Neurosurg Focus. 2018;44:E5.CrossRefPubMed
11.
go back to reference Măru N, Cheiţă AC, Mogoantă CA, Prejoianu B. Intratemporal course of the facial nerve: morphological, topographic and morphometric features. Rom J Morphol Embryol. 2010;51:243–8.PubMed Măru N, Cheiţă AC, Mogoantă CA, Prejoianu B. Intratemporal course of the facial nerve: morphological, topographic and morphometric features. Rom J Morphol Embryol. 2010;51:243–8.PubMed
12.
go back to reference Nelson EG, Hinojosa R. Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope. 2006;116:1–12.CrossRefPubMed Nelson EG, Hinojosa R. Presbycusis: a human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope. 2006;116:1–12.CrossRefPubMed
13.
go back to reference Guenette JP, Seethamraju RT, Jayender J, Corrales CE, Lee TC. MR imaging of the facial nerve through the temporal bone at 3T with a noncontrast ultrashort echo time sequence. AJNR Am J Neuroradiol. 2018;39:1903–6.CrossRefPubMedPubMedCentral Guenette JP, Seethamraju RT, Jayender J, Corrales CE, Lee TC. MR imaging of the facial nerve through the temporal bone at 3T with a noncontrast ultrashort echo time sequence. AJNR Am J Neuroradiol. 2018;39:1903–6.CrossRefPubMedPubMedCentral
14.
go back to reference Gerganov VM, Giordano M, Samii M, Samii A. Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg. 2011;115:1087–93.CrossRefPubMed Gerganov VM, Giordano M, Samii M, Samii A. Diffusion tensor imaging-based fiber tracking for prediction of the position of the facial nerve in relation to large vestibular schwannomas. J Neurosurg. 2011;115:1087–93.CrossRefPubMed
15.
go back to reference van Egmond SL, Visser F, Pameijer FA, Grolman W. Ex vivo and in vivo imaging of the inner ear at 7 Tesla MRI. Otol Neurotol. 2014;35:725–9.CrossRefPubMed van Egmond SL, Visser F, Pameijer FA, Grolman W. Ex vivo and in vivo imaging of the inner ear at 7 Tesla MRI. Otol Neurotol. 2014;35:725–9.CrossRefPubMed
Metadata
Title
Delineation of the intratemporal facial nerve in a cadaveric specimen on diffusion tensor imaging using a 9.4 T magnetic resonance imaging scanner: a technical note
Authors
Daniel Thomas Ginat
John Collins
Florian Christov
Erik G. Nelson
Michael B. Gluth
Publication date
01-09-2019
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 3/2019
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00528-4

Other articles of this Issue 3/2019

Radiological Physics and Technology 3/2019 Go to the issue