Skip to main content
Top
Published in: Annals of Nuclear Medicine 5/2018

01-06-2018 | Original Article

Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction

Authors: Tobias Bexelius, Antti Sohlberg

Published in: Annals of Nuclear Medicine | Issue 5/2018

Login to get access

Abstract

Objective

Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing.

Methods

Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies.

Results

The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included.

Conclusions

GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
Literature
1.
go back to reference Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for (99 m)Tc myocardial perfusion imaging. J Nucl Med. 2003;44:1725–34.PubMed Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for (99 m)Tc myocardial perfusion imaging. J Nucl Med. 2003;44:1725–34.PubMed
2.
go back to reference Niu X, Yang Y, Jin M, Wernick MN, King MA. Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction. Med Phys. 2011;38:6571–84.CrossRefPubMedPubMedCentral Niu X, Yang Y, Jin M, Wernick MN, King MA. Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction. Med Phys. 2011;38:6571–84.CrossRefPubMedPubMedCentral
3.
go back to reference Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:761 – 82.CrossRefPubMed Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:761 – 82.CrossRefPubMed
4.
go back to reference Frey EC, Gilland KL, Tsui BM. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT. IEEE Trans Med Imaging. 2002;21:1040–50.CrossRefPubMed Frey EC, Gilland KL, Tsui BM. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT. IEEE Trans Med Imaging. 2002;21:1040–50.CrossRefPubMed
5.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRef
6.
go back to reference Di Bella EVR, Barclay AB, Eisner RL, Schafer RW. A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1996;43:3370–6.CrossRef Di Bella EVR, Barclay AB, Eisner RL, Schafer RW. A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1996;43:3370–6.CrossRef
7.
go back to reference Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53:N277–N285.CrossRefPubMed Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53:N277–N285.CrossRefPubMed
8.
go back to reference Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S. et. al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRefPubMed Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S. et. al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRefPubMed
9.
go back to reference Delcroix O, Robin P, Gouillou M, Le Duc-Pennec A, Alavi Z, Le Roux PY, et al. New SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases. EJNMMI Res. 2018;8:14.CrossRefPubMedPubMedCentral Delcroix O, Robin P, Gouillou M, Le Duc-Pennec A, Alavi Z, Le Roux PY, et al. New SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases. EJNMMI Res. 2018;8:14.CrossRefPubMedPubMedCentral
10.
go back to reference Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hutton BF, et al. GPU accelerated rotation-based emission tomography reconstruction. IEEE Nuclear Science Symposium Conference Record 2010;2657–2661. Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hutton BF, et al. GPU accelerated rotation-based emission tomography reconstruction. IEEE Nuclear Science Symposium Conference Record 2010;2657–2661.
11.
go back to reference Ha S, Matej S, Ispiryan M, Mueller K. GPU-accelerated forward and back-projections with spatially varying kernels for 3D DIRECT TOF PET reconstruction. IEEE Trans Nucl Sci. 2013;60:166–73.CrossRefPubMedPubMedCentral Ha S, Matej S, Ispiryan M, Mueller K. GPU-accelerated forward and back-projections with spatially varying kernels for 3D DIRECT TOF PET reconstruction. IEEE Trans Nucl Sci. 2013;60:166–73.CrossRefPubMedPubMedCentral
12.
go back to reference Kangasmaa TS, Constable C, Hippeläinen E, Sohlberg AO. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software. Nucl Med Commun. 2016;37:983–7.CrossRefPubMed Kangasmaa TS, Constable C, Hippeläinen E, Sohlberg AO. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software. Nucl Med Commun. 2016;37:983–7.CrossRefPubMed
13.
go back to reference Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun. 2011;32:1040–5.CrossRefPubMed Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun. 2011;32:1040–5.CrossRefPubMed
14.
go back to reference Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of Lu-177 SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res. 2016;6:16.CrossRefPubMedPubMedCentral Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of Lu-177 SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res. 2016;6:16.CrossRefPubMedPubMedCentral
15.
go back to reference Woliner-van der Weg W, Deden LN, Meeuwis AP, Koenrades M, Peeters LH, Kuipers H, Laanstra GJ, Gotthardt M, Slump CH, Visser EP. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin. EJNMMI Phys. 2016;3:29.CrossRefPubMedPubMedCentral Woliner-van der Weg W, Deden LN, Meeuwis AP, Koenrades M, Peeters LH, Kuipers H, Laanstra GJ, Gotthardt M, Slump CH, Visser EP. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin. EJNMMI Phys. 2016;3:29.CrossRefPubMedPubMedCentral
16.
go back to reference Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Proc Conf Appl Comput Methods Reactor Probl. 1965;557:2. Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Proc Conf Appl Comput Methods Reactor Probl. 1965;557:2.
17.
go back to reference Berger M, Hubbell J. XCOM. Photon cross sections on a personal computer. Natl Bur Stand Washington, DC (USA). Cent Radiat Res. 1987. Berger M, Hubbell J. XCOM. Photon cross sections on a personal computer. Natl Bur Stand Washington, DC (USA). Cent Radiat Res. 1987.
18.
go back to reference De Jong HWAM., Slijpen ETP, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Trans Nucl Sci. 2001;48:58–64.CrossRef De Jong HWAM., Slijpen ETP, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Trans Nucl Sci. 2001;48:58–64.CrossRef
19.
go back to reference Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random numbers: as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis 2011;1–12. Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random numbers: as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis 2011;1–12.
20.
go back to reference Doornik JA. Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul. 2007;17:3.CrossRef Doornik JA. Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul. 2007;17:3.CrossRef
21.
go back to reference Satish N, Harris M, Garland M. Designing efficient sorting algorithms for manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. 2009. pp. 1–10. Satish N, Harris M, Garland M. Designing efficient sorting algorithms for manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. 2009. pp. 1–10.
22.
go back to reference Zelen M, Severo NC. Probability functions. Handb Math Funct 1964 5;925–995. Zelen M, Severo NC. Probability functions. Handb Math Funct 1964 5;925–995.
24.
go back to reference Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imag 2009;28:435–445.CrossRef Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imag 2009;28:435–445.CrossRef
25.
Metadata
Title
Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction
Authors
Tobias Bexelius
Antti Sohlberg
Publication date
01-06-2018
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 5/2018
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-018-1252-1

Other articles of this Issue 5/2018

Annals of Nuclear Medicine 5/2018 Go to the issue