Skip to main content
Top
Published in: Annals of Nuclear Medicine 11/2020

01-11-2020 | Prostate Cancer | Original Article

Development of Convolutional Neural Networks to identify bone metastasis for prostate cancer patients in bone scintigraphy

Authors: Nikolaos Papandrianos, Elpiniki I. Papageorgiou, Athanasios Anagnostis

Published in: Annals of Nuclear Medicine | Issue 11/2020

Login to get access

Abstract

Objective

The main aim of this work is to build a robust Convolutional Neural Network (CNN) algorithm that efficiently and quickly classifies bone scintigraphy images, by determining the presence or absence of prostate cancer metastasis.

Methods

CNN, widely applied in medical image classification, was used for bone scintigraphy image classification. The retrospective study included 778 sequential male patients who underwent whole-body bone scans. A nuclear medicine physician classified all the cases into 3 categories: (1) normal, (2) malignant, and (3) degenerative, which were used as the gold standard.

Results

An efficient CNN architecture was built, based on CNN exploration performance, achieving high prediction accuracy. The results showed that the method is sufficiently precise when it comes to differentiating a bone metastasis from other either degenerative changes or normal tissue (overall classification accuracy = 91.42% ± 1.64%). To strengthen the outcomes of this study the authors further compared the best performing CNN method to other popular CNN architectures for medical imaging, like ResNet50, VGG16 and GoogleNet, as reported in the literature.

