Skip to main content
Top
Published in: Annals of Nuclear Medicine 4/2019

01-04-2019 | Positron Emission Tomography | Original Article

Verification of image quality and quantification in whole-body positron emission tomography with continuous bed motion

Authors: Hideo Yamamoto, Shota Takemoto, Akira Maebatake, Shuhei Karube, Yuki Yamashiro, Atsushi Nakanishi, Koji Murakami

Published in: Annals of Nuclear Medicine | Issue 4/2019

Login to get access

Abstract

Objective

Whole-body dynamic imaging using positron emission tomography (PET) facilitates the quantification of tracer kinetics. It is potentially valuable for the differential diagnosis of tumors and for the evaluation of therapeutic efficacy. In whole-body dynamic PET with continuous bed motion (CBM) (WBDCBM-PET), the pass number and bed velocity are key considerations. In the present study, we aimed to investigate the effect of a combination of pass number and bed velocity on the quantitative accuracy and quality of WBDCBM-PET images.

Methods

In this study, WBDCBM-PET imaging was performed at a body phantom using seven bed velocity settings in combination with pass numbers. The resulting image quality was evaluated. For comparing different acquisition settings, the dynamic index (DI) was obtained using the following formula: [P/S], where P represents the pass number, and S represents the bed velocity (mm/s). The following physical parameters were evaluated: noise equivalent count at phantom (NECphantom), percent background variability (N10 mm), percent contrast of the 10 mm hot sphere (QH, 10 mm), the QH, 10 mm/N10 mm ratio, and the maximum standardized uptake value (SUVmax). Furthermore, visual evaluation was performed.

Results

The NECphantom was equivalent for the same DI settings regardless of the bed velocity. The N10 mm exhibited an inverse correlation (r < − 0.89) with the DI. QH,10 mm was not affected by DI, and a correlation between QH,10 mm/N10 mm ratio and DI was found at all the velocities (r > 0.93). The SUVmax of the spheres was not influenced by the DI. The coefficient of variations caused by bed velocity decreased in larger spheres. There was no significant difference between the bed velocities on visual evaluation.

Conclusion

The quantitative accuracy and image quality achieved with WBDCBM-PET was comparable to that achieved with non-dynamic CBM, regardless of the pass number and bed velocity used during imaging for a given acquisition time.
Literature
1.
go back to reference Cutler PD, Xu M. Strategies to improve 3D whole-body PET image reconstruction. Phys Med Biol. 1996;41:1453–67.CrossRefPubMed Cutler PD, Xu M. Strategies to improve 3D whole-body PET image reconstruction. Phys Med Biol. 1996;41:1453–67.CrossRefPubMed
2.
go back to reference Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–33.CrossRef Boellaard R, Oyen WJ, Hoekstra CJ, Hoekstra OS, Visser EP, Willemsen AT, et al. The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials. Eur J Nucl Med Mol Imaging. 2008;35:2320–33.CrossRef
3.
go back to reference Daisaki H, Shinohara H, Terauchi T, Murano T, Shimada N, Moriyama N, et al. Multi-bed-position acquisition technique for deep inspiration breath-hold PET/CT: a preliminary result for pulmonary lesions. Ann Nucl Med. 2010;24:179–88.CrossRefPubMed Daisaki H, Shinohara H, Terauchi T, Murano T, Shimada N, Moriyama N, et al. Multi-bed-position acquisition technique for deep inspiration breath-hold PET/CT: a preliminary result for pulmonary lesions. Ann Nucl Med. 2010;24:179–88.CrossRefPubMed
4.
go back to reference McKeown C, Gillen G, Dempsey MF, Findlay C. Influence of slice overlap on positron emission tomography image quality. Phys Med Biol. 2016;61:1259–77.CrossRefPubMed McKeown C, Gillen G, Dempsey MF, Findlay C. Influence of slice overlap on positron emission tomography image quality. Phys Med Biol. 2016;61:1259–77.CrossRefPubMed
5.
go back to reference Panin VY, Smith AM, Hu J, Kehren F, Casey ME. Continuous bed motion on clinical scanner: design, data correction, and reconstruction. Phys Med Biol. 2014;59:6153–74.CrossRefPubMed Panin VY, Smith AM, Hu J, Kehren F, Casey ME. Continuous bed motion on clinical scanner: design, data correction, and reconstruction. Phys Med Biol. 2014;59:6153–74.CrossRefPubMed
6.
go back to reference Acuff SN, Osborne D. Clinical workflow considerations for implementation of continuous-bed-motion PET/CT. J Nucl Med Technol. 2016;44:55–8.CrossRefPubMed Acuff SN, Osborne D. Clinical workflow considerations for implementation of continuous-bed-motion PET/CT. J Nucl Med Technol. 2016;44:55–8.CrossRefPubMed
7.
go back to reference Osborne DR, Acuff S, Cruise S, Syed M, Neveu M, Stuckey A, et al. Quantitative and qualitative comparison of continuous bed motion and traditional step and shoot PET/CT. Am J Nucl Med Mol Imaging. 2015;5:56–64.PubMed Osborne DR, Acuff S, Cruise S, Syed M, Neveu M, Stuckey A, et al. Quantitative and qualitative comparison of continuous bed motion and traditional step and shoot PET/CT. Am J Nucl Med Mol Imaging. 2015;5:56–64.PubMed
8.
go back to reference Owaki Y, Nakahara T, Shimizu T, Smith AM, Luk WK, Inoue K, et al. Effects of breathing motion on PET acquisitions: step and shoot versus continuous bed motion. Nucl Med Commun. 2018;39:665–71.CrossRefPubMed Owaki Y, Nakahara T, Shimizu T, Smith AM, Luk WK, Inoue K, et al. Effects of breathing motion on PET acquisitions: step and shoot versus continuous bed motion. Nucl Med Commun. 2018;39:665–71.CrossRefPubMed
9.
go back to reference Schatka I, Weiberg D, Reichelt S, Owsianski-Hille N, Derlin T, Berding G, et al. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2016;43:711–7.CrossRefPubMed Schatka I, Weiberg D, Reichelt S, Owsianski-Hille N, Derlin T, Berding G, et al. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2016;43:711–7.CrossRefPubMed
10.
go back to reference Rausch I, Cal-Gonzalez J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2:26.CrossRefPubMedPubMedCentral Rausch I, Cal-Gonzalez J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2:26.CrossRefPubMedPubMedCentral
11.
go back to reference Yamashita S, Yamamoto H, Nakaichi T, Yoneyama T, Yokoyama K. Comparison of image quality between step-and-shoot and continuous bed motion techniques in whole-body (18)F-fluorodeoxyglucose positron emission tomography with the same acquisition duration. Ann Nucl Med. 2017;31:686–95.CrossRefPubMed Yamashita S, Yamamoto H, Nakaichi T, Yoneyama T, Yokoyama K. Comparison of image quality between step-and-shoot and continuous bed motion techniques in whole-body (18)F-fluorodeoxyglucose positron emission tomography with the same acquisition duration. Ann Nucl Med. 2017;31:686–95.CrossRefPubMed
12.
go back to reference Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58:7391–418.CrossRefPubMedPubMedCentral Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58:7391–418.CrossRefPubMedPubMedCentral
13.
go back to reference Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol. 2013;58:7419–45.CrossRefPubMedPubMedCentral Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol. 2013;58:7419–45.CrossRefPubMedPubMedCentral
14.
15.
go back to reference Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10:45–58.CrossRefPubMed Houshmand S, Salavati A, Hess S, Werner TJ, Alavi A, Zaidi H. An update on novel quantitative techniques in the context of evolving whole-body PET imaging. PET Clin. 2015;10:45–58.CrossRefPubMed
16.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61:5456–85.CrossRefPubMedPubMedCentral Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61:5456–85.CrossRefPubMedPubMedCentral