Conclusions

The prediction results reveal the efficacy of the proposed CNN-based approach and its ability for an easier and more precise interpretation of whole-body images in bone metastasis diagnosis for prostate cancer patients in nuclear medicine. This leads to marked effects on the diagnostic accuracy and decision-making regarding the treatment to be applied.
Literature
1.
go back to reference Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27:165–76.CrossRef Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27:165–76.CrossRef
2.
go back to reference Lukaszewski B, Nazar J, Goch M, Lukaszewska M, Stȩpiński A, Jurczyk MU. Diagnostic methods for detection of bone metastases. 2017;21(2):98. Lukaszewski B, Nazar J, Goch M, Lukaszewska M, Stȩpiński A, Jurczyk MU. Diagnostic methods for detection of bone metastases. 2017;21(2):98.
3.
go back to reference Chang CY, Gill CM, Joseph Simeone F, Taneja AK, Huang AJ, Torriani M, et al. Comparison of the diagnostic accuracy of 99 m-Tc-MDP bone scintigraphy and 18 F-FDG PET/CT for the detection of skeletal metastases. Acta Radiol. 2016;57:58–65.CrossRef Chang CY, Gill CM, Joseph Simeone F, Taneja AK, Huang AJ, Torriani M, et al. Comparison of the diagnostic accuracy of 99 m-Tc-MDP bone scintigraphy and 18 F-FDG PET/CT for the detection of skeletal metastases. Acta Radiol. 2016;57:58–65.CrossRef
4.
go back to reference Doi K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–211.CrossRef Doi K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput Med Imaging Graph. 2007;31(4–5):198–211.CrossRef
5.
go back to reference Rieden K. Conventional imaging and computerized tomography in diagnosis of skeletal metastases. Radiologe. 1995;35:15–20.PubMed Rieden K. Conventional imaging and computerized tomography in diagnosis of skeletal metastases. Radiologe. 1995;35:15–20.PubMed
6.
go back to reference Van Den Wyngaert T, Strobel K, Kampen WU, Kuwert T, Van Der Bruggen W, Mohan HK, et al. The EANM practice guidelines for bone scintigraphy On behalf of the EANM Bone & Joint Committee and the Oncology Committee. European Journal of Nuclear Medicine and Molecular Imaging. 2016;. Van Den Wyngaert T, Strobel K, Kampen WU, Kuwert T, Van Der Bruggen W, Mohan HK, et al. The EANM practice guidelines for bone scintigraphy On behalf of the EANM Bone & Joint Committee and the Oncology Committee. European Journal of Nuclear Medicine and Molecular Imaging. 2016;.
7.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef
8.
go back to reference Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Cuadrado-Godia E, et al. State-of-the-art review on deep learning in medical imaging. Front Biosci. 2019;24:392–426.CrossRef Biswas M, Kuppili V, Saba L, Edla DR, Suri HS, Cuadrado-Godia E, et al. State-of-the-art review on deep learning in medical imaging. Front Biosci. 2019;24:392–426.CrossRef
9.
go back to reference Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.CrossRef Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.CrossRef
10.
go back to reference Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999;12(1):145–51.CrossRef Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999;12(1):145–51.CrossRef
11.
go back to reference Zeiler MD, Fergus R. Visualizing and understanding convolutional networks BT—Computer Vision–ECCV 2014. European Conference on Computer Vision (ECCV). Cham: Springer; 2014. p. 818–33. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks BT—Computer Vision–ECCV 2014. European Conference on Computer Vision (ECCV). Cham: Springer; 2014. p. 818–33.
12.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International conference on learning representations, ICLR 2015-conference track proceedings. arXiv; 2014. p. 1409–556. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd International conference on learning representations, ICLR 2015-conference track proceedings. arXiv; 2014. p. 1409–556.
13.
go back to reference Simonyan K, Zisserman A. VGG-16. arXiv preprint. 2014;. Simonyan K, Zisserman A. VGG-16. arXiv preprint. 2014;.
14.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2015. p. 1–9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2015. p. 1–9.
15.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2016. p. 770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2016. p. 770–8.
16.
go back to reference Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017. 2017. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017. 2017.
17.
go back to reference Horikoshi H, Kikuchi A, Onoguchi M, Sjöstrand K, Edenbrandt L. Computer-aided diagnosis system for bone scintigrams from Japanese patients: importance of training database. Ann Nucl Med. 2012;26:622–6.CrossRef Horikoshi H, Kikuchi A, Onoguchi M, Sjöstrand K, Edenbrandt L. Computer-aided diagnosis system for bone scintigrams from Japanese patients: importance of training database. Ann Nucl Med. 2012;26:622–6.CrossRef
18.
go back to reference Dang J. Classification in Bone Scintigraphy Images Using Convolutional Neural Networks. 2016. Dang J. Classification in Bone Scintigraphy Images Using Convolutional Neural Networks. 2016.
19.
go back to reference Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM. Quantitative bone metastases analysis based on image segmentation. J Nucl Med. 1997;38:1401–6.PubMed Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM. Quantitative bone metastases analysis based on image segmentation. J Nucl Med. 1997;38:1401–6.PubMed
20.
go back to reference Šajn L, Kononenko I, Milčinski M. Computerized segmentation and diagnostics of whole-body bone scintigrams. Comput Med Imaging Graph. 2007;31:531–41.CrossRef Šajn L, Kononenko I, Milčinski M. Computerized segmentation and diagnostics of whole-body bone scintigrams. Comput Med Imaging Graph. 2007;31:531–41.CrossRef
21.
go back to reference Elfarra FG, Calin MA, Parasca SV. Computer-aided detection of bone metastasis in bone scintigraphy images using parallelepiped classification method. Ann Nucl Med. 2019;33:866–74.CrossRef Elfarra FG, Calin MA, Parasca SV. Computer-aided detection of bone metastasis in bone scintigraphy images using parallelepiped classification method. Ann Nucl Med. 2019;33:866–74.CrossRef
22.
go back to reference Bradshaw T, Perk T, Chen S, Hyung-Jun I, Cho S, Perlman S, et al. Deep learning for classification of benign and malignant bone lesions in [F-18]NaF PET/CT images. J Nucl Med. 2018;59:327.CrossRef Bradshaw T, Perk T, Chen S, Hyung-Jun I, Cho S, Perlman S, et al. Deep learning for classification of benign and malignant bone lesions in [F-18]NaF PET/CT images. J Nucl Med. 2018;59:327.CrossRef
23.
go back to reference Furuya S, Kawauchi K, Hirata K, Manabe W, Watanabe S, Kobayashi K, et al. A convolutional neural network-based system to detect malignant findings in FDG PET-CT examinations. J Nucl Med. 2019;60:1210. Furuya S, Kawauchi K, Hirata K, Manabe W, Watanabe S, Kobayashi K, et al. A convolutional neural network-based system to detect malignant findings in FDG PET-CT examinations. J Nucl Med. 2019;60:1210.
24.
go back to reference Furuya S, Kawauchi K, Hirata K, Manabe W, Watanabe S, Kobayashi K, et al. Can CNN detect the location of malignant uptake on FDG PET-CT? J Nucl Med. 2019;60:285.CrossRef Furuya S, Kawauchi K, Hirata K, Manabe W, Watanabe S, Kobayashi K, et al. Can CNN detect the location of malignant uptake on FDG PET-CT? J Nucl Med. 2019;60:285.CrossRef
25.
go back to reference Belcher L. Convolutional neural networks for classification of prostate cancer metastases using bone scan images. 2017. Belcher L. Convolutional neural networks for classification of prostate cancer metastases using bone scan images. 2017.
26.
go back to reference Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.CrossRef Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29.CrossRef
28.
go back to reference Komeda Y, Handa H, Watanabe T, Nomura T, Kitahashi M, Sakurai T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience. Oncology. 2017;93:30–4.CrossRef Komeda Y, Handa H, Watanabe T, Nomura T, Kitahashi M, Sakurai T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience. Oncology. 2017;93:30–4.CrossRef
29.
go back to reference Ma L, Ma C, Liu Y, Wang X. Thyroid diagnosis from SPECT images using convolutional neural network with optimization. Comput Intell Neurosci. 2019;2019:6212759.PubMedPubMedCentral Ma L, Ma C, Liu Y, Wang X. Thyroid diagnosis from SPECT images using convolutional neural network with optimization. Comput Intell Neurosci. 2019;2019:6212759.PubMedPubMedCentral
30.
go back to reference Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 2014. Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. 2014.
32.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. Int J Comput Vision. 2015;115(3):211–52.CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large scale visual recognition challenge. Int J Comput Vision. 2015;115(3):211–52.CrossRef
33.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2016. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2016.
34.
go back to reference Chollet F. Xception: Deep learning with depthwise separable convolutions. 2016. Chollet F. Xception: Deep learning with depthwise separable convolutions. 2016.
Metadata
Title
Development of Convolutional Neural Networks to identify bone metastasis for prostate cancer patients in bone scintigraphy
Authors
Nikolaos Papandrianos
Elpiniki I. Papageorgiou
Athanasios Anagnostis
Publication date
01-11-2020
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 11/2020
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01510-6

Other articles of this Issue 11/2020

Annals of Nuclear Medicine 11/2020 Go to the issue