17.
go back to reference Palard-Novello X, Blin AL, Bourhis D, Garin E, Salaun PY, Devillers A, et al. Comparison of choline influx from dynamic (18)F-Choline PET/CT and clinicopathological parameters in prostate cancer initial assessment. Ann Nucl Med. 2018;32:281–7.CrossRefPubMed Palard-Novello X, Blin AL, Bourhis D, Garin E, Salaun PY, Devillers A, et al. Comparison of choline influx from dynamic (18)F-Choline PET/CT and clinicopathological parameters in prostate cancer initial assessment. Ann Nucl Med. 2018;32:281–7.CrossRefPubMed
18.
go back to reference Taddio MF, Mu L, Keller C, Schibli R, Kramer SD. Physiologically based pharmacokinetic modelling with dynamic PET data to study the in vivo effects of transporter inhibition on hepatobiliary clearance in mice. Contrast Media Mol Imaging. 2018;2018:5849047.CrossRefPubMedPubMedCentral Taddio MF, Mu L, Keller C, Schibli R, Kramer SD. Physiologically based pharmacokinetic modelling with dynamic PET data to study the in vivo effects of transporter inhibition on hepatobiliary clearance in mice. Contrast Media Mol Imaging. 2018;2018:5849047.CrossRefPubMedPubMedCentral
20.
go back to reference Burger IA, Vargas HA, Apte A, Beattie BJ, Humm JL, Gonen M, et al. PET quantification with a histogram derived total activity metric: superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients. Nucl Med Biol. 2014;41:410–8.CrossRefPubMedPubMedCentral Burger IA, Vargas HA, Apte A, Beattie BJ, Humm JL, Gonen M, et al. PET quantification with a histogram derived total activity metric: superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients. Nucl Med Biol. 2014;41:410–8.CrossRefPubMedPubMedCentral
22.
go back to reference Maus J, Hofheinz F, Schramm G, Oehme L, Beuthien-Baumann B, Lukas M, et al. Evaluation of PET quantification accuracy in vivo. Comparison of measured FDG concentration in the bladder with urine samples. Nuklearmedizin. 2014;53:67–77.CrossRefPubMed Maus J, Hofheinz F, Schramm G, Oehme L, Beuthien-Baumann B, Lukas M, et al. Evaluation of PET quantification accuracy in vivo. Comparison of measured FDG concentration in the bladder with urine samples. Nuklearmedizin. 2014;53:67–77.CrossRefPubMed
23.
go back to reference Fukukita H, Suzuki K, Matsumoto K, Terauchi T, Daisaki H, Ikari Y, et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of Version 2.0. Ann Nucl Med. 2014;28:693–705.CrossRefPubMedPubMedCentral Fukukita H, Suzuki K, Matsumoto K, Terauchi T, Daisaki H, Ikari Y, et al. Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of Version 2.0. Ann Nucl Med. 2014;28:693–705.CrossRefPubMedPubMedCentral
24.
go back to reference Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans Nucl Sci. 1990;37(2):783–788.CrossRef Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts. IEEE Trans Nucl Sci. 1990;37(2):783–788.CrossRef
25.
go back to reference Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med. 2012;53:1716–22.CrossRefPubMed Akamatsu G, Ishikawa K, Mitsumoto K, Taniguchi T, Ohya N, Baba S, et al. Improvement in PET/CT image quality with a combination of point-spread function and time-of-flight in relation to reconstruction parameters. J Nucl Med. 2012;53:1716–22.CrossRefPubMed
27.
go back to reference Hashimoto N, Morita K, Tsutsui Y, Himuro K, Baba S, Sasaki M. Time-of-flight information improved the detectability of sub-centimeter sphere using clinical positron emission tomography/computed tomography scanner. J Nucl Med Technol. 2018;46:268–73.CrossRefPubMed Hashimoto N, Morita K, Tsutsui Y, Himuro K, Baba S, Sasaki M. Time-of-flight information improved the detectability of sub-centimeter sphere using clinical positron emission tomography/computed tomography scanner. J Nucl Med Technol. 2018;46:268–73.CrossRefPubMed
28.
go back to reference Lee YS, Kim JS, Kim KM, Kang JH, Lim SM, Kim HJ. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT. Ann Nucl Med. 2014;28:340–8.CrossRefPubMed Lee YS, Kim JS, Kim KM, Kang JH, Lim SM, Kim HJ. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT. Ann Nucl Med. 2014;28:340–8.CrossRefPubMed
29.
go back to reference Ashrafinia S, Mohy-Ud-Din H, Karakatsanis NA, Jha AK, Casey ME, Kadrmas DJ, et al. Generalized PSF modeling for optimized quantitation in PET imaging. Phys Med Biol. 2017;62:5149–79.CrossRefPubMed Ashrafinia S, Mohy-Ud-Din H, Karakatsanis NA, Jha AK, Casey ME, Kadrmas DJ, et al. Generalized PSF modeling for optimized quantitation in PET imaging. Phys Med Biol. 2017;62:5149–79.CrossRefPubMed
31.
go back to reference Kidera D, Kihara K, Akamatsu G, Mikasa S, Taniguchi T, Tsutsui Y, et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med. 2016;30:97–103.CrossRefPubMed Kidera D, Kihara K, Akamatsu G, Mikasa S, Taniguchi T, Tsutsui Y, et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med. 2016;30:97–103.CrossRefPubMed
Metadata
Title
Verification of image quality and quantification in whole-body positron emission tomography with continuous bed motion
Authors
Hideo Yamamoto
Shota Takemoto
Akira Maebatake
Shuhei Karube
Yuki Yamashiro
Atsushi Nakanishi
Koji Murakami
Publication date
01-04-2019
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 4/2019
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-019-01334-z

Other articles of this Issue 4/2019

Annals of Nuclear Medicine 4/2019 Go to the issue